Skip to main content

Coupling of Blood Flow to Neuronal Excitability

  • Chapter
The Neuronal Environment

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 187 Accesses

Abstract

At least four mechanisms underlie the link between brain function and brain energy metabolism. These mechanisms tie the function of the brain to the work carried out in the brain (the function—work couple), the work of the brain to the cells that carry out the work (energetic compartmentation), the cells that carry out the work to the relative and absolute magnitudes of oxidative and nonoxidative energy metabolism of brain (energy—metabolism couple), and the energy metabolism of the brain to its blood supply (metabolism—flow couple).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shulman, R. G. and Rothman, D. L. (1998) Interpreting functional imaging studies in terms of neurotransmitter cycling. Proc. Natl. Acad. Sci. USA 95, 11,993–11,998.

    Article  CAS  Google Scholar 

  2. Magistretti, P. J., Pellerin, L., Rothman, D. L., and Shulman, R. G. (1999) Energy on demand. Science 283, 496–497.

    Article  PubMed  CAS  Google Scholar 

  3. Gjedde, A. (1996) The relation between brain function and cerebral blood flow and metabolism, in Cerebrovascular Disease (Batjer, H. H., ed.), Lippincott-Raven, Philadelphia, pp. 23–40.

    Google Scholar 

  4. Skou, J. C. (1960) Further investigations on a Mg++—Na+-activated adenosine-triphosphatase, possibly related to the active, linked transport of Na+ and K+ across the nerve membrane. Biochim. Biophys. Acta 42, 6–23.

    Article  CAS  Google Scholar 

  5. Erecinska, M. and Silver, I. (1989) ATP and brain function. J. Cereb. Blood Flow Metab. 9, 2–19.

    Article  PubMed  CAS  Google Scholar 

  6. McCormick, D. A. (1990) Membrane properties and neurotransmitter actions, in The Synaptic Organization of the Brain, 3rd ed. (Shepherd, G., ed.), Oxford University Press, New York, pp. 32–66.

    Google Scholar 

  7. Gjedde, A. (1993) The energy cost of neuronal depolarization, in Functional Organization of the Human Visual Cortex (Gulyas, B., Ottoson, D., and Roland, P. E., eds.), Pergamon, Oxford, pp. 291–306.

    Google Scholar 

  8. Laughlin, S. B., de Ruyter van Steveninck, R. R., and Anderson, J. C. (1998) The metabolic cost of neural information. Nature Neurosci. 1, 36–41.

    Article  PubMed  CAS  Google Scholar 

  9. Andriezen, W. L. (1893) The neuroglia elements in the human brain. Br. Med. J. ii, 227–230.

    Article  Google Scholar 

  10. Brightman, M. W. and Reese, T. S. (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell. Biol. 40, 648–677.

    Article  PubMed  CAS  Google Scholar 

  11. Brightman, M. W., Klatzo, I., Olsson, Y., and Reese, T. S. (1970) The blood-brain barrier to proteins under normal and pathological conditions. J. Neurol. Sci. 110, 215–239.

    Article  Google Scholar 

  12. Paulson, O. B. and Newman, E. A. (1987) Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science 237, 896–898.

    Article  PubMed  CAS  Google Scholar 

  13. Cremer, J. E. (1976) The influence of liver-bypass on transport and compartmentation in vivo. Adv. Exp. Med. Biol. 69, 95–102.

    Article  PubMed  CAS  Google Scholar 

  14. Cremer, J. E., Cunningham, V. J., Pardridge, W. M., Braun, L. D., and Oldendorf, W. H. (1979) Kinetics of blood-brain barrier transport of pyruvate, lactate and glucose in suckling, weanling and adult rats. J. Neurochem. 33, 439–446.

    Article  PubMed  CAS  Google Scholar 

  15. Drewes, L. (1999) Transport of brain fuels, glucose and lactate, in Brain Barrier Systems (Paulson, O. B., Knudsen, G. M., and Moos, T., eds.), Alfred Benzon Symposium 45, Munksgaard, Copenhagen, pp. 285–295.

    Google Scholar 

  16. Gerhart, D. Z., Enerson, B. E., Zhdankina, O. Y., Leino, R. L., and Drewes, L. R. (1997) Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am. J. Physiol. 273, E207–213.

    PubMed  CAS  Google Scholar 

  17. Gerhart, D. Z., Enerson, B. E., Zhdankina, O. Y., Leino, R. L., and Drewes, L. R. (1998) Expression of the monocarboxylate transporter MCT2 by rat brain glia. Glia 22, 272–281.

    Article  PubMed  CAS  Google Scholar 

  18. Vandenberg, R. J. (1998) Molecular pharmacology and physiology of glutamate transporters in the central nervous system. Clin. Exp. Pharmacol. Physiol. 25, 393–400.

    Article  PubMed  CAS  Google Scholar 

  19. Rothstein, J. D., Dykes-Hoberg, M., Pardo, C. A., Bristol, L. A., Jin, L., Kuncl, R. W., et al. (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16, 675–686.

    Article  PubMed  CAS  Google Scholar 

  20. Tholey, G., Roth-Schechter, B. F., and Mandel, P. (1981) Activity and isoenzyme pattern of lactate dehydrogenase in neurons and astroblasts cultured from brains of chick embryos. J. Neurochem. 36, 77–81.

    Article  PubMed  CAS  Google Scholar 

  21. Bittar, P. G., Charnay, Y., Pellerin, L., Bouras, C., and Magistretti, P. J. (1996) Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J. Cereb. Blood Flow Metab. 16, 1079–1089.

    Article  PubMed  CAS  Google Scholar 

  22. Laughton, J. D., Charnay, Y., Belloir, B., Pellerin, L., Magistretti, P. J., and Bouras, C. (2000) Differential messenger RNA distribution of lactate dehydrogenase LDH-1 and LDH-5 isoforms in the rat brain. Neuroscience 96, 619–625.

    Article  PubMed  CAS  Google Scholar 

  23. Silver, I. A. and Erecinska, M. (1997) Energetic demands of the Na+/K+ ATPase in mammalian astrocytes. Glia 21, 35–45.

    Article  PubMed  CAS  Google Scholar 

  24. Sokoloff, L. (1999) Energetics of functional activation in neural tissues. Neurochem. Res. 24, 321–329.

    Article  PubMed  CAS  Google Scholar 

  25. Hevner, R. F., Liu, S., and Wong-Riley, M. T. (1995) A metabolic map of cytochrome oxidase in the rat brain: histochemical, densitometric and biochemical studies. Neuroscience 65, 313–342.

    Article  PubMed  CAS  Google Scholar 

  26. Kaplan, N. O. and Everse, J. (1972) Regulatory characteristics of lactate dehydrogenases. Adv. Enzyme Regul. 10, 323–336.

    Article  PubMed  CAS  Google Scholar 

  27. Tanaka, K., Watase, K., Manabe, T., Yamada, K., Watanabe, M., Takahashi, K., et al. (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276, 1699–1702.

    Article  PubMed  CAS  Google Scholar 

  28. Brandt, R. B., Laux, J. E., Spainhour, S. E., and Kline, E. S. (1987) Lactate dehydrogenase in rat mitochondria. Arch. Biochem. Biophys. 259, 412–422.

    Article  PubMed  CAS  Google Scholar 

  29. Hertz, L., Swanson, R. A., Newman, G. C., Marrif, H., Juurlink, B. H., and Peng, L. (1998) Can experimental conditions explain the discrepancy over glutamate stimulation of aerobic glycolysis? Dey. Neurosci. 20, 339–347.

    Article  CAS  Google Scholar 

  30. Oldendorf, W. H. (1973) Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids. Am. J. Physiol. 224, 1450–1453.

    PubMed  CAS  Google Scholar 

  31. Halestrap, A. P. (1975) The mitochondrial pyruvate carrier. Biochem. J. 148, 85–96.

    PubMed  CAS  Google Scholar 

  32. Poole, R. C. and Halestrap, A. P. (1993) Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am. J. Physiol. 264, C761–82.

    PubMed  CAS  Google Scholar 

  33. Halestrap, A. P. and Price, N. T. (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem. J. 343, 281–299.

    Article  PubMed  CAS  Google Scholar 

  34. Broer, S., Rahman, B., Pellegri, G., Pellerin, L., Martin, J. L., Verleysdonk, S., Hamprecht, B., and Magistretti, P. J. (1997) Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons. J. Biol. Chem. 272, 30,096–30,102.

    Article  CAS  Google Scholar 

  35. Gjedde, A. (1992) Blood-brain glucose transfer, in Physiology and Pharmacology of the Blood-Brain Barrier, Handbook of Experimental Pharmacology (Bradbury, M. W. B., ed.), Springer-Verlag, Berlin, pp. 65–115.

    Chapter  Google Scholar 

  36. Diemer, N. H., Benveniste, H., and Gjedde, A. (1985) In vivo cell membrane permeability to deoxyglucose in rat brain. Acta Neurol. Scand. 72, 87.

    Google Scholar 

  37. Gjedde, A. and Diemer, N. H. (1983) Autoradiographic determination of regional brain glucose content. J. Cereb. Blood. Flow Metab. 3, 303–310.

    Article  PubMed  CAS  Google Scholar 

  38. Silver, I. A. and Erecinska, M. (1994) Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J. Neurosci. 14, 5068–5076.

    PubMed  CAS  Google Scholar 

  39. Kety, S. S. (1949) The physiology of the human cerebral circulation. Anesthesiology 10, 610–614.

    Article  PubMed  CAS  Google Scholar 

  40. Lassen, N. A. (1959) Cerebral blood flow and oxygen consumption in man. Physiol. Rev. 39, 183–238.

    PubMed  CAS  Google Scholar 

  41. Kuwabara, H., Ohta, S., Brust, P., Meyer, E., and Gjedde, A. (1992) Density of perfused capillaries in living human brain during functional activation. Progr. Brain Res. 91, 209–215.

    Article  CAS  Google Scholar 

  42. Ohta, S., Meyer, E., Fujita, H., Reutens, D. C., Evans, A., and Gjedde, A. (1996) Cerebral [O-15] water clearance in humans determined by PET. I. Theory and normal values. J. Cereb. Blood Flow Metab. 16, 765–780.

    Article  PubMed  CAS  Google Scholar 

  43. Ohta, S., Meyer, E., Thompson, C. J., and Gjedde, A. (1992) Oxygen consumption of the living human brain measured after a single inhalation of positron emitting oxygen. J. Cereb. Blood Flow Metab. 12, 179–192.

    Article  PubMed  CAS  Google Scholar 

  44. Kuwabara, H., Evans, A. C., and Gjedde, A. (1990) Michaelis-Menten constraints improved cerebral glucose metabolism and regional lumped constant measurements with [18F] fluoro-deoxyglucose. J. Cereb. Blood Flow Metab. 10, 180–189.

    Article  PubMed  CAS  Google Scholar 

  45. Fox, P. T. and Raichle, M. E. (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc. Natl. Acad. Sci. USA 83, 1140–1144.

    Article  PubMed  CAS  Google Scholar 

  46. Seitz, R. J. and Roland, P. E. (1992) Vibratory stimulation increases and decreases the regional cerebral blood flow and oxidative metabolism: a positron emission tomography (PET) study. Acta Neurol. Scand. 86, 60–67.

    Article  PubMed  CAS  Google Scholar 

  47. Fujita, H., Kuwabara, H., Reutens, D. C., and Gjedde, A. (1999) Oxygen consumption of cerebral cortex fails to increase during continued vibrotactile stimulation. J. Cereb. Blood Flow Metab. 19, 266–271.

    Article  PubMed  CAS  Google Scholar 

  48. Ginsberg, M. D., Chang, J. Y., Kelley, R. E., Yoshii, F., Barker, W. W., Ingento, G., and Boothe, T. E. (1988) Increases in both cerebral glucose utilization and blood flow during execution of a somatosensory task. Ann. Neurol. 23, 152–160.

    Article  PubMed  CAS  Google Scholar 

  49. Ribeiro, L., Kuwabara, H., Meyer, E., Fujita, H., Marrett, S., Evans, A., and Gjedde, A. (1993) Cerebral blood flow and metabolism during nonspecific bilateral visual stimulation in normal subjects, in Quantification of Brain Function: Tracer Kinetics and Image Analysis in Brain PET (Uemura, K., Lassen, N. A., Jones, T., and Kanno, I., eds.), Elsevier, Amsterdam, pp. 217–224.

    Google Scholar 

  50. Fox, P. T., Raichle, M. E., Mintun, M. A., and Dence, C. E. (1988) Nonoxidative glucose consumption during focal physiological activity. Science 241, 462–464.

    Article  PubMed  CAS  Google Scholar 

  51. Marrett, S. and Gjedde, A. (1997) Changes of blood flow and oxygen consumption in visual cortex of living humans. Adv. Exp. Med. Biol. 413, 205–208.

    PubMed  CAS  Google Scholar 

  52. Vafaee, M. S. and Gjedde, A. (2000) Model of blood-brain transfer of oxygen explains non-linear flow-metabolism coupling during stimulation of visual cortex. J. Cereb. Blood Flow Metab. 20, 747–754.

    Article  PubMed  CAS  Google Scholar 

  53. Katayama, Y., Tsubokawa, T., Hirayama, T., Kido, G., Tsukiyama, T., and Lio, M. (1986) Response of regional cerebral blood flow and oxygen metabolism to thalamic stimulation in humans as revealed by positron emission tomography. J. Cereb. Blood Flow Metab. 6, 637–641.

    Article  PubMed  CAS  Google Scholar 

  54. Roland, P. E., Eriksson, L., Widen, L., and Stone-Elander, S. (1989) Changes in regional cerebral oxidative metabolism induced by tactile learning and recognition in man. Eur. J. Neurosci. 7, 2373–2389.

    Google Scholar 

  55. Roland, P. E., Eriksson, L., Stone-Elander, S., and Widen, L. (1987) Does mental activity change the oxidative metabolism of the brain? J. Neurosci. 8, 2373–2389.

    Google Scholar 

  56. Raichle, M. E., Grubb, R. L., Jr., Gado, M. H., Eichling, J. O., and Ter-Pogossian, M. M. (1976) Correlation between regional cerebral blood flow and oxidative metabolism. In vivo studies in man. Arch. Neurol. 33, 523–526.

    Article  PubMed  CAS  Google Scholar 

  57. Iida, H., Jones, T., and Miura, S. (1993) Modeling approach to eliminate the need to separate arterial plasma in oxygen-15 inhalation positron emission tomography. J. Nucl. Med. 34, 1333–1340.

    PubMed  CAS  Google Scholar 

  58. Vafaee, M. S. and Gjedde, A. (2001) Oxygen consumption and blood flow changes in motor cortex, anterior cingulate, and putamen during sequential finger touching: evidence for inverse flow-metabolism coupling. Personal Communication.

    Google Scholar 

  59. Ohta, S., Reutens, D. C., and Gjedde, A. (1999) Brief vibrotactile stimulation does not increase cortical oxygen consumption when measured by single inhalation of positron emitting oxygen. J. Cereb. Blood Flow Metab. 19, 260–265.

    Article  PubMed  CAS  Google Scholar 

  60. Sokoloff, L., Reivich, M., Kennedy, C., DesRosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O., and Shinohara, M. (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albine rat. J. Neurochem. 28, 897–916.

    Article  PubMed  CAS  Google Scholar 

  61. Murase, K., Kuwabara, H., Yasuhara, Y., Evans, A. C., and Gjedde, A. (1996) Mapping of change in cerebral glucose utilization using fluorine-18 fluorodeoxyglucose double injection and the constrained weighted-integration method. IEEE Transact. Med. Imag. 15, 824–835.

    Article  CAS  Google Scholar 

  62. Robin, E. D., Murphy, B. J., and Theodore, J. (1984) Coordinate regulation of glycolysis by hypoxia in mammalian cells. J. Cell Physiol. 118, 287–290.

    Article  PubMed  CAS  Google Scholar 

  63. Gjedde, A. (1984) On the measurement of glucose in brain. Neurochem. Res. 9, 1667–1671.

    Article  PubMed  CAS  Google Scholar 

  64. van den Berg, C. J. and Bruntink, R. (1983) Glucose oxidation in the brain during seizures: experiments with labeled glucose and deoxyglucose, in Glutamine, Glutamate and GABA in the Central Nervous System (Hertz, L., Kvamme, E., McGeer, E. G., and Schousboe, A., eds.), Alan R. Liss, New York, pp. 619–624.

    Google Scholar 

  65. Shram, N. F., Netchiporouk, L. I., Martelet, C., Jaffrezic-Renault, N., Bonnet, C., and Cespuglio, R. (1998) In vivo voltammetric detection of rat brain lactate with carbon fiber microelectrodes coated with lactate oxidase. Anal. Chem. 70, 2618–2622.

    Article  PubMed  CAS  Google Scholar 

  66. Vafaee, M., Meyer, E., Marrett, S., Evans, A. C., and Gjedde, A. (1998) Increased oxygen consumption in human visual cortex: respond to visual stimulation. Acta Neurol. Scand. 98, 85–89.

    Article  PubMed  CAS  Google Scholar 

  67. Vafaee, M. S., Meyer, E., Marrett, S., Paus, T., Evans, A. C., and Gjedde, A. (1999) Frequency-dependent changes in cerebral metabolic rate of oxygen during activation of human visual cortex. J. Cereb. Blood Flow Metab. 19, 272–277.

    Article  PubMed  CAS  Google Scholar 

  68. Shearman, M. S. and Halestrap, A. P. (1894) The concentration of the mitochondrial pyruvate carrier in rat liver and heart mitochondria determined with alpha-cyano-beta-(1phenylindol-3-yl) acrylate. Biochem. J. 223, 673–676.

    Google Scholar 

  69. Akgören, N, Mathiesen, C., Rubin, I., and Lauritzen, M. (1997) Laminar analysis of activity-dependent increases of CBF in rat cerebellar cortex: dependence on synaptic strength. Am. J. Physiol. 273, H1166–H1176.

    PubMed  Google Scholar 

  70. Caesar, K., Akgoren, N., Mathiesen, C., and Lauritzen, M. (1999) Modification of activity-dependent increases in cerebellar blood flow by extracellular potassium in anaesthetized rats. J. Physiol. (Lond.) 520, 281–292.

    Article  CAS  Google Scholar 

  71. Mathiesen, C., Caesar, K., Akgoren, N., and Lauritzen, M. (1998) Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J. Physiol. (Lond.) 512, 555–566.

    Article  CAS  Google Scholar 

  72. Gjedde, A. (1996) PET criteria of cerebral tissue viability in ischemia. Acta Neurol. Scand 93, 3–5.

    Article  Google Scholar 

  73. Gjedde, A., Vafaee, M. S., Østergaard, L., et al. (2001) Decline of cerebral oxygen consumption during indomethacin-induced flow reduction is consistent with diffusion-limited oxygen delivery. J. Cereb. Blood Flow Metab. 21 Suppl 1, S110.

    Google Scholar 

  74. Vafaee, M. S. and Gjedde, A. (2001) CMR02-CBF changes by finger motion: No evidence of flow-metabolism coupling in putamen. Neurolmage 13, S1012.

    Article  Google Scholar 

  75. Ogawa, S., Lee, T. M., Nayak, A. S., et al. (1990) Oxygenation-sensitive contrast in magnetic resonance imaging of rodent brain at high magnetic fields. Magn. Reson. Med. 14, 68–78.

    Article  PubMed  CAS  Google Scholar 

  76. Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., et al. (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. USA 89, 5675–5679.

    Article  PubMed  CAS  Google Scholar 

  77. Iadecola, C. (1992) Does nitric oxide mediate the increases in cerebral blood flow elicited by hypercapnia? Proc. Natl. Acad. Sci. USA 89, 3913–3916.

    Article  PubMed  CAS  Google Scholar 

  78. Iadecola, C., Pelligrino, D. A., Moskowitz, M. A., and Lassen, N. A. (1994) Nitric oxide synthase inhibition and cerebrovascular regulation. J. Cereb. Blood Flow Metab. 14, 175–192.

    Article  PubMed  CAS  Google Scholar 

  79. Fabricius, M. and Lauritzen, M. (1994) Examination of the role of nitric oxide for the hypercapnic rise of cerebral blood flow in rats. Am. J. Physiol. 266, H1457–1464.

    PubMed  CAS  Google Scholar 

  80. Villringer, A. and Dirnagl, U. (1995) Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. Cerebrovasc. Brain Metab. Rev. 7, 240–276.

    PubMed  CAS  Google Scholar 

  81. Ogawa, M., Magata, Y., Ouchi, Y., Fukuyama, H., Yamauchi, H., Kimura, J., Yonekura, Y., and Konishi, J. (1994) Scopolamine abolishes cerebral blood flow response to somatosensory stimulation in anesthetized cats: PET study. Brain Res. 650, 249–252.

    Article  PubMed  CAS  Google Scholar 

  82. Ayata, C., Ma, J., Meng, W., Huang, P., Moskowitz, M. A. (1996) L-NA-sensitive rCBF augmentation during vibrissal stimulation in type III nitric oxide synthase mutant mice. J. Cereb. Blood Flow Metab. 16, 539–541.

    Article  PubMed  CAS  Google Scholar 

  83. Ma, J., Ayata, C., Huang, P. L., Fishman, M. C., and Moskowitz, M. A. (1996) Regional cerebral blood flow response to vibrissal stimulation in mice lacking type I NOS gene expression. Am. J. Physiol. 270, H1085–1090.

    PubMed  CAS  Google Scholar 

  84. Cholet, N., Seylaz, J., Lacombe, P., and Bonvento, G. (1997) Local uncoupling of the cerebrovascular and metabolic responses to somatosensory stimulation after neuronal nitric oxide synthase inhibition. J. Cereb. Blood Flow Metab. 17, 1191–1201.

    Article  PubMed  CAS  Google Scholar 

  85. Takahashi, S., Shibata, M., and Fukuuchi, Y. (1997) Effects of increased extracellular potassium on influx of sodium ions in cultured rat astroglia and neurons. Brain Res. (Dev. Brain Res.) 104, 111–117.

    Article  CAS  Google Scholar 

  86. Longuemare, M. C., Rose, C. R., Farrell, K., Ransom, B. R., Waxman, S. G., and Swanson, R. A. (1999) K(+)-induced reversal of astrocyte glutamate uptake is limited by compensatory changes in intracellular Na+. Neuroscience 93, 285–292.

    Article  PubMed  CAS  Google Scholar 

  87. Kojima, S., Nakamura, T., Nidaira, T., Nakamura, K., Ooashi, N., Ito, E., et al. (1999) Optical detection of synaptically induced glutamate transport in hippocampal slices. J. Neurosci. 19, 2580–2588.

    PubMed  CAS  Google Scholar 

  88. Connett, R. J., Gayeski, T. E., and Honig, C. R. (1985) Energy sources in fully aerobic rest-work transitions: a new role for glycolysis. Am. J. Physiol. 248, H922—H929.

    PubMed  Google Scholar 

  89. Laptook, A. R., Peterson, J., and Porter, A. M. (1988) Effects of lactic acid infusions and pH on cerebral blood flow and metabolism. J. Cereb. Blood Flow Metab. 8, 193–200.

    Article  PubMed  CAS  Google Scholar 

  90. Berne, R. M., Knabb, R. M., Ely, S. W., and Rubio, R. (1983) Adenosine in the local regulation of blood flow: a brief overview. Fed. Proc. 42, 3136–3142.

    PubMed  CAS  Google Scholar 

  91. Roy, C. S. and Sherrington, C. S. (1890) On the regulation of the blood supply of the brain. J. Physiol. (Lond.) 11, 85–108.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gjedde, A. (2002). Coupling of Blood Flow to Neuronal Excitability. In: Walz, W. (eds) The Neuronal Environment. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-108-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-108-4_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-235-3

  • Online ISBN: 978-1-59259-108-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics