Skip to main content

Folic Acid, Vitamin B12, and Genomic Stability of Human Cells

  • Chapter
Folate and Human Development
  • 168 Accesses

Abstract

Folic acid and vitamin B12 play an important role in DNA metabolism (2) (Fig. 1). Folic acid is required for the synthesis of dTMP from dUMP and the maintenance of DNA methylation. Under conditions of folic acid deficiency, dUMP accumulates and, as a result, uracil is incorporated into DNA instead of thymine (3). There is good evidence suggesting that excessive incorporation of uracil in DNA not only leads to point mutation but may also result in the generation of single- and double-stranded DNA breaks, chromosome breakage, and micronucleus formation (4,5). The mutagenic effects of uracil are underscored by the observation that of eight known human glycosylases, four (UNG, TDG, hSMUG1, MBD4) are dedicated to the removal of uracil (6).

Substantial parts of this chapter, including Fig. 1 and Table 1, were updated and/or reprinted from ref. 1, with permission from Elsevier Science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fenech, M. (2001) The role of folic acid and vitamin B12 in genomic stability of human cells. Mutat. Res. 475, 57–67.

    Article  CAS  Google Scholar 

  2. Wagner, C. (1995) Biochemical role of folate in cellular metabolism. In Folate in Health and Disease. Bailey, L. B., ed. Marcel Dekker: New York, pp. 23–42.

    Google Scholar 

  3. Eto, I. and Krumdieck, C. L. (1986) Role of vitamin B-12 and folate deficiencies in carcinogenesis. In Essential Nutrients in Carcinogenesis. Poirier, L. A., Newberne, P. M., and Pariza, M. W., eds. Plenum: New York, pp. 313–331.

    Chapter  Google Scholar 

  4. Blount, B. C. and Ames, B. N. (1995) DNA damage in folate deficiency. Bailleres Clin. Haematol. 8 (3), 461–478.

    Article  CAS  Google Scholar 

  5. Blount, B. C., Mack, M. M., Wehr, C. M., MacGregor, J. T., Hiatt, R. A., Wang, G., et al. (1997) Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc. Natl. Acad. Sci. USA 94, 3290–3295.

    Article  CAS  Google Scholar 

  6. Lindahl, T. and Wood, R. D. (1999) Quality control by DNA repair. Science 286, 1897–1905

    Article  CAS  Google Scholar 

  7. Zingg, J..M. and Jones, P. A. (1997) Genetic and epigenetic aspects of DNA methylation on genome expression, evolution, mutation and carcinogenesis. Carcinogenesis 18 (5), 869–882.

    Article  CAS  Google Scholar 

  8. Pancharuniti, N., Lewis, C. A., Sauberlich, H. E., Perkins, L. L., Go, R., Alvarez, J. O., et al. (1994) Plasma homocysteine, folate and vitamin B-12 concentrations and risk for early-onset coronary artery disease. Am. J. Clin. Nutr. 59, 940–948.

    CAS  Google Scholar 

  9. Fenech, M. (2001) Recommended dietary allowances for genomic stability. Mutat. Res. 480, 51–54.

    Google Scholar 

  10. Sutherland, G. R. (1979) Heritable fragile sites in human chromosomes I. Factors affecting expression in lymphocyte culture. Am. J. Hum. Genet. 31, 125–135.

    CAS  Google Scholar 

  11. Jacky, P. B., Beek, B. and Sutherland, G. R. (1983) Fragile sites in chromosomes: possible model for the study of spontaneous chromosome breakage. Science 220, 69–70.

    Article  CAS  Google Scholar 

  12. Reidy, J. A., Zhou, X., and Chen, A. T. L. (1983) Folic acid and chromosome breakage I. Implications for genotoxicity studies. Mutation Res. 122, 217–221.

    Article  CAS  Google Scholar 

  13. Reidy, J. A. (1987) Folate- and deoxyuridine-sensitive chromatid breakage may result from DNA repair during G2. Mutat. Res. 192, 217–219.

    Article  CAS  Google Scholar 

  14. Reidy, J. A. (1988) Role of deoxyuridine incorporation and DNA repair in the expression of human chromosomal fragile sites. Mutat. Res. 200, 215–220.

    Article  CAS  Google Scholar 

  15. Goulian, M., Bleile, B.. and Tseng, B. Y. (1980) Methotrexate-induced misincorporation of uracil into DNA. Proc. Natl. Acad. Sci. USA 77 (4), 1956–1960.

    Article  CAS  Google Scholar 

  16. Duthie, S. J. and McMillan, P. (1997) Uracil misincorporation in human DNA detected using single cell gel electrophoresis. Carcino genesis 18 (9), 1709–1714.

    Article  CAS  Google Scholar 

  17. Duthie, S. J. and Hawdon, A. (1998) DNA instability (strand breakage, uracil misincorporation, and defective repair) is increased by folic acid depletion in human lymphocytes in vitro. FASEB J. 12, 1491–1497.

    CAS  Google Scholar 

  18. Crott, J. W., Mashiyama, S. T., Ames, B. N., and Fenech, M. (2001) Methylenetetrahydrofolate reductase C677T polymorphism does not alter folic acid deficiency-induced uracil incorporation into primary human lymphocyte DNA in vitro. Carcinogenesis 22 (7), 1019–1025.

    Article  CAS  Google Scholar 

  19. Crott, J. W. and Fenech, M. (2001) The effect of folic acid deficiency and MTHFR C677T polymorphism on chromosome damage in human lymphocytes in vitro. Cancer Epidemiol. Biomarker Prev. 10, 1089–1096.

    CAS  Google Scholar 

  20. Discombe, G. (1948) L’origine des corps de Howell—Jolly et des anneaux de cabot. Sangre 29, 262–270.

    Google Scholar 

  21. Koyama, S. (1960) Studies on Howell—Jolly body. Acta Haematol. Japan 23, 20–25.

    Google Scholar 

  22. Lessin, L. S. and Bessis, M. (1972) Morphology of the erythron. In Hematology. Williams, W. J., Beutler, E., Erslev, A. J., and Rundles, R. W., eds. McGraw Hill: New York, pp. 62–93.

    Google Scholar 

  23. Everson, R. B., Wehr, C. M., Erexson, G. L., and MacGregor, J. T. (1988) Association of marginal folate depletion with increased human chromosomal damage in vivo: demonstration by analysis of micronucleated erythrocytes. J. Natl. Cancer Inst. 80, 525–529.

    Article  CAS  Google Scholar 

  24. Smith, D. F., MacGregor, J. T., Hiatt, R. A., Hooper, N. K., Wehr, C. M., Peters, B., et al. (1990) Micronucleated erythrocytes as an index of cytogenetic damage in humans: demogrphic and dietary factors associated with micronucleated erythrocytes in splenectomised subjects. Cancer Res. 50, 5049–5054.

    CAS  Google Scholar 

  25. Chen, A. T. L., Reidy, J. A., Annest, J. L., Welty, T. K., and Zhou, H. (1989) Increased chromosome fragility as a consequence of blood folate levels, smoking status and coffee consumption. Environmental and Molecular Mutagenesis 13, 319–324.

    Article  CAS  Google Scholar 

  26. MacGregor, J. T., Wehr, C. M., Hiatt, R. A., Peteres, B., Tucker, J. D., Langlois, R. G., et al. (1997) “Spontaneous” genetic damage in man: evaluation of interindividual variability, relationship among markers of damage, and influence of nutritional status. Mutat. Res. 377, 125–135

    Google Scholar 

  27. Titenko-Holland, N., Jacob, R. A., Shang, N., Balaraman, A., and Smith, M. T. (1998) Micronuclei in lymphocytes and exfoliated buccal cells of postmenopausal women with dietary changes in folate. Mutat. Res. 417, 101–114.

    Article  CAS  Google Scholar 

  28. Jacob, R. A., Gretz, D. M., Taylor, P. C., James, S. J., Pogribny, I. P., Miller, B. J., et al. (1998) Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. J. Nutr. 128, 1204–1212.

    CAS  Google Scholar 

  29. Piyathilke, C. J., Macaluso, M., Hine, R. J., Vinter, D. W., Richards, E. W., and Krumdieck, C. L. (1995) Cigarette smoking, intracellular vitamin deficiency and occurrence of micronuclei in epithelial cells of the buccal mucosa. Cancer Epidemiol. Biomarkers Prev. 4, 751–758.

    Google Scholar 

  30. Krumdieck, C. L. (1991) Localised folate deficiency and cancer. In Vitamins and Cancer Prevention. Laidlaw, S. A. and Swendseid, M. E., eds. Wiley-Liss: New York, pp. 39–49.

    Google Scholar 

  31. Krogh-Jenson, M. and Friis-Moller, A. (1967) Chromosomal studies in pernicious anaemia. Acta Med. Scand. 181, 571–576.

    Article  Google Scholar 

  32. Heath, C. W. (1966) Cytogenetic observation in vitamin B12 and folate deficiency. Blood 27, 800–804.

    CAS  Google Scholar 

  33. Jensen, M. K. (1977) Cytogenetic findings in pernicious anaemia. Comparison between results obtained with chromosome studies amd the micronucleus test. Mutat. Res. 45, 249–252.

    Article  CAS  Google Scholar 

  34. Rana, S. R., Colman, N., Goh, K., Herbert, V., and Klemperer, M. R. (1983) Transcobalamin II deficiency associated with unusual bone marrow findings and chromosomal abnormalities. Am. J. Hematol. 14, 89–96.

    Article  CAS  Google Scholar 

  35. Wollman, M. R., Penchansky, L., and Shekhter-Levin, S. (1996) Transient 7q-in association with megaloblastic anaemia due to dietary folate and vitamin B12 deficiency. J. Pediatr. Hematol. Oncol. 18, 162–165.

    Article  CAS  Google Scholar 

  36. Das, K. C. and Herbert, V. (1978) The lymphocyte as a marker of past nutritional status: persistence of abnormal lymphocyte deoxyuridine suppression test and chromosomes in patients with past deficiency of folate and vitamin B12. Br. J. Haematol. 38, 219–233.

    Article  CAS  Google Scholar 

  37. Guttenbach, M. and Schmid, M. (1994) Exclusion of specific human chromosomes into micronuclei by 5-azacytidine treatment of lymphocyte ceultures. Exp. Cell Res. 211, 127–132.

    Article  CAS  Google Scholar 

  38. Xu, G. L., Bestor, T. H., Bourc’his, D., Hsieh, C. L., Tommerup, N., Bugge, M., et al. (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402, 187–191.

    Article  CAS  Google Scholar 

  39. Odagiri, Y. and Uchida, H. (1998) Influence of serum micronutrients on the incidence of kinetochore-positive or -negative micronuclei in human peripheral blood lymphocytes. Mutat. Res. 415, 35–45.

    Article  CAS  Google Scholar 

  40. Abramsson-Zetterberg, L., Zetterberg, G., Bergqvist, M., and Grawe, J. (2000) Human cytogenetic biomonitoring using flow-cytometric analysis of micrnuclei in transferrin-positive immature peripheral blood reticulocytes. Environ Mol. Mutagen. 36 (1), 22–31.

    Article  CAS  Google Scholar 

  41. Fenech M. (1993) The cytokinesis-block micronucleus technique and its application to genotoxicity studies in human populations. Environ. Health Perspect. 101 (3), 101–107.

    CAS  Google Scholar 

  42. Muller, W. U. and Streffer, C. (1994) Micronucleus assays. In Advances in Mutagenesis Research. Obe, G., ed. Springer-Verlag: New York, pp. 1–134.

    Chapter  Google Scholar 

  43. Fenech, M. and Rinaldi, J. (1994) The relationship between micronuclei in human lymphocytes and plasma levels of vitamin-C, vitamin-E, vitamin B-12 and folic acid. Carcinogenesis 15 (7), 1405–1411.

    Article  CAS  Google Scholar 

  44. Fenech, M., Dreosti, I. E., and Rinaldi, J. R. (1997) Folate, vitamin B12, homocysteine status and chromosome damage rate in lymphocytes of older men. Carcinogenesis 18 (7), 1329–1336.

    Article  CAS  Google Scholar 

  45. Fenech, M., Aitken, C., and Rinaldi, J. (1998) Folate, vitamin B 12, homocysteine status and DNA damage in young Australian adults. Carcino genesis 19 (7), 1163–1171.

    Article  CAS  Google Scholar 

  46. Fowler, B. M., Giuliano, A. R., Piyathilake, C., Nour, M., and Hatch, K. (1998) Hypomethylation in cervical tissue—is there correlation with folate status? Cancer Epidemiol. Biomarker Prev. 7, 901–906

    CAS  Google Scholar 

  47. Cravo, M., Fidalgo, P., Pereira, A. D., Gouveia-Oliviera, A., Chaves, P., Selhub, J., et al. (1994) DNA methylation as an intermediate biomarker in colorectal cancer: modulation by folic acid supplementation. Eur. J. Cancer Prev. 3, 473–479.

    Article  CAS  Google Scholar 

  48. Branda, R. F., O’Neill, J. P., Jacobson-Kram, D., and Albertinin, R. J. (1992) Factors influencing mutation at the HPRT locus in T-lymphocytes: studies in normal women and women with benign and malignant breast masses. Environ. Mol. Mutagen. 19, 274–281.

    Article  CAS  Google Scholar 

  49. Branda, R. F., O’Neill, J. P., Sullivan, L. M., and Albertinin, R. J. (1991) Factors influencing mutation at the HPRT locus in T-lymphocytes: women treated for breast cancer. Cancer Res. 51, 6603–6607.

    CAS  Google Scholar 

  50. Chen, R. Z., Pettersson, U., Beard, C., Jackson-Grusby, L., and Jaenisch, R. (1998) DNA hypomethylation leads to elevated mutation rates. Nature 395, 89–93.

    Article  CAS  Google Scholar 

  51. Jones, P. A. (1996) DNA methylation errors and cancer. Cancer Res. 56, 2463–2467.

    CAS  Google Scholar 

  52. Popescu, N. C., DiPaolo, J. A., and Amsbaugh, S. C. (1987) Integration sites of human papillomavirus 18 DNA sequences on HeLa cell chromosomes. Cytogenet. Cell Genet. 44, 58–62.

    Article  CAS  Google Scholar 

  53. Yoder, J. A., Walsh, C. P., and Bestor, T. H. (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends in Genet. 13 (8), 335–340.

    Article  CAS  Google Scholar 

  54. Walsh, C. P. and Bestor, T. H. (1999) Cytosine methylation and mammalian development. Genes Dev. 13 (1), 26–34.

    Article  CAS  Google Scholar 

  55. Weinberg, J. B., Shugars, D. C., Sherman, P. A., Sauls, D. L., and Fyte, A. Cobalamin inhibitors of HIV integrase and integration of HIV 1-DNA into cellular DNA. Biochem. Biophys. Res. Commun. 246, 393–397.

    Google Scholar 

  56. Mathe, G. (1999) Why have ten or so nontoxic, retrovirus integrase inhibitors not been made available for AIDS treatment? A ten-year experiment must liberate them. Biomed. Pharmacother. 53, 484–486.

    Article  CAS  Google Scholar 

  57. Cravo, M., Gloria, L., Camilo, M. E., Resende, M., Cardoso, J. N., Leitao, C. N., et al. (1997) DNA methylation and subclinincal vitamin deficiency of folate, pyridoxal-phosphate and vitamin B12 in chronic alcoholics. Clin. Nutr. 16, 29–35.

    Article  CAS  Google Scholar 

  58. Homann, N., Tillonen, J., and Salaspuro, M. (2000) Microbially produced acetaldehyde from ethanol may increase the risk of colon cancer via folate deficiency. Int. J. Cancer 86, 169–173.

    Article  CAS  Google Scholar 

  59. Baik, H. W. and Russell, R. M. (1999) Vitamin B12 deficiency in the elderly. Annu. Rev. Nutr. 19, 357–377.

    Article  CAS  Google Scholar 

  60. Butzkueven, H. and King, J. O. (2000) Nitrous oxide myelopathy in an abuser of whipped cream bulbs. J. Clin. Neurosci. 7, 73–75.

    Article  CAS  Google Scholar 

  61. Carmel, R. (2000) Current concepts in cobalamin deficiency. Annu. Rev. Med. 51, 357–375.

    Article  CAS  Google Scholar 

  62. Chang, W. P., Lee, S. R., Tu, J., and Hseu, S. S. (1996) Increased micronucleus formation in nurses with occupational nitrous oxide exposure in operating theatres. Environ. Mol. Mutagen. 27, 93–97.

    Article  CAS  Google Scholar 

  63. Fowler, B. (1998) Genetic defects of folate and cobalamin metabolism. Eur. J. Pediatr. 157, S60 - S66.

    Article  CAS  Google Scholar 

  64. Stabler, S. P., Lindenbaum, J., and Allen, R. H. (1997) Vitamin B12 deficiency in the elderly: current dilemmas. Am. J. Clin. Nutr. 66, 741–749.

    CAS  Google Scholar 

  65. Rosenberg, I. H. and Rosenberg, L. E. (1998) The implications of genetic diversity for nutrient requirements: the case of folate. Nutr. Rev. 56, S47 — S53.

    Article  CAS  Google Scholar 

  66. Chen, J., Giovannucci, E., Kelsey, K., Rimm, E. B., Stampfer, M. J., Colditz, G. A., et al. (1996) A methylenetetrahydrofolate reductase polymorphism and the risk for colorectal cancer. Cancer Res. 56, 4862–4864.

    CAS  Google Scholar 

  67. Ma, J., Stampfer, M. J., Giovannucci, E., Artigas, C., Hunter, D. J., Fuchs, C., et al. (1997) Methylenetetrahydrofolate reductase polymorphism, dietary interactions and risk of colorectal cancer. Cancer Res. 57, 1098–1102.

    CAS  Google Scholar 

  68. James, J. L., Pogribna, M., Pogribny, I. P., Melnyk, S., Hine, R. J., Gibson, J. B., et al. (1999) Abnormal folate metabolism and mutation in the methylenetetrahydrofolate reductase gene may be maternal risk factors for Down syndrome. Am. J. Clin. Nutr. 70, 495–501.

    CAS  Google Scholar 

  69. Skibola, C. F., Smith, M. T., Kane, E., Roman, E., Rollinson, S., Cartwright, R. A., et al. (1999) Polymorphisms in the methylenetetrahydrofolate reducatse gene are associated with susceptibility to acute leukaemia in adults. PNAS 96, 12, 810–12, 815.

    Google Scholar 

  70. Ames, B. N. (1999) Cancer prevention and diet: help from single nucleotide polymorphisms. PNAS 96, 12216–12218.

    Article  CAS  Google Scholar 

  71. Van der Put, N. M., Eskes, T. K., and Blom, H. J. (1997) Is the common 677C-T mutation in the methylenetetrahydrofolate reductase gene a risk factor for neural tube defects? A meta-analysis. Q. J. Med. 90, 111–115.

    Article  Google Scholar 

  72. Li, R., Sonik, A., Stindl, R., Rasnick, D. and Duesberg, P. (2000) Aneuploidy vs. gene mutation hypothesis of cancer: recent study claims mutation but is found to support aneuploidy. Proc. Natl. Acad. Sci. USA 97 (7), 3236–3241.

    Article  CAS  Google Scholar 

  73. Stern, L. L., Mason, J. B., Selhub, J., and Choi, S. W. (2000) Genomic DNA hypomethylation, a characteristic of most cancers, is present in peripheral leukocytes of individuals who are homozygous for the C677T polymorphism in the methylenetetrahydrofolate reductase gene. Cancer Epidemiology Biomarkers and Prevention 9, 849–853.

    CAS  Google Scholar 

  74. Wilson, A., Plan, R., Wu, Q., Leclerc, D., Christensen, B., Yang, H., et al. (1999) A common variant in methionine synthase reductase combined with low cobalamin (vitamin B-12) increases risk for spina bifida. Mol. Genet. Metab. 67, 317–323.

    Article  CAS  Google Scholar 

  75. Lachance, P. and Langseth, L. (1994) The RDA concept: time for a change. Nutrition Reviews 52, 266–270.

    Article  CAS  Google Scholar 

  76. Hagmar, L., Brogger, A., Hansteen, I., Heim, S., Hogstedt, B., Knudsen, L., et al. (1994) Cancer Risk in humans predicted by increased levels of chromosomal aberrations in lymphocytes: Nordic Study Group on the health risk of chromosome damage. Cancer Res. 54, 2919–2922.

    CAS  Google Scholar 

  77. Bonassi, S., Abbondandolo, A., Camurri, L., Dal Pra, L., De Ferrari, M., Degrassi, F., et al. (1995) Are chromosome aberrations in circulating lymphocytes predictive of future cancer onset in humans? Cancer Genet. Cytogenet. 79, 133–135.

    Article  CAS  Google Scholar 

  78. Bonassi, S., Hagmar, L., Stromberg, U., Montagud, A. H., Tinnerberg, H., Forni, A., et al. (2000) Chromosomal aberrations in lymphocytes predict human cancer independently of exposure to carcinogens. Cancer Res. 60, 16191625.

    Google Scholar 

  79. Migliore, L., Botto, N., Scarpato, R., Petrozzi, L., Cipriani, G., and Bonuccelli, U. (1999) Preferential occurrence of chromosome 21 malsegregation in peripheral blood lymphocytes of Alzheimer disease patients. Cytogen. Cell Genet. 87, 41–46.

    Article  CAS  Google Scholar 

  80. Gunter, E. W., Bowman, B. A., Caudill, S. P., Twite, D. B., Adams, M. J., and Sampson, E. J. (1996) Results of an international round robin for serum and whole-blood folate. Clin. Chem. 42, 1689–1694.

    CAS  Google Scholar 

  81. Daly, L. E., Kirke, P. N., Molloy, A., Weir, D. G., and Scott, J. M. (1995) Folate levels and neural tube defects. JAMA 247, 1698–1702.

    Article  Google Scholar 

  82. Cuskelly, G. J., McNulty, H., and Scott, J. M. (1996) Effect of increasing dietary folate on red cell folate: implications for prevention of neural tube defects. Lancet 347, 657–659.

    Article  CAS  Google Scholar 

  83. Fenech, M., Noakes, M., Clifton, P., and Topping, D. (1999) Aleurone flour is a rich source of bioavailable folate. J. Nutr. 129, 1114–1119.

    CAS  Google Scholar 

  84. Riddell, L. J., Chisholm, A., Williams, S., and Mann, J. I. (2000) Dietary strategies for lowering homocysteine concentrations. Am. J. Clin. Nutr. 71 (6), 1448–1454.

    CAS  Google Scholar 

  85. Wald, N. J. and Bower, C. (1994) Folic acid, pernicious anaemia and prevention of neural tube defects. Lancet 343, 307.

    Article  CAS  Google Scholar 

  86. Giovannucci, E., Stampfer, M. J., Colditz, G. A., Hunter, D. J., Fuchs, C., Rosner, B. A., et al. (1998) Multivitamin use, folate and colon cancer in women in the Nurses Health Study. Ann. Intern. Med. 129, 517–524.

    Article  CAS  Google Scholar 

  87. Zhang, S., Hunter, D. J., Hankinson, S. E., Giovannucci, E. L., Rosner, B. A., Colditz, G. A., et al. (1999) A prospective study of folate intake and the risk of breast cancer. DAMA 281, 1632–1637.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fenech, M. (2002). Folic Acid, Vitamin B12, and Genomic Stability of Human Cells. In: Massaro, E.J., Rogers, J.M. (eds) Folate and Human Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-164-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-164-0_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-262-9

  • Online ISBN: 978-1-59259-164-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics