Skip to main content

Functional Properties of C-Low Threshold Mechanoreceptors (C-LTMRs) in Nonhuman Mammals

  • Chapter
  • First Online:
Affective Touch and the Neurophysiology of CT Afferents

Abstract

In humans, unmyelinated C-tactile fibers, referred to as C-low threshold mechanoreceptors (C-LTMRs) in nonhuman mammals, are found exclusively in hairy skin and preferentially respond to slow moving gentle touch, such as that produced by lightly stroking the skin. While substantial species differences exist in the proportion of C-LTMRs to the total C-fiber population, C-LTMRs appear to be expressed more densely in proximal regions of the limbs and the trunk. Functionally, C-LTMRs are specifically tuned to relatively low velocity (~0.1 cm/s) cutaneous stimulation, respond with biphasic adaptation to a single sustained stimulus and exhibit prolonged fatigue in response to repeated stimulation. While a molecular marker of the global C-LTMR population is lacking, subtypes expressing MrgprB4, VGLUT3, and TH have been identified. Considering that C-LTMRs terminate in lamina II of the spinal dorsal horn, there is increasing evidence supporting their involvement in the modulation of spinal responses to nociceptive input.

As the methods of recording the activity of the nerve fibers now have been developed to such a degree that even the smallest afferent fibers have to yield to our curiosity, further experiments may provide more quantitative data required for the analyses of the nervous mechanism of cutaneous sensations.

Yngve Zotterman; Touch, pain and tickling: An electrophysiological investigation on cutaneous sensory nerves (1939)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerley R, Backlund Wasling H, Liljencrantz J, Olausson H, Johnson RD, Wessberg J (2014) Human C-tactile afferents are tuned to the temperature of a skin-stroking caress. J Neurosci 34(8):2879–2883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bessou P, Burgess PR, Perl ER, Taylor CB (1971) Dynamic properties of mechanoreceptors with unmyelinated (C) fibers. J Neurophysiol 34(1):116–131

    CAS  PubMed  Google Scholar 

  • Bessou P, Perl ER (1969) Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol 32(6):1025–1043

    CAS  PubMed  Google Scholar 

  • Brumovsky P, Hygge-Blakeman K, Villar MJ, Watanabe M, Wiesenfeld-Hallin Z, Hokfelt T (2006) Phenotyping of sensory and sympathetic ganglion neurons of a galanin-overexpressing mouse—possible implications for pain processing. J Chem Neuroanat 31:243–262

    Article  CAS  PubMed  Google Scholar 

  • Cain DM, Khasabov SG, Simone DA (2001) Response properties of mechanoreceptors and nociceptors in mouse glabrous skin: an in vivo study. J Neurophysiol 85:1561–1574

    CAS  PubMed  Google Scholar 

  • Cauna N (1969) The fine morphology of the sensory receptor organs in the auricle of the rat. J Comp Neurol 136:81–98

    Article  CAS  PubMed  Google Scholar 

  • Cauna N (1973) The free penicillate nerve endings of the human hairy skin. J Anat 115:277–288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cavanaugh DJ, Lee H, Lo L, Shields SD, Zylka MJ, Basbaum AI, Anderson DJ (2009) Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc Natl Acad Sci U S A 106:9075–9080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cervero F, Laird JM (1999) Visceral pain. Lancet 353:2145–2148

    Article  CAS  PubMed  Google Scholar 

  • Craig AD (2003) Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol 13:500–505

    Article  CAS  PubMed  Google Scholar 

  • Delfini MC, Mantilleri A, Gaillard S, Hao J, Reynders A, Malapert P, Alonso S, Francois A, Barrere C, Seal R, Landry M, Eschallier A, Alloui A, Bourinet E, Delmas P, Le Feuvre Y, Moqrich A (2013) TAFA4, a chemokine-like protein modulates injury-induced mechanical and chemical pain hypersensitivity in mice. Cell Rep 5:378–388

    Article  CAS  PubMed  Google Scholar 

  • Djouhri L, Bleazard L, Lawson SN (1998) Association of somatic action potential shape with sensory receptive properties in guinea-pig dorsal root ganglion neurons. J Physiol 513(3):857–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong X, Han S, Zylka MJ, Simon MI, Anderson DJ (2001) A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106:619–632

    Article  CAS  PubMed  Google Scholar 

  • Douglas WW, Ritchie JM (1957) Non-medullated fibres in the saphenous nerve which signal touch. J Physiol I39:385–399

    Article  Google Scholar 

  • Fang X, McMullan S, Lawson SN, Djouhri L (2005) Electrophysiological differences between nociceptive and non-nociceptive dorsal root ganglion neurons in the rat in vivo. J Physiol 565(3):927–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franz DN, Iggo A (1968) Conduction failure in myelinated and non-myelinated axons at low temperatures. J Physiol 199:319–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gee MD, Lynn B, Cotsell B (1996) Activity-dependent slowing of conduction velocity provides a method for identifying different functional classes of c-fibre in the rat saphenous nerve. Neuroscience 73(3):667–675

    Article  CAS  PubMed  Google Scholar 

  • Gee MD, Lynn B, Basile S, Pierau FK, Cotsell B (1999) The relationship between axonal spike shape and functional modality in cutaneous c-fibres in the pig and rat. Neuroscience 90(2):509–518

    Article  CAS  PubMed  Google Scholar 

  • Hahn JF (1971) Thermal-mechanical stimulus interactions in low-threshold c-fiber mechanoreceptors of cat. Exp Neurol 33:607–617

    Article  CAS  PubMed  Google Scholar 

  • Han SK, Dong X, Hwang JI, Zylka MJ, Anderson DJ, Simon MI (2002) Orphan G protein-coupled receptors MrgA1 and MrgC11 are distinctively activated by RF-amide-related peptides through the Gαq/11 pathway. Proc Natl Acad Sci U S A 99:14740–14745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hensel A, Iggo A, Witt I (1960) A quantitative study of sensitive cutaneous thermoreceptors with c afferent fibres. J Physiol 153:113–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iggo A (1960) Cutaneous mechanoreceptors with afferent c fibres. J Physiol 152:337–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iggo A, Kornhuber HH (1977) A quantitative study of c-mechanoreceptors in hairy skin of the cat. J Physiol 271:549–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iriuchijima J, Zotterman Y (1960) The specificity of afferent cutaneous c-fibres in mammals. Acta Physiol Scand 49:267–278

    Article  CAS  PubMed  Google Scholar 

  • Kramer HH, Lundblad L, Birklein F, Linde M, Karlsson T, Elam M, Olausson H (2007) Activation of the cortical pain network by soft tactile stimulation after injection of sumatriptan. Pain 133:72–78

    Article  PubMed  Google Scholar 

  • Kramer HH, Lundblad L, Elam M, Olausson H (2006) Pain inhibition by brush stroking is mediated by unmyelinated tactile afferents. Soc. Neurosci. Abstract # 143.4

    Google Scholar 

  • Kumazawa T, Perl ER (1977) Primate cutaneous sensory units with unmyelinated (c) afferent fibers. J Neurophysiol 40(6):1325–1338

    CAS  PubMed  Google Scholar 

  • Lembo PM, Lembo MC, Grazzini E, Groblewski T, O’Donnell D, Roy MO, Zhang J, Hoffert C, Cao J, Schmidt R, Pelletier M, Labarre M, Gosselin M, Fortin Y, Banville D, Shen SH, Ström P, Payza K, Dray A, Walker P, Ahmad S (2002) Proenkephalin A gene products activate a new family of sensory neuron-specific GPCRs. Nat Neurosci 5:201–209

    Article  CAS  PubMed  Google Scholar 

  • Li L, Rutlin M, Abraira VE, Cassidy C, Kus L, Gong S, Jankowski MP, Luo W, Heintz N, Koerber HR, Woodbury CJ, Ginty DD (2011) The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 147:1615–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindblom U, Tapper DN (1967) Terminal properties of a vibro-tactile sensor. Exp Neurol 17(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Linde M, Elam M, Lundblad L, Olausson H, Dahlof CG (2004) Sumatriptan (5-HT1B/1D-agonist) causes a transient allodynia. Cephalalgia 24:1057–1066

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Vrontou S, Rice FL, Zylka MJ, Dong X, Anderson DJ (2007) Molecular genetic visualization of a rare subset of unmyelinated sensory neurons that may detect gentle touch. Nat Neurosci 10(8):946–948

    Article  CAS  PubMed  Google Scholar 

  • Lou S, Duan B, Vong L, Lowell BB, Ma Q (2013) Runx1 controls terminal morphology and mechanosensitivity of VGLUT3-expressing C-mechanoreceptors. J Neurosci 33(3):870–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynn B, Carpenter SE (1982) Primary afferent units from the hairy skin of the rat hind limb. Brain Res 238:29–43

    Article  CAS  PubMed  Google Scholar 

  • Malmberg AB, Chen C, Tonegawa S, Basbaum AI (1997) Preserved acute pain and reduced neuropathic pain in mice lacking PKCgamma. Science 278:279–283

    Article  CAS  PubMed  Google Scholar 

  • Maruhashi J, Mizuguchi K, Tasaki I (1952) Action currents in single afferent nerve fibres elicited by stimulation of the skin of the toad and the cat. J Physiol 117:129–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melzack R, Wall PD (1965) Pain mechanisms: a new theory. Science 150(3699):971–979

    Article  CAS  PubMed  Google Scholar 

  • Mense S, Schmidt RF (1974) Activation of group IV afferent units from muscle by algesic agents. Brain Res 72(2):305–310

    Article  CAS  PubMed  Google Scholar 

  • Merzenich MM, Harrington T (1969) The sense of flutter-vibration evoked by stimulation of the hairy skin of primates: comparison of human sensory capacity with the responses of mechanoreceptive afferents innervating the hairy skin of monkeys. Exp Brain Res 9:236–260

    Article  CAS  PubMed  Google Scholar 

  • Molliver DC, Wright DE, Leitner ML, Parsadanian AS, Doster K, Wen D, Yan Q, Snider WD (1997) IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life. Neuron 19:849–861

    Article  CAS  PubMed  Google Scholar 

  • Nordin M (1990) Low-threshold mechanoreceptive and nociceptive units with unmyelinated (C) fibres in the human supraorbital nerve. J Physiol 426:229–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olausson H, Wessberg J, Morrison I, McGlone F, Vallbo A (2010) The neurophysiology of unmyelinated tactile afferents. Neurosci Biobehav Rev 34:185–191

    Article  PubMed  Google Scholar 

  • Perry MJ, Lawson SN (1998) Differences in expression of oligosaccharides, neuropeptides, carbonic anhydrase and neurofilament in rat primary afferent neurons retrogradely labelled via skin, muscle or visceral nerves. Neuroscience 85:293–310

    Article  CAS  PubMed  Google Scholar 

  • Pitcher MH, Cervero F (2010) Role of the NKCC1 co-transporter in sensitization of spinal nociceptive neurons. Pain 151:756–762

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro-da-Silva A, Tagari P, Cuello AC (1989) Morphological characterization of substance P-like immunoreactive glomeruli in the superficial dorsal horn of the rat spinal cord and trigeminal subnucleus caudalis: a quantitative study. J Comp Neurol 281:497–515

    Article  CAS  PubMed  Google Scholar 

  • Rice FL, Albrecht PJ (2008) Cutaneous mechanisms of tactile perception: morphological and chemical organization of the innervation to the skin. In: Basbaum AI, Kaneko A, Shepherd GM, Westheimer G (eds) The senses, a comprehensive reference. Academic Press, San Diego, pp 1–32

    Chapter  Google Scholar 

  • Sassen M, Zimmermann M (1971) Capacity of cutaneous C-fibre mechanoreceptors to transmit information on stimulus intensity. Proc Int Union Physiol Sci 9:1466

    Google Scholar 

  • Seal RP, Wang X, Guan Y, Raja SN, Woodbury CJ, Basbaum AI, Edwards RH (2009) Injury-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors. Nature 462:651–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shea VK, Perl ER (1985) Sensory receptors with unmyelinated (C) fibers innervating the skin of the rabbit’s ear. J Neurophysiol 54(3):491–501

    CAS  PubMed  Google Scholar 

  • Shim B, Ringkamp M, Lambrinos GL, Hartke TV, Griffen JW, Meyer RA (2008) Activity-dependent slowing of conduction velocity in uninjured L4 C fibers increases after an L5 spinal nerve injury in the rat. Pain 128(1–2):40–51

    Google Scholar 

  • Sugiura Y (1996) Spinal organization of C-fiber afferents related with nociception or non-nociception. Prog Brain Res 113:319–339

    Article  Google Scholar 

  • Sugiura Y, Lee CL, Perl ER (1986) Central projections of identified, unmyelinated (C) afferent fibers innervating mammualian skin. Science 234:358–361

    Article  CAS  PubMed  Google Scholar 

  • Suarez-Roca H, Piñerua-Shuhaibar L, Morales ME, Maixner W (2003) Increased perception of post-ischemic paresthesias in depressed subjects. J Psychosom Res 55(3):253–257

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Sato J, Mizumura K (2003) Responses of C-fiber low threshold mechanoreceptors and nociceptors to cold were facilitated in rats persistently inflamed and hypersensitive to cold. Neurosci Res 47:409–419

    Article  PubMed  Google Scholar 

  • Traub RJ, Mendell LM (1988) The spinal projection of individual identified A-delta- and C-fibers. J Neurophysiol 59(1):41–55

    CAS  PubMed  Google Scholar 

  • Uvänas-Moberg K, Arn I, Magnusson D (2005) The psychobiology of emotion: the role of the oxytocinergic system. Int J Behav Med 12(2):59–65

    Article  PubMed  Google Scholar 

  • Vallbo AB, Olausson H, Wessberg J (1999) Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. J Neurophysiol 81:2753–2763

    CAS  PubMed  Google Scholar 

  • Vrontou S, Wong AM, Rau KK, Koerber HR, Anderson DJ (2013) Genetic identification of C fibres that detect massage-like stroking of hairy skin in vivo. Nature 493:669–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss T, Straube T, Boettcher J, Hecht H, Spohn D, Miltner WHR (2008) Brain activation upon selective stimulation of cutaneous C- and Aδ-fibers. Neuroimage 41:1372–1381

    Article  PubMed  Google Scholar 

  • Wessberg J, Olausson H, Fernstrom KW, Vallbo AB (2003) Receptive field properties of unmyelinated tactile afferents in the human skin. J Neurophysiol 89:1567–1575

    Article  PubMed  Google Scholar 

  • Zotterman Y (1939) Touch, pain and tickling: an electrophysiological investigation on cutaneous sensory nerves. J Physiol 95:1–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zylka MJ, Dong X, Southwell AL, Anderson DJ (2003) Atypical expansion in mice of the sensory neuron-specific Mrg G protein-coupled receptor family. Proc Natl Acad Sci U S A 100:10043–10048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zylka MJ, Rice FL, Anderson DJ (2005) Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45:17–25

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Pitcher M.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pitcher, M., Le Pichon, C.E., Chesler, A. (2016). Functional Properties of C-Low Threshold Mechanoreceptors (C-LTMRs) in Nonhuman Mammals. In: Olausson, H., Wessberg, J., Morrison, I., McGlone, F. (eds) Affective Touch and the Neurophysiology of CT Afferents. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6418-5_2

Download citation

Publish with us

Policies and ethics