Skip to main content

Ultrasound-Assisted Freezing of Fruits and Vegetables: Design, Development, and Applications

  • Chapter
  • First Online:
Global Food Security and Wellness

Abstract

The application of power ultrasound to facilitate the freezing of fruits and vegetables is a relatively new concept. Sound waves cause cavitation and a sponge effect, both of which impact the freezing rate and properties of the frozen products. The application of ultrasound in the freezing process helps to inactivate enzymes and microbes and enhances the ice crystal nucleation process. The advantages of ultrasound-assisted freezing over conventional freezing include high freezing rate, faster crystallization, uniform distribution of ice crystals, better microstructure, and good product quality. However, very little is known about the fundamental thermodynamics, moisture diffusion and heat transfer in the ultrasound-assisted freezing process. The design of appropriate transducer systems and freezers to suit the needs of fruits and vegetables has not yet been undertaken. It appears that there is an urgent need to investigate the effect of the ultrasound-assisted freezing process on the physicochemical properties of frozen fruits and vegetables. In this context, this chapter presents a comprehensive review of the literature covering recent advances in structure and working principles of common and ultrasound-assisted freezers, along with the impact of the fast and slow freezing processes on the characteristics of frozen fruits and vegetables. The mathematical modeling and quantification aspects of the freezing and thawing process have also been reviewed. The structure–function aspects of power ultrasound, including the associated transducers and design aspects of different ultrasound-assisted freezing systems, have been reviewed in considerable detail. The urgent need for scaling up of equipment and process of ultrasound-assisted freezing from laboratory to industrial scale has been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a :

Characteristic length

Bi :

Biot number

C f :

Specific heat capacity after freezing J/kg/K

C p :

Specific heat capacity of liquid J/kg/K

C u :

Specific heat capacity before freezing J/kg/K

h :

Heat transfer coefficient W/m2K

k f :

Thermal conductivity W/mK

L :

Latent heat of freezing J/m3

m :

Mass kg

P diss :

Dissipated power W

P in :

Actual power W

Ste :

Stefan number

T c :

Final product temperature °C

t F :

Freezing time

T f :

Initial freezing temperature °C

T fm :

Mean freezing time

T i :

Initial product temperature °C

T ref :

Reference temperature °C

t T :

Thawing time

ΔH ref :

Enthalpy change kj/kg

P f :

Density after freezing kj/kg

P u :

Density before freezing kj/kg

References

  • Abdel-Kader ZM (1990) Studies on some water-soluble vitamins retention in potatoes and cow peas as affected by thermal processing and storage. Food Nahrung 34(10):899–904

    Article  CAS  Google Scholar 

  • Access Asia Ltd. (2009) Frozen foods in China 2009: a market analysis

    Google Scholar 

  • Acton E, Morris GJ (1997) Method and apparatus for the control of solidification in liquids. EP 0 584 127 B1

    Google Scholar 

  • Agnelli ME, Mascheroni RH (2001) Cryomechanical freezing. A model for the heat transfer process. J Food Eng 47(4):263–270

    Article  Google Scholar 

  • Aleixo PC, Júnior DS, Tomazelli AC, Rufini IA, Berndt H, Krug FJ (2004) Cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry after ultrasound-assisted sample preparation. Anal Chim Acta 512(2):329–337

    Article  CAS  Google Scholar 

  • Alvarez G, Trystram G (1995) Design of a new strategy for the control of the refrigeration process: fruit and vegetables conditioned in a pallet. Food Control 6(6):347–355

    Article  Google Scholar 

  • Arakelyan V (1987) Effect of ultrasound on crystal growth from melt and solution. Acta Phys Hungarica 61(2):185–187

    CAS  Google Scholar 

  • Ashokkumar M, Grieser F (1999) Ultrasound assisted chemical processes. Rev Chem Eng 15(1):41–83

    Article  CAS  Google Scholar 

  • Bahçeci KS, Serpen A, Gökmen V, Acar J (2005) Study of lipoxygenase and peroxidase as indicator enzymes in green beans: change of enzyme activity, ascorbic acid and chlorophylls during frozen storage. J Food Eng 66(2):187–192

    Article  Google Scholar 

  • Barbosa-Cánovas GV, Altunakar B, Mejía-Lorío DJ (2005) Freezing of fruits and vegetables: an agribusiness alternative for rural and semi-rural areas, vol 158. Food & Agriculture Org, Rome

    Google Scholar 

  • Barrett DM, Lloyd B (2012) Advanced preservation methods and nutrient retention in fruits and vegetables. J Sci Food Agric 92(1):7–22

    Article  CAS  Google Scholar 

  • Calvelo A (1981) Recent studies on meat freezing. In: Lawrie RA (ed) Developments in meat science, vol 2. Applied Science, London

    Google Scholar 

  • Campañone L, Zaritzky N (2010) Mathematical modeling and simulation of microwave thawing of large solid foods under different operating conditions. Food Bioprocess Technol 3(6):813–825

    Article  Google Scholar 

  • Campañone LA, Giner SA, Mascheroni RH (2002) Generalized model for the simulation of food refrigeration. Development and validation of the predictive numerical method. Int J Refrig 25(7):975–984

    Article  Google Scholar 

  • Cheftel JC, LÉVy J, Dumay E (2000) Pressure-assisted freezing and thawing: principles and potential applications. Food Rev Int 16(4):453–483

    Article  CAS  Google Scholar 

  • Chemat F, Zill EH, Khan MK (2011) Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem 18(4):813–835

    Article  CAS  Google Scholar 

  • Cheng X-f, Zhang M, Adhikari B (2013) The inactivation kinetics of polyphenol oxidase in mushroom (Agaricus bisporus) during thermal and thermosonic treatments. Ultrason Sonochem 20(2):674–679

    Article  CAS  Google Scholar 

  • Cheng X-f, Zhang M, Adhikari B (2014a) Changes in quality attributes of strawberry purees processed by power ultrasound or thermal treatments. Food Sci Technol Res 20(5):1033–1041

    Article  CAS  Google Scholar 

  • Cheng X-f, Zhang M, Adhikari B (2014b) Effects of ultrasound-assisted thawing on the quality of edamames [Glycine max (L.) Merrill] frozen using different freezing methods. Food Sci Biotechnol 23(4):1095–1102

    Article  CAS  Google Scholar 

  • Cheng X-f, Zhang M, Adhikari B, Islam MN (2014c) Effect of power ultrasound and pulsed vacuum treatments on the dehydration kinetics, distribution, and status of water in Osmotically dehydrated strawberry: a combined NMR and DSC Study. Food Bioprocess Technol 7(10):2782–2792

    Article  CAS  Google Scholar 

  • Cheng X-f, Zhang M, Adhikari B, Islam MN, Xu B-g (2014d) Effect of ultrasound irradiation on some freezing parameters of ultrasound-assisted immersion freezing of strawberries. Int J Refrig 44:49–55

    Article  Google Scholar 

  • Cheng X-f, Zhang M, Xu B, Adhikari B, Sun J (2015) The principles of ultrasound and its application in freezing related processes of food materials: a review. Ultrason Sonochem 27:576

    Article  CAS  Google Scholar 

  • Chow R, Blindt R, Chivers R, Povey M (2003) The sonocrystallisation of ice in sucrose solutions: primary and secondary nucleation. Ultrasonics 41(8):595–604

    Article  CAS  Google Scholar 

  • Chow R, Blindt R, Kamp A, Grocutt P, Chivers R (2004) The microscopic visualisation of the sonocrystallisation of ice using a novel ultrasonic cold stage. Ultrason Sonochem 11(3–4):245–250

    Article  CAS  Google Scholar 

  • Chow R, Blindt R, Chivers R, Povey M (2005) A study on the primary and secondary nucleation of ice by power ultrasound. Ultrasonics 43(4):227–230

    Article  CAS  Google Scholar 

  • Christensen J, Ladefoged AM, Nørgaard L (2005) Rapid determination of bitterness in beer using fluorescence spectroscopy and chemometrics. J Inst Brew 111(1):3–10

    Article  Google Scholar 

  • Cleland AC (1990) Food refrigeration processes – analysis, design and simulation, Elsevier applied food science series. Elsevier Applied Science, Amsterdam

    Google Scholar 

  • Cleland AC, Earle RL (1977) A comparison of analytical and numerical methods of predicting the freezing times of foods. J Food Sci 42(5):1390–1395

    Article  Google Scholar 

  • Cleland AC, Earle RL (1979a) A comparison of methods for predicting the freezing times of cylindrical and spherical foodstuffs. J Food Sci 44(4):958–963

    Article  Google Scholar 

  • Cleland AC, Earle RL (1979b) Prediction of freezing times for foods in rectangular packages. J Food Sci 44(4):964–970

    Article  Google Scholar 

  • Cleland AC, Earle RL (1984a) Assessment of freezing time prediction methods. J Food Sci 49(4):1034–1042

    Article  Google Scholar 

  • Cleland AC, Earle RL (1984b) Freezing time predictions for different final product temperatures. J Food Sci 49(4):1230–1232

    Article  Google Scholar 

  • Cleland DJ, Cleland AC, Earle RL (1986a) Prediction of freezing and thawing times for foods—a review (Prévision des temps de congélation et de décongélation des aliments—revue). Int J Refrig 9(3):182

    Article  Google Scholar 

  • Cleland DJ, Cleland AC, Earle RL, Byrne SJ (1986b) Prediction of thawing times for foods of simple shape. Int J Refrig 9(4):220–228

    Article  Google Scholar 

  • Cleland DJ, Cleland AC, Earle RL, Byrne SJ (1987) Prediction of freezing and thawing times for multi-dimensional shapes by numerical methods. Int J Refrig 10(1):32–39

    Article  Google Scholar 

  • Comandini P, Blanda G, Soto-Caballero MC, Sala V, Tylewicz U, Mujica-Paz H, Valdez Fragoso A, Gallina Toschi T (2013) Effects of power ultrasound on immersion freezing parameters of potatoes. Innov Food Sci Emerg Technol 18:120–125

    Article  Google Scholar 

  • Contamine RF, Wilhelm AM, Berlan J, Delmas H (1995) Power measurement in sonochemistry. Ultrason Sonochem 2(1):S43–S47

    Article  Google Scholar 

  • Da-Wen S (2001) Advances in food refrigeration. Leatherhead Food Research Association, Surrey

    Google Scholar 

  • De la Fuente-Blanco S, Riera-Franco de Sarabia E, Acosta-Aparicio VM, Blanco-Blanco A, Gallego-Juárez JA (2006) Food drying process by power ultrasound. Ultrasonics 44(Suppl 1):e523–e527

    Article  Google Scholar 

  • Delgado AE, Sun D-W (2001) Heat and mass transfer models for predicting freezing processes – a review. J Food Eng 47(3):157–174

    Article  Google Scholar 

  • Delgado A, Sun D-W (2008) Factors affecting the freezing rate during ultrasound-assisted freezing. Paper presented at the CIGR - International Conference of Agricultural Engineering, Brazil

    Google Scholar 

  • Delgado A, Zheng L, Sun D-W (2009) Influence of ultrasound on freezing rate of immersion-frozen apples. Food Bioprocess Technol 2(3):263–270

    Article  Google Scholar 

  • Deng Y, Zhao Y (2008a) Effect of pulsed vacuum and ultrasound osmopretreatments on glass transition temperature, texture, microstructure and calcium penetration of dried apples (Fuji). LWT-Food Sci Technol 41(9):1575–1585

    Article  CAS  Google Scholar 

  • Deng Y, Zhao Y (2008b) Effects of pulsed-vacuum and ultrasound on the osmodehydration kinetics and microstructure of apples (Fuji). J Food Eng 85(1):84–93

    Article  Google Scholar 

  • Dinçer İ (1997) Heat transfer in food cooling applications, 1st edn, Chemical and mechanical engineering series. Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Donald C, Kenneth V (1997) Prediction of freezing time and design of food freezers, Handbook of food engineering practice. CRC Press, Boca Raton, FL

    Google Scholar 

  • Duan X, Zhang M, Mujumdar AS, Wang R (2010) Trends in microwave-assisted freeze drying of foods. Drying Technol 28(4):444–453

    Article  CAS  Google Scholar 

  • Eek L (1991) A convenience born of necessity: the growth of modern food freezing industry. In: Food freezing: today and tomorrow. Springer, New York, NY

    Google Scholar 

  • Fellows PJ (2000) Food processing technology - principles and practice, 2nd edn. Woodhead Publishing, Boca Raton, FL

    Google Scholar 

  • Fellows PJ (2009) Food processing technology - principles and practice, 3rd edn. Woodhead Publishing, Boca Raton, FL

    Google Scholar 

  • Feng H, Barbosa-Canovas G, Weiss J (2011) Ultrasound technologies for food and bioprocessing, Food engineering series. Springer, New York, NY

    Book  Google Scholar 

  • Fennema OR (1977) Loss of vitamins in fresh and frozen foods. Food Technol 12:32–38

    Google Scholar 

  • Fennema OR, Powrie WD, Marth EH (1973) Low temperature preservation of foods and living matter. Food science. M Dekker, New York, NY

    Google Scholar 

  • Fernandes FAN, Gallão MI, Rodrigues S (2008) Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: melon dehydration. LWT- Food Sci Technol 41(4):604–610

    Article  CAS  Google Scholar 

  • Fernandes FAN, Gallão MI, Rodrigues S (2009) Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. J Food Eng 90(2):186–190

    Article  Google Scholar 

  • Fikiin K (2009) Emerging and novel freezing processes. In: Evans J (ed) Frozen food science and technology. Blackwell Publishing Ltd., Oxford

    Google Scholar 

  • Fleshland O, Magnussen OM (1990) Chilling of farmed fish. Paper presented at the Proceedings Aberdeen Conference, IIF/IIR

    Google Scholar 

  • Fuchs F (1999) Ultrasonic cleaning: fundamental theory and application. Applications engineering. Blackstone-Ney Ultrasonics Inc, Jamestown, NY

    Google Scholar 

  • Gallego-Juarez J (1988) High power ultrasonic transducers for use in gases and interphases. In: Hamonic B, Decarpigny JN (eds) Power sonic and ultrasonic transducers design: Proceedings of the International Workshop. Springer, Heidelberg

    Google Scholar 

  • Gallego-Juarez JA, Rodriguez-Corral G, Gaete-Garreton L (1978) An ultrasonic transducer for high power applications in gases. Ultrasonics 16(6):267–271

    Article  Google Scholar 

  • Gallego-Juárez JA, Elvira-Segura L, Rodrıguez-Corral G (2003) A power ultrasonic technology for deliquoring. Ultrasonics 41(4):255–259

    Article  CAS  Google Scholar 

  • Gallego-Juárez JA, Riera E, de la Fuente Blanco S, Rodríguez-Corral G, Acosta-Aparicio VM, Blanco A (2007) Application of high-power ultrasound for dehydration of vegetables: processes and devices. Drying Technol 25(11):1893–1901

    Article  Google Scholar 

  • Gareth JP (1992) Current trends in sonochemistry, vol 116. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Gauri M (2005) Freezing loads and freezing time calculation. In: Sun D-W (ed) Handbook of frozen food processing and packaging. Contemporary food engineering. CRC Press, Boca Raton, FL

    Google Scholar 

  • Gauri M (2011) Freezing loads and freezing time calculation. In: Sun D-W (ed) Handbook of frozen food processing and packaging. Contemporary food engineering, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Gębczyński P, Lisiewska Z (2006) Comparison of the level of selected antioxidative compounds in frozen broccoli produced using traditional and modified methods. Innov Food Sci Emerg Technol 7(3):239–245

    Article  CAS  Google Scholar 

  • George RM (1993) Freezing processes used in the food industry. Trends Food Sci Technol 4(5):134–138

    Article  Google Scholar 

  • Global Industry Analysts (2012) Frozen fruits and vegetables - global strategic business report. Global Industry Analysts, Inc, San Jose, CA

    Google Scholar 

  • Gonçalves EM, Abreu M, Brandão TRS, Silva CLM (2011) Degradation kinetics of colour, vitamin C and drip loss in frozen broccoli (Brassica oleracea L. ssp. Italica) during storage at isothermal and non-isothermal conditions. Int J Refrig 34(8):2136–2144

    Article  CAS  Google Scholar 

  • Hall CS, Dent CL, Scott MJ, Wickline SA (2000) High-frequency ultrasound detection of the temporal evolution of protein cross linking in myocardial tissue. IEEE Trans Ultrason Ferroelectr Freq Control 47(4):1051–1058

    Article  CAS  Google Scholar 

  • Hamonic B, Decarpigny JNE (1988) Power sonic and ultrasonic transducer design. Springer, Heidelberg

    Book  Google Scholar 

  • Heldman DR, Singh RP, Hall CWP (1981) Food process engineering. AVI, Westport, CT

    Book  Google Scholar 

  • Hossain MM, Cleland DJ, Cleland AC (1992a) Prediction of freezing and thawing times for foods of two-dimensional irregular shape by using a semi-analytical geometric factor. Int J Refrig 15(4):235–240

    Article  Google Scholar 

  • Hossain MM, Cleland DJ, Cleland AC (1992b) Prediction of freezing and thawing times for foods of regular multi-dimensional shape by using an analytically derived geometric factor. Int J Refrig 15(4):227–234

    Article  Google Scholar 

  • Hossain MM, Cleland DJ, Cleland AC (1992c) Prediction of freezing and thawing times for foods of three-dimensional irregular shape by using a semi-analytical geometric factor. Int J Refrig 15(4):241–246

    Article  Google Scholar 

  • Howard LA, Wong AD, Perry AK, Klein BP (1999) β-Carotene and Ascorbic acid retention in fresh and processed vegetables. J Food Sci 64(5):929–936

    Article  CAS  Google Scholar 

  • Hu S-Q, Liu G, Li L, Li Z-X, Hou Y (2013) An improvement in the immersion freezing process for frozen dough via ultrasound irradiation. J Food Eng 114(1):22–28

    Article  Google Scholar 

  • Ilicali C (1989) A simplified analytical model for thawing time calculation in foods. J Food Sci 54(4):1031–1036

    Article  Google Scholar 

  • Ilicali C, Saglam N (1987) A simplified analytical model for freezing time calculation in foods. J Food Process Eng 9(4):299–314

    Article  Google Scholar 

  • Inada T, Zhang X, Yabe A, Kozawa Y (2001) Active control of phase change from supercooled water to ice by ultrasonic vibration 1. Control of freezing temperature. Int J Heat Mass Transf 44(23):4523–4531

    Article  CAS  Google Scholar 

  • International Institute of Refrigeration (1972) Recommendations for the processing and handling of frozen foods. International Institute of Refrigeration, Paris

    Google Scholar 

  • Islam MN, Zhang M, Adhikari B (2014a) The inactivation of enzymes by ultrasound—a review of potential mechanisms. Food Rev Int 30(1):1–21

    Article  CAS  Google Scholar 

  • Islam MN, Zhang M, Adhikari B, Xinfeng C, Xu B-g (2014b) The effect of ultrasound-assisted immersion freezing on selected physicochemical properties of mushrooms. Int J Refrig 42:121–133

    Article  CAS  Google Scholar 

  • Islam MN, Zhang M, Fang Z, Sun J (2015a) Direct contact ultrasound assisted freezing of mushroom (Agaricus bisporus): growth and size distribution of ice crystals. Int J Refrig 57:46–53

    Article  Google Scholar 

  • Islam MN, Zhang M, Liu H, Xinfeng C (2015b) Effects of ultrasound on glass transition temperature of freeze-dried pear (Pyrus pyrifolia) using DMA thermal analysis. Food Bioprod Process 94:229–238

    Article  CAS  Google Scholar 

  • Jambrak AR, Mason TJ, Paniwnyk L, Lelas V (2007) Accelerated drying of button mushrooms, Brussels sprouts and cauliflower by applying power ultrasound and its rehydration properties. J Food Eng 81(1):88–97

    Article  Google Scholar 

  • Jaworska G, Bernaś E (2009) The effect of preliminary processing and period of storage on the quality of frozen Boletus edulis (Bull: Fr.) mushrooms. Food Chem 113(4):936–943

    Article  CAS  Google Scholar 

  • Jaworska G, Bernaś E (2010) Effects of pre-treatment, freezing and frozen storage on the texture of Boletus edulis (Bull: Fr.) mushrooms. Int J Refrig 33(4):877–885

    Article  Google Scholar 

  • Kapustin AP (1963) The effects of ultrasound on the kinetics of crystallization. Springer, New York, NY

    Book  Google Scholar 

  • Keil Frerich J, Swamy Kodavanti M (1999) Reactors for sonochemical engineering - present status. Rev Chem Eng 15:85

    Google Scholar 

  • Kek SP, Chin NL, Yusof YA (2013) Direct and indirect power ultrasound assisted pre-osmotic treatments in convective drying of guava slices. Food Bioprod Process 91(4):495–506

    Article  Google Scholar 

  • Kennedy C (2003) Developments in freezing. In: Zeuthen P, Bøgh-Sørensen L (eds) Food preservation techniques, Woodhead Publishing Series in food science, technology and nutrition series. Woodhead Publishing Limited, Boca Raton, FL

    Google Scholar 

  • Kiani H, Sun D-W (2011) Water crystallization and its importance to freezing of foods: a review. Trends Food Sci Technol 22(8):407–426

    Article  CAS  Google Scholar 

  • Kiani H, Zhang Z, Delgado A, Sun D-W (2011) Ultrasound assisted nucleation of some liquid and solid model foods during freezing. Food Res Int 44(9):2915–2921

    Article  CAS  Google Scholar 

  • Kiani H, Zhang Z, Sun D-W (2013) Effect of ultrasound irradiation on ice crystal size distribution in frozen agar gel samples. Innov Food Sci Emerg Technol 18:126–131

    Article  Google Scholar 

  • Kim JG (2007) Fresh-cut market potential and challenges in far-east Asia. Acta Hort 746:33

    Article  Google Scholar 

  • Kimura T, Sakamoto T, Leveque J-M, Sohmiya H, Fujita M, Ikeda S, Ando T (1996) Standardization of ultrasonic power for sonochemical reaction. Ultrason Sonochem 3(3):S157–S161

    Article  CAS  Google Scholar 

  • Knorr D, Zenker M, Heinz V, Lee D-U (2004) Applications and potential of ultrasonics in food processing. Trends Food Sci Technol 15(5):261–266

    Article  CAS  Google Scholar 

  • Konings EJ, Roomans HH, Dorant E, Goldbohm RA, Saris WH, van den Brandt PA (2001) Folate intake of the Dutch population according to newly established liquid chromatography data for foods. Am J Clin Nutr 73(4):765–776

    CAS  Google Scholar 

  • Lagnika C, Zhang M, Mothibe KJ (2013) Effects of ultrasound and high pressure argon on physico-chemical properties of white mushrooms (Agaricus bisporus) during postharvest storage. Postharvest Biol Technol 82:87–94

    Article  CAS  Google Scholar 

  • Leadley CE, Williams A (2006) Pulsed electric field processing, power ultrasound and other emerging technologies. In: Brennan JG (ed) Food processing handbook. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Lepeschkin WW, Goldman DE (1952) Effects of ultrasound on cell structure. J Cell Comp Physiol 40(3):383–397

    Article  CAS  Google Scholar 

  • Li B, Sun D-W (2002a) Effect of power ultrasound on freezing rate during immersion freezing of potatoes. J Food Eng 55(3):277–282

    Article  Google Scholar 

  • Li B, Sun D-W (2002b) Novel methods for rapid freezing and thawing of foods – a review. J Food Eng 54(3):175–182

    Article  Google Scholar 

  • Li X, Li Z, Lin H, Samee H (2011) Effect of power ultrasound on the immunoactivity and texture changes of shrimp (Penaeus vannamei). Czech J Food Sci 29(5):508–514

    CAS  Google Scholar 

  • Lin S, Brewer MS (2005) Effects of blanching method on the quality characteristics of frozen peas. J Food Qual 28(4):350–360

    Article  Google Scholar 

  • Lind I (1991) Mathematical modelling of the thawing process. J Food Eng 14(1):1–23

    Article  Google Scholar 

  • Lorimer JP, Mason TJ, Fiddy K (1991) Enhancement of chemical reactivity by power ultrasound: an alternative interpretation of the hot spot. Ultrasonics 29(4):338–343

    Article  CAS  Google Scholar 

  • Lucas T, Raoult-Wack AL (1998) Immersion chilling and freezing in aqueous refrigerating media: review and future trends: réfrigération et congélation par immersion dans des milieux réfrigérants: revue et tendances futures. Int J Refrig 21(6):419–429

    Article  CAS  Google Scholar 

  • Luque de Castro MD, Priego-Capote F (2007) Ultrasound-assisted crystallization (sonocrystallization). Ultrason Sonochem 14(6):717–724

    Article  CAS  Google Scholar 

  • MarketsandMarkets (2011) Global frozen food market analysis by products type and by geography - trends and forecasts (2010 – 2015). Market Research Company and Consulting Firm, Dallas, TX

    Google Scholar 

  • Martino MN, Otero L, Sanz PD, Zaritzky NE (1998) Size and location of ice crystals in pork frozen by high-pressure-assisted freezing as compared to classical methods. Meat Sci 50(3):303–313

    Article  CAS  Google Scholar 

  • Mason TJ (1998) Power ultrasound in food processing – the way forward. In: Povey M, Mason TJ (eds) Ultrasound in food processing. Blackie Academic & Professional, Glasgow

    Google Scholar 

  • Mason TJ, Lorimer JP (2003) Ultrasonic equipment and chemical reactor design. In: Mason TJ, Lorimer JP (eds) Applied sonochemistry: uses of power ultrasound in chemistry and processing. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Mason TJ, Povey MJW (1998) Ultrasound in food processing. Blackie Academic and Professional, London

    Google Scholar 

  • Mason TJ, Paniwnyk L, Lorimer JP (1996) The uses of ultrasound in food technology. Ultrason Sonochem 3(3):S253–S260

    Article  CAS  Google Scholar 

  • McCormick SA, Zhai S (2011) Method and apparatus for ultrasonic freezing.

    Google Scholar 

  • Miles CA, Morley MJ, Rendell M (1999) High power ultrasonic thawing of frozen foods. J Food Eng 39(2):151–159

    Article  Google Scholar 

  • Mitchell P, Drozda T, Wick C, Mitchell PE (1996) Tool & manufacturing engineers handbook, vol VIII, 4th edn, Plastic part manufacturing. SME, Dearborn, MI

    Google Scholar 

  • Mizrach A (2008) Ultrasonic technology for quality evaluation of fresh fruit and vegetables in pre- and postharvest processes. Postharvest Biol Technol 48(3):315–330

    Article  Google Scholar 

  • Mothibe KJ, Zhang M, Nsor-atindana J, Wang Y-C (2011) Use of ultrasound pretreatment in drying of fruits: drying rates, quality attributes, and shelf life extension. Drying Technol 29(14):1611–1621

    Article  CAS  Google Scholar 

  • Muller H (1993) Determination of the folic acid content of vegetables and fruits using high-performance liquid chromatography (HPLC). Z Lebensm Unters Forsch 196(2):137–141

    Article  CAS  Google Scholar 

  • Norton T, Delgado A, Hogan E, Grace P, Sun D-W (2009) Simulation of high pressure freezing processes by enthalpy method. J Food Eng 91(2):260–268

    Article  Google Scholar 

  • O’Donnell CP, Tiwari BK, Bourke P, Cullen PJ (2010) Effect of ultrasonic processing on food enzymes of industrial importance. Trends Food Sci Technol 21(7):358–367

    Article  CAS  Google Scholar 

  • Otero L, Martino M, Zaritzky N, Solas M, Sanz PD (2000) Preservation of microstructure in peach and mango during high-pressure-shift freezing. J Food Sci 65(3):466–470

    Article  CAS  Google Scholar 

  • Partman W (1975) The effects of freezing and thawing on food quality. In: Duckworth RB (ed) Water relations of foods. Academic, New York, NY

    Google Scholar 

  • Patist A, Bates D (2008) Ultrasonic innovations in the food industry: from the laboratory to commercial production. Innov Food Sci Emerg Technol 9(2):147–154

    Article  CAS  Google Scholar 

  • Persson PO, Lohndal G (1993) Freezing technology. In: Mallett CP (ed) Frozen food technology. Springer, New York, NY

    Google Scholar 

  • Petzold G, Aguilera J (2009) Ice morphology: fundamentals and technological applications in foods. Food Biophys 4(4):378–396

    Article  Google Scholar 

  • Pham QT (1984) Extension to Planck’s equation for predicting freezing times of foodstuffs of simple shapes. Int J Refrig 7(6):377–383

    Article  Google Scholar 

  • Pham QT (1986) Simplified equation for predicting the freezing time of foodstuffs. Int J Food Sci Technol 21(5):209–219

    Article  CAS  Google Scholar 

  • Pham QT (2001) Modelling thermal processes: cooling and freezing. In: Food process modelling. CRC Woodhead Publishing Ltd, Cambridge

    Google Scholar 

  • Pham QT (2006) Modelling heat and mass transfer in frozen foods: a review. Int J Refrig 29(6):876–888

    Article  CAS  Google Scholar 

  • Pham QT (2008) Modelling of freezing processes. In: Evans JA (ed) Frozen food science and technology, 1st edn. Blackwell Publishing Ltd., Oxford

    Google Scholar 

  • Phillips KM, Wunderlich KM, Holden JM, Exler J, Gebhardt SE, Haytowitz DB, Beecher GR, Doherty RF (2005) Stability of 5-methyltetrahydrofolate in frozen fresh fruits and vegetables. Food Chem 92(4):587–595

    Article  CAS  Google Scholar 

  • Phillips KM, Tarragó-Trani MT, Gebhardt SE, Exler J, Patterson KY, Haytowitz DB, Pehrsson PR, Holden JM (2010) Stability of vitamin C in frozen raw fruit and vegetable homogenates. J Food Compost Anal 23(3):253–259

    Article  CAS  Google Scholar 

  • Piyasena P, Mohareb E, McKellar RC (2003) Inactivation of microbes using ultrasound: a review. Int J Food Microbiol 87(3):207–216

    Article  CAS  Google Scholar 

  • Plank R (1913) Die gefrierdauer von eisblocken. Zeischrift fuÈ r Die Gesamte Kalte-Industrie 20:109–114

    Google Scholar 

  • Powrie WD (1973) Characteristics of food myosystems and their behaviour during freeze preservation. In: Fennema OR, Powrie WD, Marth EH (eds) Low-temperature preservation of foods and living matter. Marcel Dekker, New York, NY

    Google Scholar 

  • Prochaska LJ, Nguyen XT, Donat N, Piekutowski WV (2000) Effects of food processing on the thermodynamic and nutritive value of foods: literature and database survey. Med Hypotheses 54(2):254–262

    Article  CAS  Google Scholar 

  • Rawson A, Tiwari B, Tuohy M, O’Donnell C, Brunton N (2011) Effect of ultrasound and blanching pretreatments on polyacetylene and carotenoid content of hot air and freeze dried carrot discs. Ultrason Sonochem 18(5):1172–1179

    Article  CAS  Google Scholar 

  • Reid DS, Fennema OR (2007) Water and ice. In: Fennema OR (ed) Food chemistry, 4th edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Rickman JC, Barrett DM, Bruhn CM (2007a) Nutritional comparison of fresh, frozen and canned fruits and vegetables. Part 1. Vitamins C and B and phenolic compounds. J Sci Food Agric 87(6):930–944

    Article  CAS  Google Scholar 

  • Rickman JC, Bruhn CM, Barrett DM (2007b) Nutritional comparison of fresh, frozen, and canned fruits and vegetables II. Vitamin A and carotenoids, vitamin E, minerals and fiber. J Sci Food Agric 87(7):1185–1196

    Article  CAS  Google Scholar 

  • Roy SS, Taylor TA, Kramer HL (2001) Textural and ultrastructural changes in carrot tissue as affected by blanching and freezing. J Food Sci 66(1):176–180

    Article  CAS  Google Scholar 

  • Ruecroft G, Hipkiss D, Ly T, Maxted N, Cains PW (2005) Sonocrystallization: the use of ultrasound for improved industrial crystallization. Org Process Res Dev 9(6):923–932

    Article  CAS  Google Scholar 

  • Saclier M, Peczalski R, Andrieu J (2010) Effect of ultrasonically induced nucleation on ice crystals’ size and shape during freezing in vials. Chem Eng Sci 65(10):3064–3071

    Article  CAS  Google Scholar 

  • Salvadori VO, Mascheroni RH (1991) Prediction of freezing and thawing times of foods by means of a simplified analytical method. J Food Eng 13(1):67–78

    Article  Google Scholar 

  • Sanz PD, de Elvira C, Martino M, Zaritzky N, Otero L, Carrasco JA (1999) Freezing rate simulation as an aid to reducing crystallization damage in foods. Meat Sci 52(3):275–278

    Article  CAS  Google Scholar 

  • Sastry SK, Shen GQ, Blaisdell JL (1989) Effect of ultrasonic vibration on fluid-to-particle convective heat transfer coefficients. J Food Sci 54(1):229–230

    Article  Google Scholar 

  • Sheere B, Garima C, Arvind KB (2004) New trends in the crystallization of active pharmaceutical ingredients. Business Brief Pharmagen 6:70

    Google Scholar 

  • Sigfusson H, Ziegler GR, Coupland JN (2004) Ultrasonic monitoring of food freezing. J Food Eng 62(3):263–269

    Article  Google Scholar 

  • Sikora E, Cieślik E, Leszczyńska T, Filipiak-Florkiewicz A, Pisulewski PM (2008) The antioxidant activity of selected cruciferous vegetables subjected to aquathermal processing. Food Chem 107(1):55–59

    Article  CAS  Google Scholar 

  • Soria AC, Villamiel M (2010) Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci Technol 21(7):323–331

    Article  CAS  Google Scholar 

  • Soria AC, Corzo-Martínez M, Montilla A, Riera E, Gamboa-Santos J, Villamiel M (2010) Chemical and physicochemical quality parameters in carrots dehydrated by power ultrasound. J Agric Food Chem 58(13):7715–7722

    Article  CAS  Google Scholar 

  • Sun D-W, Li B (2003) Microstructural change of potato tissues frozen by ultrasound-assisted immersion freezing. J Food Eng 57(4):337–345

    Article  Google Scholar 

  • Tarleton ES (1992) The role of field-assisted techniques in solid/liquid separation. Filt Separat 29(3):246–252

    Article  CAS  Google Scholar 

  • Tarleton ES, Wakeman RJ (1998) Ultrasonically assisted separation process. In: Mason TJ, Povey MJW (eds) Ultrasound in food processing. Blackie Academic and Professional, London

    Google Scholar 

  • Thompson LH, Doraiswamy LK (1999) Sonochemistry: science and engineering. Ind Eng Chem Res 38(4):1215–1249

    Article  CAS  Google Scholar 

  • Tressler DK (1968) Food freezing systems. In: Tressler DK, Van Arsdel WB, Copley MJ (eds) The freezing preservation of foods, vol 1. AVI Publishing, Westport, CT

    Google Scholar 

  • Vahteristo L, Lehikoinen K, Ollilainen V, Varo P (1997) Application of an HPLC assay for the determination of folate derivatives in some vegetables, fruits and berries consumed in Finland. Food Chem 59(4):589–597

    Article  CAS  Google Scholar 

  • Viviana S (2012) Freezing and thawing. In: Mascheroni RH (ed) Operations in food refrigeration. Contemporary food engineering. CRC Press, Boca Raton, FL

    Google Scholar 

  • World Health Organization (2003) Diet, nutrition, and the prevention of chronic diseases. Report of the joint WHO/FAO expert consultation, WHO technical report series. World Health Organization, Geneva

    Google Scholar 

  • Xin Y, Zhang M, Adhikari B (2013) Effect of trehalose and ultrasound-assisted osmotic dehydration on the state of water and glass transition temperature of broccoli (Brassica oleracea L. var. botrytis L.). J Food Eng 119(3):640–647

    Article  CAS  Google Scholar 

  • Xin Y, Zhang M, Adhikari B (2014) The effects of ultrasound-assisted freezing on the freezing time and quality of broccoli (Brassica oleracea L. var. botrytis L.) during immersion freezing. Int J Refrig 41:82–91

    Article  Google Scholar 

  • Xu B-g, Zhang M, Bhandari B, Cheng X (2014) Influence of power ultrasound on ice nucleation of radish cylinders during ultrasound-assisted immersion freezing. Int J Refrig 46:1–8

    Article  CAS  Google Scholar 

  • Xu B-g, Zhang M, Bhandari B, Cheng X-f, Islam MN (2015a) Effect of ultrasound-assisted freezing on the physico-chemical properties and volatile compounds of red radish. Ultrason Sonochem 27:316

    Article  CAS  Google Scholar 

  • Xu B-g, Zhang M, Bhandari B, Cheng X-f, Sun J (2015b) Effect of ultrasound immersion freezing on the quality attributes and water distributions of wrapped red radish. Food Bioprocess Technol 8(6):1366–1376

    Article  Google Scholar 

  • Zhang M, Tang J, Mujumdar AS, Wang S (2006) Trends in microwave-related drying of fruits and vegetables. Trends Food Sci Technol 17(10):524–534

    Article  CAS  Google Scholar 

  • Zhang HQ, Barbosa-Cánovas GV, Balasubramaniam VM, Dunne CP, Farkas DF, Yuan JTC (2011) Nonthermal processing technologies for food. Wiley-Blackwell, Chichester

    Google Scholar 

  • Zheng L, Sun D-W (2005) Ultrasonic assistance of food freezing. In: Da-Wen S (ed) Emerging technologies for food processing. Academic, San Diego, CA

    Google Scholar 

  • Zheng L, Sun D-W (2006) Innovative applications of power ultrasound during food freezing processes—a review. Trends Food Sci Technol 17(1):16–23

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Islam, M.N., Zhang, M., Adhikari, B. (2017). Ultrasound-Assisted Freezing of Fruits and Vegetables: Design, Development, and Applications. In: Barbosa-Cánovas, G., et al. Global Food Security and Wellness. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6496-3_22

Download citation

Publish with us

Policies and ethics