Skip to main content

Arterial Circulation and the Heart

  • Chapter
The Arterial Circulation
  • 133 Accesses

Abstract

In hemodynamic terms, the function of the heart is to provide energy and to perfuse the organ vascular beds. For the heart to accomplish this efficiently, the arterial system plays a central role as the distributing conduits. Both the distributing arteries and the peripheral vascular beds present the load to the heart. Peripheral resistance has been popularly viewed in the clinical setting as the vascular load to the heart. This applies mostly to steady-flow conditions. This description is naturally inadequate, because of the pulsatile nature of blood flow, which remains throughout the microcirculation. Pulsatility implies that there is an oscillatory or pulsatile contribution to the vascular load to the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asmar, R. G., Pannier, B., Santoni, J., London, G. M., Levy, B. I., and Safar, M. E. Reversion of cardiac hypertrophy and reduced arterial compliance after converting enzyme inhibition in essential hypertension. Circulation 78: 941–950, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Bellamy, R. F. and O’Benar, J. D. The determinants of the pressure-flow relation in the coronary vasculature. J. Biomech. Eng. 107: 41–45, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Berger, D. S. and Li, J. K.-J. Temporal relationship between left ventricular and arterial system elastances. IEEE Trans. Biomed. Eng. 39: 404–410, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Berger, D. S. and Li, J. K.-J. Concurrent compliance reduction and increased peripheral resistance in the manifestation of isolated systolic hypertension. Am. J. Cardiol. 65: 67–71, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Berger, D. D., Lis, J. K.-J., and Noordergraaf, A. Arterial wave propagation phenomena, ventricular work, and power dissipation. Ann. Biomed. Eng. 23: 804–811, 1995

    Article  PubMed  CAS  Google Scholar 

  • Berne, R. M. and Levy, M. N. Cardiovascular Physiology. C. V. Mosby, St. Louis, 1986.

    Google Scholar 

  • Beyar, R., Caminker, R., Manor, D. and Sideman, S. Coronary flow patterns in normal and ischemic hearts: transmyocardial and artery to vein distribution, Ann. Biomed. Eng. 21: 435–458, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Braunwald, E., Ross, Jr., J., and Sonnenblick, E. H. Mechanisms of Contradiction of the Normal and Failing Heart. Little Brown, Boston, pp. 357–397, 1976.

    Google Scholar 

  • Bruinsma, P., Arts, T., Dankelman, J., and Spaan, J. A. E. Model of the coronary resistance and compliance, Basic Res. Cardiol. 83: 510–524, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Canty, J. M., Jr., Klock, F. J., and Mates, R. E. Pressure and tone dependence of coronary diastolic input impedance and capacitance. Am. J. Physiol. 248: H700–711, 1985.

    PubMed  Google Scholar 

  • Chilian, W. M. and Marcus, M. L. Coronary venous outflow persists after cessation of coronary arterial inflow. Am. J. Physiol. 247: H984 — H990, 1984.

    PubMed  CAS  Google Scholar 

  • Dai, J. and Li, J. K.-J. Prediction of impediment effect of cardiac contraction on coronary blood flow. FASEB J. 13: A424, 1999.

    Google Scholar 

  • Dankelman, J., Spaan, J. A. E., Stassen, H. G., and Vergroesen, I. Dynamics of coronary adjustment to a change in heart rate in the anaesthetized goat, J. Physiol. 408: 295–312, 1989.

    PubMed  CAS  Google Scholar 

  • Dankelman, J., Spaan, J. A. E., Van der Ploeg, C. P. B., and Vergroesen, I. Dynamic response of the coronary circulation to a rapid change in its perfusion in the anesthetized goat, J. Physiol. 410: 703–715, 1989.

    Google Scholar 

  • Dart, A., Silagy, C., Dewar, E., Jennings, G., and McNeil, J. Aortic distensibility and left ventricular structure and function in isolated systolic hypertension. Eur. Heart J. 14: 1465–1470, 1993.

    Article  PubMed  CAS  Google Scholar 

  • De Bruyne, B. and Pijls, N. H. J. Coronary pressure measurements. Primary Cardiol. 21: 28–32, 1995.

    Google Scholar 

  • De Bruyne, B., et al. Intracoronary pressure measurements with a 0.015-inch fluid filled angioplasty guide wire. In: Serruys, P. W., Foley, D. P., and de Feyter, P. J., eds., Quantitative Coronary Angiographiy in Clinical Practice, Kluwer Academic, Norwell, MA, pp. 147–165, 1994.

    Google Scholar 

  • De Tombe P. P., Jones, S., Burkhoff, D., Hunter, W. C., and Kass, D. Ventricular stroke work and efficiency both remain nearly optimal despite altered vascular loading. Am. J. Physiol. 264: H1817 — H1824, 1993.

    PubMed  Google Scholar 

  • Di Mario, C., Krams, R., Gil, R., and Serruys, P. W. Slope of the instantaneous hyperemic diastolic coronary flow velocity-pressure relation: a new index for assessment of the physiological significance of coronary stenosis in humans. Circulation 90: 1215–1224, 1994.

    Article  PubMed  Google Scholar 

  • Doucette, J. W., Goto, M., Flynn, A. E., Austin, R. E., Jr., Husseini, W., and Hoffman, J. I. E. Effect of cardiac contraction and cavity pressure on myocardial blood flow. Am. J. Physiol. 265: H1342 — H1352, 1993.

    PubMed  CAS  Google Scholar 

  • Downey, J. M. and Kirk, E. S. Inhibition of coronary flow by intra-vascular waterfall mechanism. Circ. Res. 36: 753–760, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Drzewiecki, G., Field, S., Mubarak, I., and Li, J. K.-J. Effect of vascular growth pattern on lumen area and compliance using a novel pressure-area model for collapsible wessels. Am. J. Physiol. (Heart Circ. Physiol.) 273: H2030–2043, 1997.

    CAS  Google Scholar 

  • Elzinga, E. and Westerhof, N. Pressure and flow generated by the left ventricle against different impedances. Circ. Res. 32: 178–186, 1973.

    Article  PubMed  CAS  Google Scholar 

  • Eng, C., Jentzer, J. H., and Kirk, E. S. Effects of the coronary capacitance on the interpretation of diastolic pressure-flow relationships. Circ. Res. 50: 334–341, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein, S. M., Cohn, J. N., Carlyle, P. F., and Carlyle, W. J. Vascular compliance in congestive heart failure. Proc. 7th IEEEConf. Eng. Med. Biol. Soc., 7: 550–553, 1985.

    Google Scholar 

  • Fitchett, D. H. LV-arterial coupling: interactive model to predict effect of wave reflections on LV energetics. Am. J. Physiol. 261: H1026 — H1033, 1991.

    PubMed  CAS  Google Scholar 

  • Folkow, B. Structural factor in primary and secondary hypertension. Hypertension 16: 89–101, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Forrester, J. S., Tyberg, J. V., Wyatt, H. L., Goldner, S., and Parmely, W. W. Pressure-length loop: a new method for simultaneous measurement of segmental and total cardiac function. J. Appl. Physiol. 37: 711–775, 1974.

    Google Scholar 

  • Franklin, S. S. and Weber, M. A. Measuring hypertensive cardiovascular risk: the vascular overload concept. Am. Heart J. 128: 793–803, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Franklin S. S., Gustin IV, W., Wong, N. D., Larson, M. G., Weber, M. A., Kannel, W. B., and Levy, D. Hemodynamic patterns of age-related changes in blood pressure. The Framingham heart study. Circ. 96: 308–315, 1997.

    CAS  Google Scholar 

  • Frasch H., Kresh, J. Y., and Noordergraaf, A. Interpretation of coronary vascular perfuison. In: G. Drzewiecki, G. and Li, J. K.-J., eds., Analysis and Assessment of Cardiovascular Function. Springer-Verlag, New York, pp. 109–127, 1998.

    Chapter  Google Scholar 

  • Frolich, E. D. Antihypertensive therapy: new concepts and agents. Cardiology 72:349–365, 1985. Gallagher, K. P., Genen, R. A., Buda, A. J., and Dunham, W. R. Nonischemic dysfunction at the lateral margins of ischemic myocardium. In: Sideman, S. and Beyar, R., eds., Activation, Metabolism, and Perfusion of the Heart. Martinus Nijohff, New York, pp. 479–500, 1987.

    Google Scholar 

  • Geipel, P. S. and Li, J. K.-J. Pulsatile interaction of the left ventricle and arterial system in myocardial ischemia. Proc. 13th 1m’. Conf Eng. Med. Biol., 13: 2049–2050, 1991.

    Google Scholar 

  • Goto, M., VanBavel, E., Giezeman, M. J., and Spaan, J. A. Vasodilatory effect of pulsatile pressure on coronary resistance vessels. Circ. Res. 79 (5): 1039–1045, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Gould, K. L., Lipscomb, K., and Hamilton, G. W. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am. J. Cardiol. 33 (1): 87–94, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Grover, G. J., Weiss, H. R., Kostis, J. B., Li, J. K.-J., Kovacs, T., and Kedem, J. Betaadrenoceptor simulation and blockade during myocardial ischemia in dogs: effect on cardiac 02 supply and consumption. Eur. J. Pharmacol. 142: 103–113, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Hayoz, D., Tardy, Y., Perret, F., Waeber, B., Meister, J.-J., and Brunner, H. R. Noninvasive determination of arterial diameter and distensibility by echo-tracking techniques in hypertension. J. Hypertension 10 (Suppl 5): 95–100, 1992.

    Article  Google Scholar 

  • Hayashida, K., Sunakawa, K., Noma, M., Sugimachi, M., Ando, H., and Nakamura, M. Mechanical matching of the left ventricle with the arterial system in exercising dogs. Circ. Res. 71: 481–489, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Hettrick, D. A. and Warltier, D. C. Ventriculoarterial coupling. In: Warltier, D. C., ed.,Ventricular Function, Wiliams Wilkins, Baltimore, pp. 153–179, 1995.

    Google Scholar 

  • Holensterin, R. and Nerem, R. M. Parameteric analyisi of flow in the intramyocardial circualtion. Ann. Biomed. Eng. 18: 347–365, 1990.

    Article  Google Scholar 

  • Hoffman, J. I. Maximal coronary flow and the concept of coronary vascular reserve. Circulation 70: 153–159, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, J. I. E. and Spaan, J. A.E. Pressure-flow relations in coronary circulation. Physiol. Rev. 70: 331–390, 1990.

    PubMed  CAS  Google Scholar 

  • Hood, W. B., Covelli, V. H., Abelman, W. H., and Normal, J. C. Persistence of contractile behavior in acutely ischemic myocardium. Cardiovasc. Res. 3: 249–255, 1969.

    Article  PubMed  Google Scholar 

  • Kelly, R. and Fitchett, D. Noninvasive determination of aortic input impedance and external left ventricular power output: a validation and repeatability study of a new technique. J. Am. Coll. Cardiol. 20: 952–963, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, R. P., Tunin, R., Kass, D. A. Effect of reduced aortic compliance on cardiac efficiency and contractile function of in situ canine left ventricle. Circ. Res. 71: 490–502, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, R. P., Ting, C.-T., Yang, T. M., Liu, C.-P., Maughan, W. L., Chang, M.-S., and Kass, D. A. Effective arterial elastance as index of arterial vascular load in humans. Circulation 86: 513–521, 1992a.

    Article  PubMed  CAS  Google Scholar 

  • Klocke, F. J. Measurements of coronary flow reserve: defining pathophysiology versus making decisions about patient care. Circulation 76: 1183–1189, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Klocke, F. J., Mates, R. E., Canty, J. M., and Ellis, A. K. Coronary pressure-flow relationships: controversial issues and probable implications, Circ. Res. 56: 310–323, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Krams, R., Sipkema, P., and Westerhof, N. Contractility is the main determinant of coronary systolic flow impediment. Am. J. Physiol. 257: H1936 — H1944, 1989b.

    PubMed  CAS  Google Scholar 

  • Krams, R., Sipkema, P. and Westerhof, N. The varying elastance concept may explain coronary systolic flow impediment. Am. J. Physiol. 257: H1471–1479, 1989c.

    PubMed  CAS  Google Scholar 

  • Krayenbuhl, H. P., Hess, 0. M., and Turina, J. Assessment of left ventricular function. Cardiovasc. Med. 3: 883–910, 1978.

    Google Scholar 

  • Lew, W. Y. and Ban-Hayashi, E. Mechanisms of improving regional and global ventricular function by preload alterations during acute ischemia in the canine left ventricle. Circulation 72: 1125–1134, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Li, J. K.-J. Oxygen cost to work ratio in pressure-loaded ventricle. Proc. 35th Ann. Conf Eng. Med. Biol. 24: 145, 1982.

    Google Scholar 

  • Li, J. K.-J. Ventricualr alternans: relative unimportance of the Starling mechanism. IRCS J. Med. Sci. 10: 19–20, 1982a.

    Google Scholar 

  • Li, J. K.-J. and Zhu, Y. Arterial compliance and its pressure dependence in hypertension and vasodilation. Angiology, J. Vasc. Dis. 45: 113–117, 1994.

    CAS  Google Scholar 

  • Li, J. K.-J. Arterial System Dynamics. New York University Press, New York, 1987.

    Google Scholar 

  • Li, J. K.-J., Cui, T., and Drzewieki, G. Nonliniar model of the arterial system incorporating a pressure-dependent compliance. IEEE Trans. Biomed. Eng. BME-37: 673–678, 1990.

    Google Scholar 

  • Li, J. K.-J., Drzewiecki, G., and Wang, R. P. Compliance of the aorta during acute pressure loading. Proc. 7th Int. Conf. Cardiovasc. Syst. Dynamics, 7: 1–3, 1986.

    Google Scholar 

  • Li, J. K.-J., Zhu, Y., Wang, J.-J., and Drzewiecki, G. Sensitivity of measured and modelderived parameters for assessing myocardial ischemia and hypertension. Ann. Biomed. Eng. 23: S38, 1995

    Google Scholar 

  • Li, J. K.-J., Zhu, Y., and Drzewieck, G. Arterial compliance changes in spontaneous hypertension and hypotension. FASEB J. A462, 1993a.

    Google Scholar 

  • Li, J. K.-J., Zhu, Y., and Drzewieck, G. Difference in arterial compliance values measured at systolic, mean and diastolic blood pressure. Am. J. Hypertension, 6: 41A, 1993b.

    Google Scholar 

  • Li, J. K.-J., Zhu, Y., and Drzewiecki, G. Pulse pressure is a significant determinant of arterial compliance in hypertension and vasodilation. Circulation 90: I166, 1994.

    Google Scholar 

  • Li, J. K.-J. Feedback effects in heart-arterial system interaction. Adv. Exp. Med. Biol. 346: 325–333, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Li, J. K.-J. Regional ventricular function in myocardial ischemia. In: Sideman, S. and Beyar, R., eds., Activation, Metabolism and Perfusion of the Heart. Martinus Nijhoff, pp. 453–461, 1987.

    Google Scholar 

  • Li, J. K.-J., Zhu, Y., and Drzewiecki, G. Systemic arterial compliance dependence on blood pressure: global effects. J. Cardiovasc. Diagn. Proc. 13: 300, 1996.

    Google Scholar 

  • Li, J. K.-J. A new description of arterial function: the compliance-pressure loop. Angiology, J. Vasc. Dis. 49: 543–548, 1998.

    CAS  Google Scholar 

  • Little, W. C. and Cheng, C.-P. Left ventricular-arterial coupling in conscious dogs. Am. J. Physiol. 261: H70–76, 1991.

    PubMed  CAS  Google Scholar 

  • Marcus M.L. Coronary Circulation in Health and Disease. McGraw-Hill, New York, 1983.

    Google Scholar 

  • Maruyama, Y., Nishioka, O., Nozaki, E., Kinoshita, H., Kyono, H., Koiwa, Y., and Takishima, T. Effects of arterial distensibility on left ventricular ejection in the depressed contractile state. Cardiovasc. Res. 27: 182–187, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Mates, R. E. and Judd, R. M. Models of coronary pressure-flow relations. Adv. Exp. Med. Biol. 346: 153–161, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Mates, R. E. Coronary capacitance. Prog. Cardiovasc. Dis. 31: 1–15, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Maughan, W. L., Sunagawa, K., Burkoff, D., and Sagawa, K. Effect of arterial impedance changes on the end-systolic pressure-volume realtion. Circ. Res. 54: 595–602, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Meister, J.-J., Tardy, Y., Stergiopulos, N., Hayoz, D., Brunner, H. R., and Etienne, J.-D. Non-invasive method for the assessment of non-linear elastic properties and stress of forearm arteries in vivo. J. Hypertension 10 (S6): 23–26, 1992.

    Google Scholar 

  • Mulvany, M. J. Determinants of vascular hemodynamic characteristics. Hypertension 6 (Suppl. III): 13–18, 1984.

    Google Scholar 

  • Nichols, W. W., O’Rourke, M. F., Avolio, A. P., Yaginuma, T., Murgo, J. P., Pepine, C. J., and Conti, C. R. Effects of age on ventricular vascular coupling. Am. J. Cardiol. 55: 1179–1184, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Olsson, R. A., Bunger, R. and Spaan, J. A. E. Coronary circulation. In: Fozzard, H. A., Haber, E., Jennings, R. B., Katz, A. M., and Morgan, H. E., eds., The Heart and Cardiovascular System, 2nd ed., Raven Press, New York, pp. 1393–1425, 1992.

    Google Scholar 

  • O’Rourke, M. F. Arterial hemodynamics in hypertension. Circ. Res. 26 (Suppl. II): 123–132, 1970.

    Google Scholar 

  • Perret, F., Mooser, V., Hayoz, D., Tardy, Y., Meister, J.-J., Etienne, J.-D., et al. Evaluation of arterial compliance pressure curves. Effects of antihypertensive drugs. Hypertension 18 (Suppl. II): 77–83, 1991.

    Google Scholar 

  • Rabbany, S. Y., Kresh, J. Y., and Noordergraaf, A. Intramyocardial pressure: interatction of myocardial fluid pressure and fiber stress. Am. J. Physiol. 257:H357—H364 (1989)

    Google Scholar 

  • Reneman, R. S. and Arts, T. Dynmaic capacitance of epicardial coronart arteries in vivo. J. Biomech. Eng. 107: 29–33, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Roman, M. J., Saba, P. S., Pini, R., Spitzer, M., Pickering, T. G., et al. Parallel cardiac and vascular adaptation in hypertension. Circulation 86: 1909–1918, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Safar, M. E., Simon, A. C., and Levenson, J. A. Structural changes of large arteries in sustained essential hypertension. Hypertension, 6 (Suppl. III): 117–121, 1984.

    Google Scholar 

  • Sasayama, S., Gallagher, K. P., Kemper, W. S., Franklin, D., and Ross, J., Jr. Regional left ventricular wall thickness early and late after coronary occlusion in the conscious dog. Am. J. Physiol. 240: H293–299, 1981.

    PubMed  CAS  Google Scholar 

  • Segal, J., Kern, M. J., Scott, N. A., et al. Alterations of phasic coronary artery flow velocity in humans during percutaneous angioplasty. J. Am. Coll. Cardiol. 20: 276–286, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Sideman S. and Beyar, R. Simulation and Modeling of the Cardiac System. Matinus Nijhoff, New York, 1987.

    Google Scholar 

  • Simon, A. C., Levenson, J., Chau, N. P., and Pithois-Merli, I. Role of arterial compliance in the physiopharmacological approach to human hypertension. J. Cardiovasc. Pharmacol. 19(55):D1l—S20, 1992.

    Google Scholar 

  • Simon, A. C., Safar, M. E., Levenson, J. A., London, G. M., Levy, B. I., and Chau, N. P. Evaluation of large arteries compliance in man. Am. J. Physiol. 237: H550–554, 1979.

    PubMed  CAS  Google Scholar 

  • Spaan, J. A. E. Mechanical determinants of myocardial perfusion. Basic Res. Cardiol. 90: 89–102, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Spaan, J. A. E. Intramyocardial compliance studies by venous outflow at arterial occlusion. Circulation 66(Suppl. 3 ): 307, (Abstract), 1981a.

    Google Scholar 

  • Spaan, J. A. E., Breuls, N. P. W.,and Laird, J. D. Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ. Res. 49: 584–593, 1981b.

    CAS  Google Scholar 

  • Starling, M.R. Left ventricular-arterial coupling relations in the normal human heart. Am. Heart J. 125: 1659–1666, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Suga, H., Igarashi, Y., Yamada, O., and Goto, Y. Mechanical efficiency of the left ventricle as a function of preload, afterload and contractility. Heart Vessels 1:3–8, 1985.

    Google Scholar 

  • Suga, H., Sagawa, K., and Shoukas, A. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32: 314–322, 1973.

    Article  PubMed  CAS  Google Scholar 

  • Sunagawa, K., Maughan, W. L., Burkhoff, D., Sagawa, K. Left ventricular interaction with arterial load studied in isolated canine left ventricle. Am. J. Physiol. 265: H773–780, 1983.

    Google Scholar 

  • Sunagawa, K., Maughan, W. L., and Sagawa, K. Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ. Res. 56: 586–585, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Tennant, R. and Wiggers, C. J., Effect of coronart occlusion on myocardial contraction. Am. J. Physiol. 112: 351–361, 1935.

    Google Scholar 

  • Theroux, P., Ross, J., Jr., Franklin, D., Covell, J. W., Bloor, C. M., and Sasayama, S. Regional myocardial function and dimensions early and late after myocardial infarction in the unanesthetized dog. Circ Res 40: 158–165, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Tyberg, J. V., Forrester, J. S., Wyatte, H. L., Goldner, S. J., Parmley., W. W., and Swan, H. J. C. An analysis of segment ischemic dysfunction utilizing the pressure-length loop. Circulation 49: 748–747, 1974.

    CAS  Google Scholar 

  • Urschel, C. W., Corell, J. W., Sonnenblick, E. H., Ross, J., Jr., and Braunwald, E. Effects of decreased aortic compliance on performance of the left ventricle. Am. J. Physiol. 214: 298–304, 1968.

    CAS  Google Scholar 

  • Van den Horn, G. J., Westerhof, N.,and Elzinga, G. Interaction of heart and arterial system. Ann. Biomed. Eng. 12: 151–162, 1984.

    Article  PubMed  Google Scholar 

  • Van Huis, G. A., Sipkema, P., and Westerhof, N. Coronary input impedance during the cardiac cycle as determined by impulse response method. Am. J. Physiol. 253:H317—H324 (1987)

    Google Scholar 

  • Vis, M. A., Bovendeerd, P. H. M., Sipkema, P., and Westerhof, N. Effect of ventricular contraction, pressure, and wall stretch on vessels at different locations in the wall. Am. J. Physiol. 272:H2963–2975 (1997)

    Google Scholar 

  • Vis, M. A., Spikema, P., and Westerhof, N. Modeling pressure-area relations of coronary blood vessels embedded in cardiac muscle in diastole and systole. Am. J. Physiol. 268:H2531—H2543 (1995)

    Google Scholar 

  • Weintraub, W. S., Hattori, S., Agarwal, J. B., Bodenheimer, M. M., Banka, V. S., and Helfant, R. H. Relationship between myocardial blood flow and contraction by myocardial layer in the canine left ventricle during ischemia. Circ. Res. 48: 430–438, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Y., Li, J. K.-J., and Drzewieck, G. Arterial compliance variation throughout the cardiac cycle. Proc. IEEE 14th Int. Conf. Eng. Med. Biol. pp. 758–759, 1992a.

    Google Scholar 

  • Zhu, Y., et al, Arterial wave reflections and left ventricular energy output in vasoconstriction and vasodilation. Proc. 18th NE Bioeng. Conf., pp. 125–126, 1992b.

    Google Scholar 

  • Zinemanas, D., Beyar, R., and Sideman, S. Intramyocardial fluid transport effects on coronary flow and LV mechanics. In: Sideman, S. and Beyarm R., eds., Interactive Phenomena in the Cardiac System, Plenum, New York, pp. 219–231, 1993.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, J.KJ. (2000). Arterial Circulation and the Heart. In: The Arterial Circulation. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-034-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-034-6_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-106-6

  • Online ISBN: 978-1-59259-034-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics