Skip to main content

Antioxidants and Endothelium-Derived Nitric Oxide Action

  • Chapter
Nitric Oxide and the Cardiovascular System

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 159 Accesses

Abstract

In 1980, Furchgott and Zawadzki demonstrated the release of an endothelium-derived relaxing factor in isolated rabbit aorta with exposure to acetylcholine (ACh) (1). This factor has subsequently been identified as nitric oxide (NO·) (2) or a closely related redox form of NO· (3). It is now known that NO· is synthesized enzymatically from L-arginine and O2 by a family of FAD- and FMN-containing enzymes, the nitric oxide synthases (NOSs), that require NADPH and tetrahydrobiopterin (BH4) as cofactors (4). As a class of enzymes, the NOSs appear ubiquitous and have been identified in a number of mammalian cell types and tissues including endothelium (5), epithelium (6), neurons skeletal muscle (8), ventricular myocardium (9), and cytokine-stimulated inflammatory cells (10,11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Furchgott, RF, Zawadzki, JV The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288: 373–376.

    Article  PubMed  CAS  Google Scholar 

  2. Ignarro, LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri, G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 1987; 84: 9265–9269.

    Article  PubMed  CAS  Google Scholar 

  3. Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science 1992; 258: 1898–1902.

    Article  PubMed  CAS  Google Scholar 

  4. Stuehr DJ. Structure-function aspects in the nitric oxide synthases. Ann Rev Pharmacol Toxicol 1997; 37: 339–359.

    Article  CAS  Google Scholar 

  5. Lamas S, Marsden PA, Li GK, Tempst P, Michel T. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci USA 1992; 89: 6348–6352.

    Article  PubMed  CAS  Google Scholar 

  6. Kobzik L, Bredt DS, Lowenstein CJ, Drazen J, Gaston B, Sugarbaker D, et al. Nitric oxide synthase in human and rat lung: immunocytochemical and histochemical localization. Am J Respir Cell Mol Biol 1993; 9: 371–377.

    PubMed  CAS  Google Scholar 

  7. Bredt DS, Hwang PM, Snyder SH. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 1990; 347: 768–770.

    Article  PubMed  CAS  Google Scholar 

  8. Kobzik L, Reid MB, Bredt DS, Stamler JS. Nitric oxide in skeletal muscle. Nature 1994; 372: 546–548.

    Article  PubMed  CAS  Google Scholar 

  9. de Beider AJ, Radomski MW, Why HJ, Richardson PJ, Bucknall CA, Salas E, et al. Nitric oxide synthase activities in human myocardium. Lancet 1993; 341: 84–85.

    Article  Google Scholar 

  10. Mannick JB, Asano K, Izumi K, Kieff E. Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation. Cell 1994; 79: 1137–1146.

    Article  PubMed  CAS  Google Scholar 

  11. Stuehr DJ, Cho HJ, Kwon NS, Weise MF, Nathan CF. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein. Proc Natl Acad Sci USA 1991; 88: 7773–7777.

    Article  PubMed  CAS  Google Scholar 

  12. Hare JM, Keaney JF Jr, Balligand JL, Loscalzo J, Smith TW, Colucci WS. Role of nitric oxide in parasypathetic modulation of Beta-adrenergic myocardial contractility in normal dogs. J Clin Invest 1995; 95: 360–366.

    Article  PubMed  CAS  Google Scholar 

  13. Keaney JF Jr, Hare JM, Balligand JL, Loscalzo J, Smith TW, Colucci WS. Inhibition of nitric oxide synthase augments myocardial contractile responses to f3-adrenergic stimulation. Am J Physiol 1996; 271: H2646 - H2652.

    PubMed  CAS  Google Scholar 

  14. Nathan CF, Hibbs JB Jr. Role of nitric oxide synthesis in macrohage antimicrobial activity. Curr Opin Immunol 1991; 3: 65–70.

    Article  PubMed  CAS  Google Scholar 

  15. Bredt DS, Snyder SH. Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc Natl Acad Sci USA 1989; 86: 9030–9033.

    Article  PubMed  CAS  Google Scholar 

  16. Demas GE, Eliasson MJ, Dawson RM, Dawson FL, Kriegsfeld LJ, Nelson RJ, et al. Inhibition of neuronal nitric oxide synthase increases aggressive behavior in mice. Mol Med 1997; 3: 610–616.

    PubMed  CAS  Google Scholar 

  17. Pantopoulos K, Hentze MW. Nitric oxide signaling to iron-regulatory protein: direct control of ferritin mRNA translation and transferrin receptor mRNA stability in transfected fibroblasts. Proc Natl Acad Sci USA 1995; 92: 1267–1271.

    Article  PubMed  CAS  Google Scholar 

  18. Shen W, Hintze TH, Wolin MS. Nitric oxide: an important signaling mechanism between vascular endothelium and parenchymal cells in the regulation of oxygen consumption. Circulation 1995; 92: 3505–3512.

    Article  PubMed  CAS  Google Scholar 

  19. Gopalakrishna R, Chen ZH, Gundimeda U. Nitric oxide and nitric oxide-generating agents induce a reversible inactivation of protein kinase C activity and phorbol ester binding. J Biol Chem 1993;268: 27, 180–27, 185.

    Google Scholar 

  20. Michel T, Feron O. Nitric oxide synthases: which, where, and why. J Clin Invest 1998; 100: 2146–2152.

    Article  Google Scholar 

  21. Shaul PW, Smart EJ, Robinson LJ, German Z, Yuhanna IS, Ying Y, et al. Acylation targets endothelial nitric-oxide synthase to plasmalemmal caveolae. J Biol Chem 1996; 271: 6518–6522.

    Article  PubMed  CAS  Google Scholar 

  22. Garcia-Cardena G, Oh P, Liu J, Schnitzer JE, Sessa WC. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proc Natl Acad Sci USA 1996; 93: 6448–6453.

    Article  PubMed  CAS  Google Scholar 

  23. Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP. Identification of peptide and protein ligands for the caveolin-scaffoliding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 1997; 272: 6525–6533.

    Article  PubMed  CAS  Google Scholar 

  24. Michel JB, Feron O, Sase K, Prabhakar P, Michel T. Caveolin versus calmodulin. counterbalancing allosteric modulators of endothelial nitric oxide synthase. J Biol Chem 1997;272:25, 907–25, 912.

    Google Scholar 

  25. Lefroy DC, Crake T, Uren NG, Davies GJ, Maseri A. Effect of inhibition of nitric oxide synthesis on epicardial coronary artery caliber and coronary blood flow in humans. Circulation 1993; 88: 43–54.

    Article  PubMed  CAS  Google Scholar 

  26. Rees DD, Palmer RM, Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA 1989; 86: 3375–3378.

    Article  PubMed  CAS  Google Scholar 

  27. Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, et al. Hypertension in mice lacking the gene for endothelial nitric oxide syntase. Nature 1995; 377: 239–242.

    Article  PubMed  CAS  Google Scholar 

  28. Azuma H, Ishikawa M, Sekizaki S. Endothelium-dependent inhibition of platelet aggregation. Br J Pharmacol 1986; 88: 411–415.

    Article  PubMed  CAS  Google Scholar 

  29. Arnold WP, Mittal CK, Katsuki S, Murad F. Nitric oxide activates guanylate cyclase and increases guanosine 3’,5’-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 1977; 74: 3203–3207.

    Article  PubMed  CAS  Google Scholar 

  30. Ignarro LJ, Burke TM, Wood KS, Wolin MS, Kadowitz PJ. Association between cyclic GMP accumulation and acetylcholine-elicited relaxation of bovine intrapulmonary artery. J Pharmacol Exp Ther 1984; 228: 682–690.

    PubMed  CAS  Google Scholar 

  31. Moro MA, Russell RJ, Cellek S, Lizasoain I, Su Y, Darley-Usmar VM, et al. cGMP mediates the vascular and platelet actions of nitric oxide: confirmation using an inhibitor of the soluble guanylyl cyclase. Proc Natl Acad Sci USA 1995; 93: 1480–1485.

    Article  Google Scholar 

  32. Radomski MW, Palmer RM, Moncada S. The role of nitric oxide and cGMP in platelet adhesion to the vascular endothelium. Biochem Biophys Res Commun 1987; 148: 1482–1489.

    Article  PubMed  CAS  Google Scholar 

  33. Wink DA, Darbyshire JF, Nims RW, Saavedra JE, Ford PC. Reactions of the bioregulatory agent nitric oxide in oxygenated aqueous media: determination of the kinetics for oxidation and nitrosation by intermediates generated in the NO/O2 reaction. Chem Res Toxicol 1993; 6: 23–27.

    Article  PubMed  CAS  Google Scholar 

  34. Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 1994; 368: 850–853.

    Article  PubMed  CAS  Google Scholar 

  35. Xu L, Eu JP, Meissner G, Stamler JS. Activation of the cardiac calcium release channel (ryonadine receptor by poly-S-nitrosylation. Science 1998; 279: 234–237.

    Article  PubMed  CAS  Google Scholar 

  36. Campbell DL, Stamler JS, Strauss HC. Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol 1996; 108: 277–293.

    Article  PubMed  CAS  Google Scholar 

  37. Stamler JS, Jia L, Eu JP, McMahon TJ, Demchenko IT, Bonoventura J, et al. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 1997; 276: 2034–2037.

    Article  PubMed  CAS  Google Scholar 

  38. Freedman JE, Loscalzo J, Benoit SE, Valeri CR, Barnard MR, Michelson AD. Decreased platelet inhibition by nitric oxide in two brothers with a history of arterial thrombosis. J Clin Invest 1996; 97: 979–987.

    Article  PubMed  CAS  Google Scholar 

  39. Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 1986; 315: 1046–1051.

    Article  PubMed  CAS  Google Scholar 

  40. Nitenberg A, Valensi P, Sachs R, Dali M, Aptecar E, Attali JR. Impairment of coronary vascular reserve and ACh-induced coronary vasodilation in diabetic patients with angiographically normal coronary arteries and normal left ventricular systolic function. Diabetes 1993; 42: 1017–1025.

    Article  PubMed  CAS  Google Scholar 

  41. Panza JA, Casino PR, Kilcoyne CM, Quyyumi AA. Role of endothelium-derived nitric oxide in the abnormal endothelium-dependent vascular relaxation of patients with essential hypertension. Circulation 1993; 87: 1468–1474.

    Article  PubMed  CAS  Google Scholar 

  42. Clarkson P, Celermajer DS, Powe AJ, Donald AE, Henry RMA, Deanfield JE. Endothelium-dependent dilatation is impaired in young healthy subjects with a family history of premature coronary disease. Circulation 1997; 96: 3378–3383.

    Article  PubMed  CAS  Google Scholar 

  43. Kugiyama K, Yasue H, Ihgushi M, Motoyama T, Dawano H, Inobe Y, et al. Deficiency in nitric oxide bioactivity in epicardial coronary arteries of cigarette smokers. J Am Coll Cardiol 1996; 28: 1161–1167.

    Article  PubMed  CAS  Google Scholar 

  44. Celermajer DS, Sorensen KE, Bull C, Ribinson J, Deanfield JE. Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction. J Am Coll Cardiol 1994; 24: 1468–1474.

    Article  PubMed  CAS  Google Scholar 

  45. Vita JA, Treasure CB, Nabel EG, McLenachan JM, Fish RD, Yeung AC, et al. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation 1990; 81: 491–497.

    Article  PubMed  CAS  Google Scholar 

  46. Levine GN, Keaney JF Jr, Vita JA. Cholesterol reduction in cardiovascular disease. Clinical benefits and possible mechanisms. N Engl J Med 1995; 332: 512–521.

    Article  PubMed  CAS  Google Scholar 

  47. Diaz M, Frei B, Vita JA, Keaney JF Jr. Antioxidants and atherosclerotic heart disease. N Engl J Med 1997; 337: 408–416.

    Article  PubMed  CAS  Google Scholar 

  48. Sies H. Hydroperoxides and thiol oxidants in the study of oxidative stress in intact cells and organs. In: Sies H, ed. Oxidative Stress. Academic Press, London, 1985, pp. 73–91.

    Google Scholar 

  49. Kehrer JP, Smith CV. Free radicals in biology: sources, reactivities, and roles in the etiology of human diseases. In: Frei B, ed. Natural Antioxidants in Human Health and Disease. Academic Press, San Diego, 1994, pp. 25–62.

    Google Scholar 

  50. Boveris A, Cadenas E. Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett 1975; 54: 311–314.

    Article  PubMed  CAS  Google Scholar 

  51. Storch J, Ferber E. Detergent-amplified chemiluminescence of lucigenin for determination of superoxide anion production by NADPH oxidase and xanthine oxidase. Anal Biochem 1988; 169: 262–267.

    Article  PubMed  CAS  Google Scholar 

  52. Kukreja RC, Kontos HA, Hess ML, Ellis EF. PGH synthase and lipoxygenase generate superoxide in the presence of NADH or NADPH. Circ Res 1986; 59: 612–619.

    Article  PubMed  CAS  Google Scholar 

  53. Geiss D, Schlze HU. Isolation and chemical composition of the NADH:semidehydroascorbate oxidoreductase rich membranes from rat liver. FEBS Lett 1975; 60: 374–379.

    Article  PubMed  CAS  Google Scholar 

  54. Babior BM, Curnutte JT, McMurrich BJ. The particulate superoxide-forming system from human neutrophils. Properties of the system and further evidence supporting its participation in the respiratory burst. J Clin Invest 1976; 58: 989–996.

    Article  PubMed  CAS  Google Scholar 

  55. Daval JL, Ghersi-Egea JF, Oilet J, Koziel V. A simple method for evaluation of superoxide radical production in neual cells under varous culture conditions: application to hypoxia. J Cereb Blood Flow Metab 1995; 15: 71–77.

    Article  PubMed  CAS  Google Scholar 

  56. Fantone JD, Ward PA. Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am J Pathol 1982; 107: 397–403.

    CAS  Google Scholar 

  57. Meier B, Cross AR, Hancock JR, Kaup JF, Jones OT. Identification of a superoxide-generating NADPH-oxidase system in human fibroblasts. Biochem J 1991; 275: 241–245.

    PubMed  CAS  Google Scholar 

  58. Rosen GM, Freeman BA. Detection of superoxide generated by endothelial cells. Proc Natl Acad Sci USA 1984; 81: 7269–7273.

    Article  PubMed  CAS  Google Scholar 

  59. Heinecke JW, Baker L, Rosen H, Chait A. Superoxide mediated modification of low density lipoprotein by human arterial smooth muscle cells in culture. J Clin Invest 1986; 77: 757–761.

    Article  PubMed  CAS  Google Scholar 

  60. Hiramatsu K, Rosen H, Heinecke JW, Wolfbauer G, Chait A. Superoxide initiates oxidation of low density lipoprotein by human monocytes. Arteriosclerosis 1986; 7: 55–60.

    Google Scholar 

  61. Mullarkey CJ, Edelstein D, Brownlee M. Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun 1990; 173: 932–939.

    Article  PubMed  CAS  Google Scholar 

  62. Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK, et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/HADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 1996; 97: 1916–1923.

    Article  PubMed  CAS  Google Scholar 

  63. Ohara Y, Peterson TE, Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 1993; 91: 2546–2551.

    Article  PubMed  CAS  Google Scholar 

  64. Keaney JF Jr, Xu A, Cunningham D, Jackson T, Frei B, Vita JA. Dietary probucol preserves endothelial function in cholesterol-fed rabbits by limiting vascular oxidative stress and superoxide generation. J Clin Invest 1995; 95: 2520–2529.

    Article  PubMed  CAS  Google Scholar 

  65. Lynch SM, Frei B, Morrow JD, Roberts LJ II, Xu A, Jackson T, et al. Vascular superoxide dismutase deficiency impairs endothelial vasodilator function through direct inactivation of nitric oxide and increased lipid peroxidation. Arterioscler Thromb Vasc Biol 1997; 17: 2975–2981.

    Article  PubMed  CAS  Google Scholar 

  66. Lynch SM, Frei B. Mechanisms of copper-and iron-dependent oxidative modification of human low-density lipoprotein. J Lipid Res 1993; 34: 1745–1753.

    PubMed  CAS  Google Scholar 

  67. Rubbo H, Radi R, Trujillo M, Tellen R, Kalyanaraman B, Barnes S, et al. Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem 1994;269:26, 066–26, 075.

    Google Scholar 

  68. Kissner R, Nauser T, Bugnon P, Lye PG, Koppenol WH. Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis. Chem Res Toxicol 1997; 10: 1285–1292.

    Article  PubMed  CAS  Google Scholar 

  69. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990; 87: 1620–1624.

    Article  PubMed  CAS  Google Scholar 

  70. Saran M, Michel C, Bors W. Reaction of NO with O2-. Implications for the action of endothelium-derived relaxing factor (EDRF). Free Radic Res Commun 1990; 10: 221–226.

    Article  PubMed  CAS  Google Scholar 

  71. Leeuwenburgh C, Hansen P, Shaish A, Holloszy JO, Heinecke JW. Markers of protein oxidation by hydroxyl radical and reactive nitrogen species in tissues of aging rats. Am J Physiol 1998; 274: R453 - R461.

    PubMed  CAS  Google Scholar 

  72. Ischiropoulos H, Zhu L, Beckman JS. Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys 1992; 298: 446–451.

    Article  PubMed  CAS  Google Scholar 

  73. Beckman JS, Crow JP. Pathological implications of nitric oxide superoxide, and peroxynitrite formation. Biochem Soc Trans 1993; 21: 330–334.

    PubMed  CAS  Google Scholar 

  74. Landino LM, Crews BC, Timmons MD, Morrow JD, Marnett LJ. Peroxynitrite, the couling product of nitric oxide and superoxide, activates prostaglandin biosynthesis. Proc Natl Acad Sci USA 1996;93: 15, 069–15, 074.

    Google Scholar 

  75. Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD, et al. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 1992; 298: 431–437.

    Article  PubMed  CAS  Google Scholar 

  76. Moreno JJ, Pryor WA. Inactivation of a-1-proteinase inhibitor by peroxynitrite. Chem Res Toxicol 1992; 5: 425–431.

    Article  PubMed  CAS  Google Scholar 

  77. Graham A, Hogg N, Kalyanaraman B, O’Leary V, Darley-Usmar V, Moncada S. Peroxynitrite modification of low-density lipoprotein leads to recognition by the macrophage scavenger receptor. FEBS Lett 1993; 330: 181–185.

    Article  PubMed  CAS  Google Scholar 

  78. Fridovich I. Superoxide radical: an endogenous toxicant. Ann Rev Pharmacol Toxicol 1983; 23: 239–257.

    Article  CAS  Google Scholar 

  79. Thannickal VJ, Fanbur BL. Activation of an H202-generating NADH oxidase in human lung fibroblasts by transforming growth factor Beta-1. J Biochem 1995;270:30, 334–30, 338.

    Google Scholar 

  80. Heinzel B, John M, Klatt P, Bohme E, Mayer B. Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem J 1992; 281: 627–630.

    PubMed  CAS  Google Scholar 

  81. Pryor WA. Free radicals and lipid peroxidation: what they are and how they got that way. In: Frei B, ed. Natural Antioxidants in Human Health and Disease. Academic Press, San Diego, 1993, pp. 1–19.

    Google Scholar 

  82. Lander HM. An essential role for free radicals and derived species in signal transduction. FASEB J 1997; 11: 118–124.

    PubMed  CAS  Google Scholar 

  83. Stadtman ER. Role of oxidized amino acids in protein breakdown and stability. Methods Enzymol 1995; 258: 379–393.

    Article  PubMed  CAS  Google Scholar 

  84. Wagner BA, Buettner GR, Burns CP. Free radical-mediated lipid peroxidation in cells: oxidizability is a function of cell lipid bis-allylic hydrogen content. Biochemistry 1994; 33: 4449–4453.

    Article  PubMed  CAS  Google Scholar 

  85. Garner B, Waldeck AR, Witting PK, Rye KA, Stocker R. Oxidation of high density lipoproteins. II. Evidence for a direct reduction of lipid hydroperoxides by methionine residues of apolipoproteins AI and AII. J Biol Chem 1998; 273: 6088–6095.

    Article  PubMed  CAS  Google Scholar 

  86. Esterbauer H, Jürgens G, Quehenberger O, Koller E. Autooxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes. J Lipid Res 1987; 28: 495–509.

    CAS  Google Scholar 

  87. Keaney JF Jr, Frei B. Antioxidant protection of low-density lipoprotein and its role in the prevention of atherosclerotic vascular disease. In: Frei B, ed. Natural Antioxidants in Human Health and Disease. Academic Press, San Diego, 1994, pp. 303–352.

    Google Scholar 

  88. Heinecke JW, Li W, Francis GA, Goldstein JA. Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross-linking of proteins. J Clin Invest 1993; 91: 2866–2872.

    Article  PubMed  CAS  Google Scholar 

  89. Heinecke JW. Pathways for oxidation of low density lipoprotein by meloperoxidase: tyrosyl radical reactive aldehydes, hypochlorous acid, and molecular chlorine. Biofactors 1997; 6: 145–155.

    Article  PubMed  CAS  Google Scholar 

  90. van der Vliet A, Eiserich JP, Halliwell B, Cross CE. Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. J Biol Chem 1997; 272: 7617–7625.

    Article  PubMed  Google Scholar 

  91. Eiserich JP, Cross CE, Jones AD, Halliwell B, van der Vliet A. Formation of nitrating and chlorinating species by reaction of nitrite with hypocholorous acid. J Biol Chem 1996;271:19, 199–19, 208.

    Google Scholar 

  92. Mayer B, Schrammel A, Klatt P, Koesling D, Schmidt K. Peroxynitrite-induced accumulation of cyclic GMP in endothelial cells and stimulation of purified soluble guanylyl cyclase. Dependence on glutathione and possible role of S-nitrosation. J Biol Chem 1995;270:17, 355–17, 360.

    Google Scholar 

  93. Tarpey MM, Beckman JS, Ischiropoulos H, Gore JZ, Brock TA. Peroxynitrite stimulates vascular smooth muscle cell cyclic GMP synthesis. FEBS Lett 1995; 364: 314–318.

    Article  PubMed  CAS  Google Scholar 

  94. Rubanyi GM, Vanhoutte PM. Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Physiol 1986; 250: H822 - H827.

    PubMed  CAS  Google Scholar 

  95. Gryglewski RJ, Palmer RM, Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 1986; 320: 454–456.

    Article  PubMed  CAS  Google Scholar 

  96. Ignarro LJ, Byrns RE, Buga GM, Wood KS, Chaudhuri G. Pharmacological evidence that endothelium-derived relaxing factor is nitric oxide: use of pyrogallol and superoxide dismutase to study endothelium dependent and nitric oxide elicited vascular smooth muscle relaxation. J Pharmacol Exp Ther 1988; 244: 181–189.

    PubMed  CAS  Google Scholar 

  97. Stralin P, Karlsson K, Johansson BO, Marklund SL. The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler Thromb Vasc Biol 1995; 15: 2032–2036.

    Article  PubMed  CAS  Google Scholar 

  98. Omar HA, Cherry PD, Mortelliti MP, Burke-Wolin T, Wolin MS. Inhibition of coronary artery superoxide dismutase attenuates endothelium-dependent and -independent nitrovasodilator relaxation. Circ Res 1991; 69: 601–608.

    Article  PubMed  CAS  Google Scholar 

  99. Mugge A, Elwell JK, Peterson TE, Harrison DG. Release of intact endothelium-derived relaxing factor depends on endothelial superoxide dismutase activity. Am J Physiol 1991; 260: 0219 - C225.

    Google Scholar 

  100. Abrahamsson T, Brandt U, Marklund SL, Sjoqvist PO. Vascular bound recombinant extracellular superoxide dismutase type C protects against the detrimental effects of superoxide radicals on endothelium-dependent arterial relaxation. Circ Res 1992; 70: 264–271.

    Article  PubMed  CAS  Google Scholar 

  101. Heikkila RE, Cohen G. The inactivation of copper-zinc superoxide dismutase by diethyldithiocarbamate. In: Superoxide and Superoxide Dismutases. Academic Press, New York, 1977, pp. 367–373.

    Google Scholar 

  102. Mulsch A, Mordvintcev P, Bassenge E, Jung F, Clement B, Busse R. In vivo spin trapping of glyceryl trinitrate-derived nitric oxide in rabbit blood vessels and organs. Circulation 1995; 92: 1876–1882.

    Article  PubMed  CAS  Google Scholar 

  103. McCord JM, Crapo JD, and Fridovich I. Superoxide dismutase assays: a review of methodology. In: Michelson AM, McCord JM, Fridovich I, eds. Superoxide and Superoxide Dismutases. Academic Press, New York, 1977, pp. 11–17.

    Google Scholar 

  104. Sarvazyan N, Askari A, Klevay LM, Huang WH. Role of intracellular SOD in oxidant-induced injury to normal and copper-deficient cardiac myocytes. Am J Physiol 1995; 268: H1115 - H1121.

    PubMed  CAS  Google Scholar 

  105. Schuschke DA, Ree MW, Saari JT, Miller FN. Copper deficiency alters vasodilation in the rat cremaster muscle microcirculation. J Nutr 1992; 122: 1547–1552.

    PubMed  CAS  Google Scholar 

  106. White CR, Brock TA, Chang LY, Crapo J, Briscoe P, Ku D, et al. Superoxide and peroxynitrite in atherosclerosis. Proc Natl Acad Sci USA 1994; 91: 1044–1048.

    Article  PubMed  CAS  Google Scholar 

  107. Laursen JB, Rajagopalan S, Galis Z, Tarpey M, Freeman BA, Harrison DG. Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation 1997; 95: 588–593.

    Article  PubMed  CAS  Google Scholar 

  108. Tesfamariam B, Cohen RA. Free radicals mediate endothelial cell dysfunction caused by elevated glucose. Am J Physiol 1992; 263: H321 - H326.

    PubMed  CAS  Google Scholar 

  109. Hattori Y, Kawasaki H, Abe K, Kanno M. Superoxide dismutase recovers altered endothelium-dependent relaxation in diabetic rat aorta. Am J Physiol 1991; 261: H1086 - H1094.

    PubMed  CAS  Google Scholar 

  110. Mugge A, Brandes RP, Boger RH, Dwenger A, Bode-Boger S, Kienke S, et al. Vascular release of superoxide radicals is enhanced in hypercholesterolemic rabbits. J Cardiovasc Pharmacol 1994; 24: 994–998.

    Article  PubMed  CAS  Google Scholar 

  111. Ohara Y, Peterson TE, Sayegh HS, Subramanian RR, Wilcox JN, Harrison DG. Dietary correction of hypercholesterolemia in the rabbit normalizes endothelial superoxide production. Circulation 1995; 92: 898–903.

    Article  PubMed  CAS  Google Scholar 

  112. Mugge A, Elwell JH, Peterson TE, Hofmeyer TG, Heistad DD, Harrison DG. Chronic treatment with polyethylene-glycolated superoxide dismutase partially restores endothelium-dependent vascular relaxations in cholesterol-fed rabbits. Circ Res 1991; 69: 1293–1300.

    Article  PubMed  CAS  Google Scholar 

  113. Kagota S, Yamaguchi Y, Shinozuka K, Kunitomo M. Mechanisms of impairment of endothelium-dependent relaxation to acetylcholine in Watanabe heritable hyperlipidemic rabbit aortas. Clin Exp Pharmacol Physiol 1998; 25: 104–109.

    Article  PubMed  CAS  Google Scholar 

  114. Garcia CE, Kilcoyne CM, Cardillo C, Cannon RO, Quyyumi AA, Panza JA. Evidence that endothelial dysfunction in patients with hypercholesterolemia is not due to increased extracellular nitric oxide breakdown by superoxide anions. Am J Cardiol 1995; 76: 1157–1161.

    Article  PubMed  CAS  Google Scholar 

  115. Wolff SP, Dean RT. Glucose autoxidation and protein modification. Their potential role of autoxidative glycosylation in diabetes. Biochem J 1987; 245: 243–250.

    PubMed  CAS  Google Scholar 

  116. Pieper GM, Gross G. Oxygen-derived free radicals abolish endothelium-dependent relaxation in diabetic rat aorta. Am J Physiol 1988; 255: H825 - H833.

    PubMed  CAS  Google Scholar 

  117. Pieper GM. Oxidative stress in diabetic blood vessels. FASEB J 1995; 9: A891.

    Google Scholar 

  118. Nakazono K, Watanabe N, Matsuno K, Sasaki J, Sato T, Inoue M. Does superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci USA 1991;88:10, 045–10, 048.

    Google Scholar 

  119. Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, et al. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci USA 1996;93:13, 176–13, 181.

    Google Scholar 

  120. Griendling K, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994; 74: 1141–1148.

    Article  PubMed  CAS  Google Scholar 

  121. Pagano PJ, Ito Y, Tornheim K, Gallop P, Tauber AI, Cohen RA. An NADPH oxidase superoxide generating system in rabbit aorta. Am J Physiol 1995; 268: H2274 - H2280.

    PubMed  CAS  Google Scholar 

  122. Pagano PJ, Clark J, Cifuentes-Pagano ME, Clark SM, Callis GM, Quinn MT. Localization of a constitutively active, phagocyte-like NADPH oxidase in rabbit aortic adventitia: enhancement by angiotensin II. Proc Natl Acad Sci USA 1997;94:14, 483–14, 488.

    Google Scholar 

  123. Mojazzab H, Kaminski PM, Wolin MS. NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am J Physiol 1994; 266: H2568 - H2572.

    Google Scholar 

  124. Paler-Martinez A, Panus PC, Chumley PH, Ryan US, Hardy MM, Freeman BA. Endogenous xanthine oxidase does not significantly contribute to vascular endothelial production of reactive oxygen species. Arch Biochem Biophys 1994; 311: 79–85.

    Article  PubMed  CAS  Google Scholar 

  125. Cardillo C, Kilcoyne CM, Cannon RO III, Quyyumi AA, Panza JA. Xanthine oxidase inhibition with oxypurinol improves endothelial vasodilator function in hypercholesterolemic but not in hypertensive patients. Hypertension 1997; 30: 57–63.

    Article  PubMed  CAS  Google Scholar 

  126. White CR, Darley-Usmar V, Berrington WR, McAdams M, Gore JZ, Thompson JA, et al. Circulating plasma xanthine oxidase contributes to vascular dysfunction in hypercholesterolemic rabbits. Proc Natl Acad Sci USA 1996; 93: 8745–8749.

    Article  PubMed  CAS  Google Scholar 

  127. Pou S, Pou WS, Bredt DS, Snyder SH, Rosen GM. Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem 1992;267:24, 173–24, 176.

    Google Scholar 

  128. Kurz S, Kent JD, Venema RC, Harrison DG. Differences in flavin-based superoxide production by the endothelial and neuronal NO synthases. Circulation 1996; 94: 1–2.

    Article  Google Scholar 

  129. Vasquez-Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BS, Karoui H, et al. Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci USA 1998; 95: 9220–9225.

    Article  PubMed  CAS  Google Scholar 

  130. Xia Y, Dawson VL, Dawson TM, Snyder SH, Zweier JL. Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cell injury. Proc Natl Acad Sci USA 1996; 93: 6770–6774.

    Article  PubMed  CAS  Google Scholar 

  131. Pritchard KA Jr, Groszek L, Smalley DM, Sessa WC, Wu M, Villalon P, et al. Native low-density lipoprotein increases endothelial cell nitric oxide synthase generation of superoxide anion. Circ Res 1995; 77: 510–518.

    Article  PubMed  CAS  Google Scholar 

  132. Wei EP, Kantos HE. H2O2 and endothelium-dependent cerebral arteriolar dilation Implications for the identity of endothelium-derived relaxing factor generated by acetylcholine. Hypertension 1990; 16: 162–169.

    Article  PubMed  CAS  Google Scholar 

  133. Marczin N, Ryan US, Catravas JD. Effects of oxidant stress on endothelium-derived relaxing factor-induced and nitrovasodilator-induced cGMP accumulation in vascular cells in culture. Circ Res 1992; 70: 326–340.

    Article  PubMed  CAS  Google Scholar 

  134. Ghigo D, Alessio P, Foco A, Bussolino F, Costamagna D, Heller R, et al. Nitric oxide synthesis is impaired in glutathione depleted human umbilical vein endothelial cells. Am J Physiol 1993; 265: C728 - C732.

    PubMed  CAS  Google Scholar 

  135. Marczin N, Ryan US, Catravas JD. Sulfhydryl-depleting agents, but not deferoxamine, modulate EDRF action in cultured pulmonary arterial cells. Am J Physiol 1993; 265: L220 - L227.

    PubMed  CAS  Google Scholar 

  136. Garcia-Cardena G, Fan R, Stern DF, Liu J, Sessa WC. Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1. J Biol Chem 1996;271:27, 237–27, 240.

    Google Scholar 

  137. Padmaja S, Huie RE. The reaction of nitric oxide with organic peroxyl radicals. Biochem Biophys Res Commun 1993; 195: 539–544.

    Article  PubMed  CAS  Google Scholar 

  138. Rubbo H, Parthasarathy S, Barnes S, Kirk M, Kalyanaraman B, Freeman BA. Nitric oxide inhibition of lipoxygenase-dependent liposome and low-density lipoprotein oxidation: termination of radical chain propagation reactions and formation of nitrogen-containing oxidized lipid derivatives. Arch Biochem Biophys 1995; 324: 15–25.

    Article  PubMed  CAS  Google Scholar 

  139. Wink DA, Hanbauer I, Krishna MC, DeGraff W, Gamson J, Mitchell JB. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci USA 1993; 90: 9813–9817.

    Article  PubMed  CAS  Google Scholar 

  140. Hogg N, Kalyanaraman B, Joseph J, Struck A, Parthasarathy S. Inhibition of low-density lipoprotein oxidation by nitric oxide. Potential role in atherogenesis. FEBS Lett 1993; 334: 170–174.

    Article  PubMed  CAS  Google Scholar 

  141. Zembowicz A, Hatchett RJ, Jakubowski AM, Gryglewski R.T. Involvement of nitric oxide in the endothelium-dependent relaxation induced by hydrogen peroxide in rabbit aorta. Br J Pharmacol 1993; 110: 151–158.

    Article  PubMed  CAS  Google Scholar 

  142. Murer EH. Release reaction and energy metabolism in blood platelets with special reference to the burst in oxygen uptake. Biochim Biophys Acta 1968; 162: 320–326.

    Article  PubMed  CAS  Google Scholar 

  143. Okuma M, Steiner M, Bladini MG. Studies on lipid peroxides in platelets. II. Effect of aggregating agents and platelet antibody. J Lab Clin Med 1971; 77: 728–742.

    PubMed  CAS  Google Scholar 

  144. Freedman JE, Frei B, Welch GN, Loscalzo J. Glutathione peroxidase potentiates the inhibition of platelet function by S-nitrosothiols. J Clin Invest 1995; 96: 394–400.

    Article  PubMed  CAS  Google Scholar 

  145. Hour Y, Guo Z, Li J, Wang PG. Seleno compounds and glutathione peroxidase catalyzed decomposition of s-nitrosothiols. Biochem Biophys Res Commun 1996; 228: 88–93.

    Article  Google Scholar 

  146. Asahi M, Fujii J, Suzuki K, Seo HG, Kuzura T, Hori M, et al. Inactivation of glutathione peroxidase by nitric oxide. Implication for cytotoxicity. J Biol Chem 1995;270:21, 035–21, 039.

    Google Scholar 

  147. Asahi M, Fujii J, Takao T, Kuzuya T, Hari M, Shimonishi Y, et al. The oxidation of selenocysteine is involved in the inactivation of glutathione peroxidase by nitric oxide donor. J Biol Chem 1997;272: 19, 152–19, 157.

    Google Scholar 

  148. Sies H, Sharov VS, Klotz LO, Briviba K. Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductase. J Biol Chem 1997;272: 27, 812–27, 817.

    Google Scholar 

  149. Nègre-Salvayre A, Pieraggi MT, Mabile L, Salvayre R. Protective effect of 17-beta-estradiol against the cytotoxicity of minimally oxidized LDL to cultured bovine aortic endothelial cells. Atherosclerosis 1993; 99: 207–217.

    Article  PubMed  Google Scholar 

  150. Kugiyama K, Kerns SA, Morrisett JD, Roberts R, Henry PD. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature 1990; 344: 160–162.

    Article  PubMed  CAS  Google Scholar 

  151. Keaney JF Jr, Guo Y, Cunningham D, Shwaery GT, Xu A, Vita JA. Vascular incorporation of a-tocopherol prevents endothelial dysfunction due to oxidized LDL by inhibiting protein kinase C stimulation. J Clin Invest 1996; 98: 386–394.

    Article  PubMed  CAS  Google Scholar 

  152. Tanner FC, Noll G, Boulanger CM, Luscher TF. Oxidized low density lipoproteins inhibit relaxations of porcine coronary arteries. Role of scavenger receptor and endothelium-derived nitric oxide. Circulation 1991; 83: 2012–2020.

    Article  PubMed  CAS  Google Scholar 

  153. Chin JH, Azhar S, Hoffman BB. Inactivation of endothelium-derived relaxing factor by oxidized lipoproteins. J Clin Invest 1992; 89: 10–18.

    Article  PubMed  CAS  Google Scholar 

  154. Flavahan NA. Atherosclerosis or lipoprotein-induced endothelial dysfunction: potential mechanisms underlying reduction in A2RF/nitric oxide activity. Circulation 1992; 85: 1927–1938.

    Article  PubMed  CAS  Google Scholar 

  155. Schmidt K, Klatt P, Graier WF, Kostner GM, Kukovetz WR. High-density lipoprotein antagonizes the inhibitory effects of oxidized low-density lipoprotein and lysolecithin on soluble guanylate cyclase. Biochem Biophys Res Commun 1992; 182: 302–308.

    Article  PubMed  CAS  Google Scholar 

  156. Esterbauer H, Striegl G, Puhl H, Oberreither S, Rotheneder M, el-Saadani M, et al. The role of vitamin E and carotenoids in preventing oxidation of low density lipoprotein. Ann NY Acad Sci 1989; 570: 254–267.

    CAS  Google Scholar 

  157. Jialal I, Norkus EP, Cristol L, Grundy SM. Beta-carotene inhibits the oxidative modification of low density lipoprotein. Biochim Biophys Acta 1991; 1086: 134–138.

    Article  PubMed  CAS  Google Scholar 

  158. Gaziano JM, Hatta A, Flynn M, Johnson EJ, Krinsky NI, Ridker PM, et al. Supplementation with beta-carotene in vivo and in vitro does not inhibit low density lipoprotein (LDL) oxidation. Atherosclerosis 1995; 112: 187–195.

    Article  PubMed  CAS  Google Scholar 

  159. Verbeuren TJ, Jordaens FH, Zonnekeyn LL, VanHove CE, Coene MC, Herman AG. Effect of hypercholesterolemia on vascular reactivity in the rabbit. Circ Res 1986; 58: 553–564.

    Article  Google Scholar 

  160. Keaney JF Jr, Gaziano JM, Xu A, Frei B, Curran-Celantano J, Shwaery GT, et al. Dietary antioxidants preserve endothelium-dependent vessel relaxation in cholesterol-fed rabbits. Proc Natl Acad Sci USA 1993;90:11, 880–11, 884.

    Google Scholar 

  161. Andersson TLG, Matz J, Ferns GA, Ängghrd EE. Vitamin Ereverses cholesterol-induced endothelial dysfunction in the rabbit coronary circulation. Atherosclerosis 1994; 111: 39–45.

    Article  PubMed  CAS  Google Scholar 

  162. Stewart-Lee AL, Forster LA, Nourooz-Zadeh J, Ferns GA, Ängghrd EE. Vitamin E protects against impairment of endothelium-mediated relaxations in cholesterol-fed rabbits. Arterioscler Thromb 1994; 14: 494–499.

    Article  PubMed  CAS  Google Scholar 

  163. Lutz M, Cortez J, Vinet R. Effects of dietary fats, alpha-tocopherol and beta-carotene supplementation on aortic ring segment responses in the rat. Int J Vitam Nutr Res 1995; 65: 225–230.

    PubMed  CAS  Google Scholar 

  164. Raij L, Jagy J, Coffee K, DeMaster EG. Hypercholesterolemia promotes endothelial dysfunction in vitamin E- and selenium-deficient rats. Hypertension 1993; 22: 56–61.

    Article  PubMed  CAS  Google Scholar 

  165. Stocker R, Frei B. Endogenous antioxidant defences in human blood plasma. In: Sies H, ed. Oxidative Stress: Oxidants and Antioxidants. Academic Press, London, 1991, pp. 213–243.

    Google Scholar 

  166. Dieber-Rotheneder M, Puhl H, Waeg H, Striegl G, Esterbauer H. Effect of oral supplementation with D-alpha-tocopherol on the vitamin E content of human low density lipoproteins and resistance to oxidation. J Lipid Res 1991; 32: 1325–1332.

    CAS  Google Scholar 

  167. Keaney JF Jr, Gaziano JM, Xu A, Frei B, Curran-Celentano J, Shwaery GT, et al. Low-dose a-tocopherol improves and high-dose a-tocopherol worsens endothelial vasodilator function in cholesterol-fed rabbits. J Clin Invest 1994; 93: 844–851.

    Article  PubMed  Google Scholar 

  168. Suarna C, Dean RT, May J, Stocker R. Human atherosclerotic plaque contains both oxidized lipids and relatively large amounts of a-tocopherol and ascorbate. Arterioscler Thromb Vasc Biol 1995; 15: 1616–1624.

    Article  PubMed  CAS  Google Scholar 

  169. Jay MT, Chirico S, Siow RC, Bruckdorfer KR, Jacobs M, Leake DS, et al. Modulation of vascular tone by low density lipoproteins: effects on L-arginine transport and nitric oxide synthesis. Exp Physiol 1997; 82: 349–360.

    PubMed  CAS  Google Scholar 

  170. Sugiyama S, Kugiyama K, Ohgushi M, Fujimoto K, Yasue H. Lysophosphatidylcholine in oxidized low-density lipoprotein increases endothelial susceptibility to polymorphonuclear leukocyte-induced endothelial dysfunction in porcine coronary arteries: role of protein kinase C. Circ Res 1994; 74: 565–575.

    Article  PubMed  CAS  Google Scholar 

  171. Boscoboinik D, Szewczyk A, Hensey C, Azzi A. Inhibition of cell proliferation by a-tocopherol. J Biol Chem 1991; 266: 6188–6194.

    PubMed  CAS  Google Scholar 

  172. Freedman JE, Farhat JH, Loscalzo J, Keaney JF Jr. a-Tocopherol inhibits aggregation of human platelets by a protein kinase C-dependent mechanism. Circulation 1996; 94: 2434–2440.

    Article  PubMed  CAS  Google Scholar 

  173. Gopaul NK, Änggârd EE, Mallet AI, Betteridge DJ, Wolff SP, Nourooz-Zadeh J. Plasma 8-epiPGF2alpha levels are elevated in individuals with non-insulin dependent diabetes mellitus. FEBS Lett 1995; 368: 225–229.

    Article  PubMed  CAS  Google Scholar 

  174. Keegan A, Walbank H, Cotter MA, Cameron NE. Chronic vitamin Etreatment prevents defective endothelium-dependent relaxation in diabetic rat aorta. Diabetologia 1995; 38: 1475–1478.

    Article  PubMed  CAS  Google Scholar 

  175. Karasu C, Ozansoy G, Bozkurt O, Erdogan D, Omeroglu S. Changes in isoprenaline-induced endothelium-dependent and -independent relaxations of aorta in long-term STZ-diabetic rats: reversal effect of dietary vitamin E. Gen Pharm 1997; 29: 561–567.

    Article  CAS  Google Scholar 

  176. Karasu C, Ozansoy G, Bozkurt O, Erdogan D, Omeroglu S. Antioxidant and triglyceride-lowering effects of vitamin E associated with the prevention of abnormalities in the reactivity and morphology of aorta from streptozotocin-diabetic rats. Antioxidants in Diabetes-Induced Complications (ADIC) Study Group. Metabolism 1997; 46: 872–879.

    CAS  Google Scholar 

  177. Rosen P, Ballhausen T, Stockklauser K. Impairment of endothelium dependent relaxation in the diabetic rat heart: mechanisms and implications. Diabetes Res Clin Pract I996;31 (Suppl): S 143-S 155.

    Google Scholar 

  178. Palmer AM, Thomas CR, Gopaul N, Dhir S, Änggârd EE, Poston L, et al. Dietary antioxidant supplementation reduces lipid peroxidation but impairs vascular function in small mesenteric arteries of the streptozotocin-diabetic rat. Diabetologia 1998; 41: 148–156.

    Article  PubMed  CAS  Google Scholar 

  179. Davidge ST, Ojimba J, Mclaughlin MK. Vascular function in the vitamin E-deprived rat: an interaction between nitric oxide and superoxide anions. Hypertension 1998; 31: 830–835.

    Article  PubMed  CAS  Google Scholar 

  180. Marshall FN. Pharmacology and toxicology of probucol. Artery 1982; 10: 7–21.

    PubMed  CAS  Google Scholar 

  181. Shaish A, Daugherty A, O’Sullivan F, Schonfeld G, Heinecke JW. Beta-carotene inhibits atherosclerosis in hypercholesterolemic rabbits. J Clin Invest 1995; 96: 2075–2082.

    Article  PubMed  CAS  Google Scholar 

  182. Parthasarathy S, Young SG, Witztum JL, Pittman RC, Steinberg D. Probucol inhibits oxidative modification of low density lipoprotein. J Clin Invest 1986; 77: 641–644.

    Article  PubMed  CAS  Google Scholar 

  183. Barnhart RL, Busch SJ, Jackson RL. Concentration-dependent antioxidant activity of probucol in low density lipoproteins in vitro: probucol degradation precedes lipoprotein oxidation. J Lipid Res 1989; 30: 1703–1710.

    PubMed  CAS  Google Scholar 

  184. Pryor WA, Cornicelli JA, Devall LJ, Tait BA, Trivedi BK, Witiak DT, et al. A rapid screening test to determine the antioxidant potencies of natural and synthetic antioxidants. J Org Chem 1993; 58: 3521–3532.

    Article  CAS  Google Scholar 

  185. Carew TE, Schwenke DC, Steinberg D. Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci USA 1987; 84: 7725–7729.

    Article  PubMed  CAS  Google Scholar 

  186. Kita T, Nagano Y, Yokode M, Ishii K, Kume N, Ooshima A, et al. Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc Natl Acad Sci USA 1987; 84: 5928–5931.

    Article  PubMed  CAS  Google Scholar 

  187. Zhang SH, Reddick RL, Avdievich E, Surles LK, Jones RG, Reynolds JB, et al. Paradoxical enhancement of atherosclerosis by probucol treatment in apolipoprotein E-deficient mice. J Clin Invest 1997; 99: 2858–2866.

    Article  PubMed  CAS  Google Scholar 

  188. Simon BC, Haudenschild CC, Cohen RA. Preservation of endothelium-dependent relaxation in atherosclerotic rabbit aorta by probucol. J Cardiovasc Pharmacol 1993; 21: 893–901.

    Article  PubMed  CAS  Google Scholar 

  189. Hoshida S, Yamashita N, Igarashi J, Aoki K, Kuzuya T, Hori M. Long-term probucol treatment reverses the severity of myocardial injury in watanabe heritable hyperlipidemic rabbits. Arterioscler Thromb Vasc Biol 1997; 17: 2801–2807.

    Article  PubMed  CAS  Google Scholar 

  190. Inoue N, Ohara Y, Fukai T, Harrison DG, Nishida K. Probucol improves endothelial-dependent relaxation and decreases vascular superoxide production in cholesterol-fed rabbits. Am J Med Sci 1998; 315: 242–247.

    Article  PubMed  CAS  Google Scholar 

  191. McDowell I, Brennan GM, McEneny J, Young IS, Nicholls DP, McVeigh GE, et al. The effect of probucol and vitamin E treatment on the oxidation of low-density lipoprotein and forearm vascular responses in humans. Eur J Clin Invest 1994; 24: 759–765.

    CAS  Google Scholar 

  192. Gilligan DM, Sack MN, Guetta V, Casino PR, Quyyumi AA, Rader DJ, et al. Effect of antioxidant vitamins on low density lipoprotein oxidation and impaired endothelium-dependent vasodilation on patients with hypercholesterolemia. J Am Coll Cardiol 1994; 24: 1611–1617.

    Article  PubMed  CAS  Google Scholar 

  193. Elliott TG, Barth JD, Mancini J. Effects of vitamin E on endothelial function in men after myocardial infarction. Am J Cardiol 1995; 76: 1188–1190.

    CAS  Google Scholar 

  194. Lieberman EH, Gerhard MD, Uehata A, Walsh BW, Selwyn AP, Ganz P, et al. Estrogen improves endothelium-dependent, flow mediated vasodilation in post menopausal women. Ann Intern Med 1994; 121: 936–941.

    PubMed  CAS  Google Scholar 

  195. Koh KK, Blum A, Hathaway L, Mincemoyer R, Csako G, Waclawiw MA, Panza JA, Cannon RO 3rd. Vascular effects of estrogen and vitamin E therapies in postmenopausal women. Circulation 1999; 100: 1851–1857.

    CAS  Google Scholar 

  196. Kugiyama K, Motoyama T, Doi H, Kawano H, Hirai N, Soejima H, Miyao Y, Takazoe K, Moriyama Y, Mizuno Y, Tsunoda R, Ogawa H, Sakamoto T, Sugiyama S, Yasue H. Improvement of endothelial vasomotor dysfunction by treatment with alpha-tocopherol in patients with high remnant lipoproteins levels. J Am Coll Cardiol 1999; 33: 1512–1518.

    Article  PubMed  CAS  Google Scholar 

  197. Motoyama T, Kawano H, Kugiyama K, Hirashima O, Ohgushi M, Tsunoda R, Moriyama Y, Miyao Y, Yoshimura M, Ogawa H, Yasue H. Vitamin Eadministration improves impairment of endothelium-dependent vasodilation in patients with coronary spastic angina. J Am Coll Cardiol 1998; 32: 1672–1679.

    Article  PubMed  CAS  Google Scholar 

  198. Neunteufl T, Kostner K, Katzenschlager R, Zehetgruber M, Maurer G, Weidinger FF. Additional benefit of vitamin E supplementation to simvistatin therapy on vasoreactivity of the brachial artery of hypercholesterolemic men. J Am Coll Cardiol 1998; 32: 711–716.

    CAS  Google Scholar 

  199. Anderson TJ, Meredith IT, Yeung AC, Frei B, Selwyn AP, Ganz P. The effect of cholesterol-lowering and antioxidant therapy on endothelium-dependent coronary vasomotion. N Engl J Med 1995; 332: 488–493.

    Article  PubMed  CAS  Google Scholar 

  200. Wendel A, Cikryt P. The level and half-life of glutathione in human plasma. FEBS Lett 1980; 120: 209–211.

    Article  PubMed  CAS  Google Scholar 

  201. Bray TM, Taylor CG. Tissue glutathione, nutrition, and oxidative stress. Can J Physiol Pharmacol 1993; 71: 746–751.

    Article  PubMed  CAS  Google Scholar 

  202. Bergsten P, Yu R, Kehrl J, Levine M. Ascorbic acid transport and distribution in human B lymphocytes. Arch Biochem Biophys 1994; 317: 208–214.

    Article  Google Scholar 

  203. Martensson J, Han J, Griffith EW, Meister A. Glutathione ester delays the onset of scurvy in ascorbatedeficient guinea pigs. Proc Natl Acad Sci USA 1993; 90: 317–321.

    Article  PubMed  CAS  Google Scholar 

  204. Martensson J, Meister A. Glutathione deficiency decreases tissue ascorbate levels in newborn rats: ascorbate spares glutathione and protects. Proc Natl Acad Sci USA 1991; 88: 4656–4660.

    Article  PubMed  CAS  Google Scholar 

  205. Stuehr DJ, Kwon NS, Nathan CF. FAD and GSH participate in macrophage synthesis of nitric oxide. Biochem Biophys Res Commun 1990; 168: 558–565.

    Article  PubMed  CAS  Google Scholar 

  206. Hecker M, Seigle I, Macarthur H, Sessa WC, Vane JR. Role of intracellular thiols in release of EDRF from cultured endothelial cells. Am J Physiol 1992; 262: H888 - H896.

    PubMed  CAS  Google Scholar 

  207. Murphy ME, Piper HM, Watanabe H, Sies H. Nitric oxide production by cultured aortic endothelial cells in response to thiol depletion and replenishment. J Biol Chem 1991;266:19, 378–19, 383.

    Google Scholar 

  208. Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, Sullivan ID, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 1992; 340: 1111–1115.

    Article  PubMed  CAS  Google Scholar 

  209. Williamson JM, Meister A. Stimulation of hepatic glutathione formation by administration of L-2-oxothiazolidine-4-carboxylate: a 5-oxo-L-prolinase substrate. Proc Natl Acad Sci USA 1981; 78: 936–939.

    Article  PubMed  CAS  Google Scholar 

  210. Boesgaard S, Aldershvile J, Poulsen HE, Loft S, Anderson ME, Meister A. Nitrate tolerance in vivo is not associated with depletion of arterial or venous thiol levels. Circ Res 1994; 74: 115–120.

    Article  PubMed  CAS  Google Scholar 

  211. Vita JA, Frei B, Holbrook M, Gokce N, Leaf C, Keaney JF Jr. L-2-Oxothiazolidine-4-carboxylic acid revereses endothelial dysfunction in patients with coronary artery disease. J Clin Invest 1998; 101: 1408–1414.

    Article  PubMed  CAS  Google Scholar 

  212. Komori Y, Hyun J, Chiang K, Fukuto JM. The role of thiols in the apparent activation of rat brain nitric oxide synthase (NOS). J Biochem 1995; 117: 923–927.

    PubMed  CAS  Google Scholar 

  213. Hofmann H, Schmidt HH. Thiol dependence of nitric oxide synthase. Biochemistry 1995;34:13, 44313, 452.

    Google Scholar 

  214. Gorren AC, Schrammel A, Schmidt K, Mayer B. Thiols and neuronal nitric oxide synthase: complex formation, competitive inhibition, and enzyme stabilization. Biochemistry 1997; 36: 4360–4366.

    Article  PubMed  CAS  Google Scholar 

  215. Hobbs AJ, Fukoto JM, Ignarro LJ. Formation of free nitric oxide from L-arginine by nitric oxide synthase: direct enhancement of generation by superoxide dismutase. Proc Natl Acad Sci USA 1994; 91:10, 992–10, 996.

    Google Scholar 

  216. Howells DW, Hyland K. Direct analysis of tetrahydrobiopterin in ceribrospinal fluid by high-performance liquid chromatography with redox electrochemistry: prevention of autoxidation during storage and analysis. Clin Chim Acta 1987; 167: 23–30.

    Article  PubMed  CAS  Google Scholar 

  217. Heales S, Hyland K. Determination of quinonoid dihydrobiopterin by high-performance liquid chromatrography and electrochemical detection. J Chromatogr 1989; 494: 77–85.

    Article  PubMed  CAS  Google Scholar 

  218. Patel JM, Abeles AJ, Block ER. Nitric oxide exposure and sulfhydryl modulation alter L-arginine transport in cultured pulmonary artery endothelial cells. Free Radic Biol Med 1996; 20: 629–637.

    Article  PubMed  CAS  Google Scholar 

  219. Wink DA, Nims RW, Darbyshire JF, Christodoulou D, Hanbauer I, Cox GW, et al. Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction. Chem Res Toxicol 1994; 7: 519–525.

    Article  PubMed  CAS  Google Scholar 

  220. Keaney JF Jr, Simon DI, Stamler JS, Jaraki O, Scharfstein J, Vita JA, et al. NO forms an adduct with serum albumin that has endothelium-derived relaxing factor-like properties. J Clin Invest 1993; 91: 1582–1589.

    Article  PubMed  CAS  Google Scholar 

  221. Kharitonov VG, Sundquist AR, Sharma VS. Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen. J Biol Chem 1995;270:28, 158–28, 164.

    Google Scholar 

  222. Singh RJ, Hogg N, Joseph J, Kalyanaraman B. Mechanism of nitric oxide relase from S-nitrosothiols. J Biol Chem 1996;271:18, 596–18, 603.

    Google Scholar 

  223. Clancy RM, Levartovsky D, Leszczynska-Piziak J, Yegudin J, Abramson SB. Nitric oxide reacts with intracellular glutathione and activates the hexose monophosphate shunt in human neutrophils: evidence for S-nitrosoglutathione as a bioactive intermediary. Proc Natl Acad Sci USA 1994; 91: 3680–3684.

    Article  PubMed  CAS  Google Scholar 

  224. Stamler JS, Mendelsohn ME, Amarante P, Smick D, Andon N, Davies PF, et al. N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor. Circ Res 1989; 65: 789–795.

    Article  PubMed  CAS  Google Scholar 

  225. Cooke JP, Stamler J, Andon N, Davies PF, McKinley G, Loscalzo J. Flow stimulates endothelial cells to release nitrovasodilator that is potentiated by reduced thiol. Am J Physiol 1990; 259: H804 - H812.

    PubMed  CAS  Google Scholar 

  226. Jocelyn PC. Thiols and disulfides in blood. In: Biochemistry of the SH Group. Academic Press, London, 1972, pp. 240–260.

    Google Scholar 

  227. Zhang YY, Xu A, Nomen M, Walsh M, Keaney JF Jr, Loscalzo J. Nitrosation of tryptophan residue(s) in serum albumin and model dipeptides: biochemical characterization and bioactivity. J Biol Chem 1996;271:14, 271–14, 279.

    Google Scholar 

  228. Frei B, Stocker R, Ames BN. Antioxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci USA 1988; 85: 9748–9752.

    Article  PubMed  CAS  Google Scholar 

  229. Nishikimi M. Oxidation of ascorbic acid with superoxide anion generated by the xanthine-xanthine oxidase system. Biochem Biophys Res Commun 1975; 63: 463–468.

    Article  PubMed  CAS  Google Scholar 

  230. Bodannes RS, Chan PC. Ascorbic acid as a scavenger of singlet oxygen. FEBS Lett 1979; 105: 195, 196.

    Google Scholar 

  231. Halliwell B, Wasil M, Grootveld M. Biologically significant scavenging of the myeloperoxidasederived oxidant hypochlorous acid by ascorbic acid. Implications for antioxidant protection in the inflamed rheumatoid joint. FEBS Lett 1987; 213: 15–17.

    Article  PubMed  CAS  Google Scholar 

  232. Frei B, England L, Ames BN. Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci USA 1989; 86: 6377–6381.

    Article  PubMed  CAS  Google Scholar 

  233. Ting HH, Timimi FK, Boles KS, Creager SJ, Ganz P, Creager MA. Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 1996; 97: 22–28.

    Article  PubMed  CAS  Google Scholar 

  234. Ting HH, Timimi FK, Haley EA, Roddy MA, Ganz P, Creager MA. Vitamin C improves endothelium-dependent vasodilation in forearm resistance vessels of humans with hypercholerolemia. Circulation 1997; 95: 2617–2622.

    Article  PubMed  CAS  Google Scholar 

  235. Heitzer T, Just H, Munzel T. Antioxidant vitamin C improves endothelial dysfunction in chronic smokers. Circulation 1996; 94: 6–9.

    Article  PubMed  CAS  Google Scholar 

  236. Hornig B, Arakawa N, Kohler C, Drexler H. Vitamin C improves endothelial function of conduit arteries in patients with chronic heart failure. Circulation 1998; 97: 363–368.

    Article  PubMed  CAS  Google Scholar 

  237. Taddei S, Virdis A, Ghiadoni L, Magagna A, Salvetti A. Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension. Circulation 1998; 97: 2222–2229.

    Article  PubMed  CAS  Google Scholar 

  238. Jackson TS, Xu A, Vita JA, Keaney JF Jr. Ascorbic acid prevents the interaction of nitric oxide and superoxide only at very high physiologic concentrations. Circ Res 1998; 83: 916–922.

    Article  PubMed  CAS  Google Scholar 

  239. Gotoh N, Niki E. Rates of interactions of superoxide with vitamin E, vitamin C, and related compounds as measured by chemiluminescence. Biochim Biophys Acta 1992; 1115: 201–207.

    Article  PubMed  CAS  Google Scholar 

  240. Blatter LA, Taha Z, Mesaros S, Shacklock PS, Wier WG, Malinski T. Simultaneous measurements of Ca2+ and nitric oxide in bradykinin-stimulated vascular endothelial cells. Circ Res 1995; 76: 922–924.

    Article  PubMed  CAS  Google Scholar 

  241. Malinski T, Taha Z, Grunfeld S, Patton S, Kapturczak M, Tomboulian P. Diffusion of nitric oxide in the aorta wall monitored in situ by porphyrinic microsensors. Biochem Biophys Res Commun 1993; 193: 1076–1082.

    Article  PubMed  CAS  Google Scholar 

  242. Levine GN, Frei B, Koulouris SN, Gerhard MD, Keaney JF Jr, Vita JA. Ascorbic acid reverses endothelial dysfunction in patients with coronary artery disease. Circulation 1996; 96: 1107–1113.

    Article  Google Scholar 

  243. Gokce N, Keaney JF Jr, Frei B, Holbrook M, Olesiak M, Zachariah BJ, et al. Long-term ascorbic acid administration reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 1999; 99: 3234–3240.

    Article  PubMed  CAS  Google Scholar 

  244. Jain A, Martensson J, Mehta T, Krauss AN, Auld PA, Meister A. Ascorbic acid prevents oxidative stress in glutathione-deficient mice: effects on lung type 2 cell lamellar bodies, lung survactant, and skeletal muscle. Proc Natl Acad Sci USA 1992; 89: 5093–5097.

    Article  PubMed  CAS  Google Scholar 

  245. Kashiba-Iwatsuki M, Yamaguchi M, Inoue M. Role of ascorbic acid in the matabolism of S-nitrosoglutathione. FEBS Lett 1996; 389: 149–152.

    Article  PubMed  CAS  Google Scholar 

  246. Smith C, Mitchinson MJ, Aruoma OI, Halliwell B. Stimulation of lipid peroxidation and hydroxyl radical generation by the contents of human atherosclerotic lesions. Biochem J 1992; 286: 901–905.

    PubMed  CAS  Google Scholar 

  247. Buettner GR. The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys 1993; 300: 535–543.

    Article  PubMed  CAS  Google Scholar 

  248. Halliwell B, Gutteridge JMC. Role of free radicals and catalytic metal ions in human disease. Methods Enzymol 1990; 186: 1–85.

    Article  PubMed  CAS  Google Scholar 

  249. Sasaki H, Okabe E. Modification by hydroxyl radicals of functional reactivity in rabbit lingual artery. Jpn J Pharm 1993; 62: 305–314.

    Article  CAS  Google Scholar 

  250. Dai FC, Diederich A, Skopec J, Diederick D. Diabetes-induced endothelial dysfunction in streptozotocin-treated rats: role of prostaglandin endoperoxides and free radicals. J Am Soc Neph 1993; 4: 1327–1336.

    CAS  Google Scholar 

  251. Pieper GM, Langenstroer P, Siebeneich W. Diabetic-induced endothelial dysfunction in rat aorta: role of hydroxyl radicals. Cardiovasc Res 1997; 34: 145–156.

    Article  PubMed  CAS  Google Scholar 

  252. Nitenberg A, Paycha F, Ledoux S, Sachs R, Attali JR, Valensi P. 1998; Coronary artery responses to physiological stimuli are improved by deferoxiamine but not by L-arginine in non-insulin-dependent diabetic patients with angiographically normal coronary arteries and no other risk factors. Circulation 1998; 97: 736–743.

    Article  Google Scholar 

  253. Varma SD, Shen X, Logman W. Copper catalyzed oxidation of ascorbate: chemical and ESR studies. Lens Eye Tox Res 1990; 7: 49–66.

    CAS  Google Scholar 

  254. Koppenol WH. Oxyradical reactions: from bond-dissociation energies to reduction potentials. FEBS Lett 1990; 264: 165–167.

    Article  PubMed  CAS  Google Scholar 

  255. Williams B, Schrier RW. Characterization of glucose-induced in situ protein kinase C activity in cultured vascular smooth muscle cells. Diabetes 1992; 41: 1464–1472.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huang, A., Keaney, J.F. (2000). Antioxidants and Endothelium-Derived Nitric Oxide Action. In: Loscalzo, J., Vita, J.A. (eds) Nitric Oxide and the Cardiovascular System. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-002-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-002-5_26

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-101-1

  • Online ISBN: 978-1-59259-002-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics