Skip to main content

Gene Therapy for HIV-1 Infection

  • Chapter
Immunotherapy for Infectious Diseases

Part of the book series: Infectious Disease ((ID))

  • 141 Accesses

Abstract

Since the discovery that AIDS is caused by a retrovirus, HIV-1, enormous efforts have been made to develop new drugs that will combat this infectious disease. Although new conventional drugs have been found to block the replication of this virus efficiently, new mutant strains continuously arise, which escape the inhibitory effect of such drugs. Furthermore, since HIV-1 integrates its genome into that of the host cell, dormant viruses persist in infected individuals over long periods. Thus, great efforts are currently being made in many laboratories to develop alternative genetic approaches to inhibit the replication of this virus. With growing insight into the mechanism and regulation of HIV-1 replication, in the past decade, many strategies have been developed and proposed for clinical application to block HIV-1 replication inside the cell. Such strategies use either antiviral RNAs or proteins (for some recent reviews, see refs. 1–4). Antiviral strategies that employ RNAs have the advantage that they are less likely to be immunogenic than protein-based antiviral agents. However, protein-based systems have been engineered using inducible promoters that only become active upon HIV-1 infection. Although such antivirals have been proved to be very effective in vitro, their beneficial effect in vivo is very difficult to evaluate and still remains to be shown. In particular, the long latent period from infection to the onset of AIDS (up to 10 years or longer) makes it very difficult to evaluate the efficacy of a new drug.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bitton N, Gorochov G, Debre P, Eshhar Z. Gene therapy approaches to HIV-infection: immunological strategies: use of T bodies and universal receptors to redirect cytolytic T-cells. Front Biosci 1999; 4: D386 - D393.

    Article  PubMed  CAS  Google Scholar 

  2. Kohn DB, Sarver N. Gene therapy for HIV-1 infection. Adv Exp Med Biol 1996; 394: 421–428.

    PubMed  CAS  Google Scholar 

  3. Palu G, Bonaguro R, Marcello A. In pursuit of new developments for gene therapy of human diseases. J Biotechnol 1999; 68: 1–13.

    Article  PubMed  CAS  Google Scholar 

  4. Pomerantz RI, Trono D. Genetic therapies for HIV infections: promise for the future. AIDS 1995; 9: 985–993.

    Article  PubMed  CAS  Google Scholar 

  5. Smith C, Sullenger BA. AIDS and HIV infection. Mol Cell Biol Hum Dis Ser 1995; 5: 195–236.

    PubMed  CAS  Google Scholar 

  6. Baltimore D. Intracellular immunization. Nature 1988; 235: 395–396.

    Article  Google Scholar 

  7. Caputo A, Grossi MP, Rossi C, et al. The tat gene and protein of the human immunodeficiency virus type 1. N Microbiol 1995; 18: 87–110.

    CAS  Google Scholar 

  8. Lisziewicz J. Tar decoys and trans-dominant gag mutant for HIV-1 gene therapy. Antibiot Chemother 1996; 48: 192–197.

    PubMed  CAS  Google Scholar 

  9. Tiberghien P. Use of suicide genes in gene therapy. J Leukoc Biol 1994; 56: 203–209.

    PubMed  CAS  Google Scholar 

  10. Marasco WA. Intrabodies: turning the humoral immune system outside in for intracellular immunization. Gene Ther 1997; 4: 11–15.

    Article  PubMed  CAS  Google Scholar 

  11. Rondon IJ, Marasco WA. Intracellular antibodies (intrabodies) for gene therapy of infectious diseases. Annu Rev Microbiol 1997; 51: 257–283.

    Article  PubMed  CAS  Google Scholar 

  12. Earnshaw DJ, Gait MJ. Progress toward the structure and therapeutic use of the hairpin ribozyme. Antisense Nucleic Acid Drug Dev 1997; 7: 403–411.

    Article  PubMed  CAS  Google Scholar 

  13. Hampel A. The hairpin ribozyme: discovery, two-dimensional model, and development for gene therapy. Prog Nucleic Acid Res Mol Biol 1998; 58: 1–39.

    Article  PubMed  CAS  Google Scholar 

  14. James W. The use of ribozymes in gene therapy approaches to AIDS. Recent Results Cancer Res 1998; 144: 139–146.

    Article  PubMed  CAS  Google Scholar 

  15. Kijima H, Ishida H, Ohkawa T, Kashani-Sabet M, Scanlon KJ. Therapeutic applications of ribozymes. Pharmacol Ther 1995; 68: 247–267.

    Article  PubMed  CAS  Google Scholar 

  16. Macpherson JL, Ely JA, Sun LQ, Symonds GP. Ribozymes in gene therapy of HIV-1. Front Biosci 1999; 4: D497 - D505.

    Article  PubMed  CAS  Google Scholar 

  17. Rossi JJ. Therapeutic applications of catalytic antisense mas (ribozymes). Ciba Found Symp 1997; 209: 195–204.

    PubMed  CAS  Google Scholar 

  18. Sun LQ, Ely JA, Gerlach W, Symonds G. Anti-HIV ribozymes. Mol Biotechnol 1997; 7: 241–251.

    Article  PubMed  CAS  Google Scholar 

  19. Dornburg R. Reticuloendotheliosis viruses and derived vectors. Gene Ther 1995; 2: 301–310.

    PubMed  CAS  Google Scholar 

  20. Gunzburg WH, Salmons B. Development of retroviral vectors as safe, targeted gene delivery systems [review]. J Mol Med 1996; 74: 171–182.

    Article  PubMed  CAS  Google Scholar 

  21. Miller AD. Retrovirus packaging cells. Hum Gene Ther 1990; 1: 5–14.

    Article  PubMed  CAS  Google Scholar 

  22. Mitani K, Caskey CT. Delivering therapeutic genes-matching approach and application. Trends Biotechnol 1993; 11: 162–166.

    Article  PubMed  CAS  Google Scholar 

  23. Turchetto L, Benati C, Mattei S, et al. An approach to HIV gene therapy by transduction of multifunctional retroviral vectors in primary human t lymphocytes. J Biol Regul Homeost Agents 1997; 11: 79–81.

    PubMed  CAS  Google Scholar 

  24. Warner JF, Jolly D, Mento S, Galpin J, Haubrich R, Merritt J. Retroviral vectors for HIV immunotherapy. Ann NY Acad Sci 1995; 772: 105–116.

    Article  PubMed  CAS  Google Scholar 

  25. Dull T, Zufferey R, Kelly M, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol 1998; 72: 8463–8471.

    PubMed  CAS  Google Scholar 

  26. Klimatcheva E, Rosenblatt JD, Planelles V. Lentiviral vectors and gene therapy. Front Biosci 1999; 4: D481 - D496.

    Article  PubMed  CAS  Google Scholar 

  27. Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of non-dividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  PubMed  CAS  Google Scholar 

  28. Parolin C, Sodroski J. A defective HIV-1 vector for gene transfer to human lymphocytes. J Mol Med 1995; 73: 279–288.

    Article  PubMed  CAS  Google Scholar 

  29. Poeschla E, Corbeau P, Wong-Staal F. Development of HIV vectors for anti-HIV gene therapy. Proc Natl Acad Sci USA 1996; 93: 11395–11399.

    Article  PubMed  CAS  Google Scholar 

  30. Zufferey R, Dull T, Mandel RJ, et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 1998; 72: 9873–9880.

    PubMed  CAS  Google Scholar 

  31. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 1997; 15: 871–875.

    Article  PubMed  CAS  Google Scholar 

  32. Amado RG, Mitsuyasu RT, Zack JA. Gene therapy for the treatment of AIDS: animal models and human clinical experience. Front Biosci 1999; 4: D468 - D475.

    Article  PubMed  CAS  Google Scholar 

  33. Jamieson BD, Aldrovandi GM, Zack JA. The SCID-hu mouse: an in-vivo model for HIV-1 pathogenesis and stem cell gene therapy for AIDS. Semin Immunol 1996; 8: 215–221.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Dornburg, R., Pomerantz, R.J. (2002). Gene Therapy for HIV-1 Infection. In: Jacobson, J.M. (eds) Immunotherapy for Infectious Diseases. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-171-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-171-8_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9681-9

  • Online ISBN: 978-1-59259-171-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics