Skip to main content

Postmenopausal Osteoporosis

Pathogenesis, Diagnosis, and Treatment

  • Chapter
Menopause

Part of the book series: Contemporary Endocrinology ((COE,volume 18))

  • 162 Accesses

Abstract

Osteoporosis is the most common generalized disease of the skeleton. It is characterized by a reduction in bone mass with impairments in microarchitecture leading to enhanced bony fragility and ultimately an increase in fractures (1). In osteoporosis, there is a normal ratio of mineral to matrix. This distinguishes it from osteomalacia, which is characterized by a relative deficiency of mineral. Up to 20% of elderly patients have concurrent osteomalacia and osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. NIH Consensus Development Conference. Diagnosis, prophylaxis and treatment of osteoporosis. Am J Med 1993; 94: 646–650.

    Article  Google Scholar 

  2. Melton LJ, Chaos EYS, Lane J. Biochemical aspects of fractures. In: BL Riggs, LJ Melton, eds. Osteoporosis: Etiology, Diagnosis and Management. Raven, New York, 1988, p. 111.

    Google Scholar 

  3. Kanis JA, Melton LJ, III, Christiansen C, Johnston CC, Khaltaev N. The diagnosis of osteoporosis. J Bone Miner Res 1994; 8: 1137–1141.

    Google Scholar 

  4. Genant HK, Engellae K, Fuerst T, et al. Non-invasive assessment and structure: state-of-art. J Bone Miner Res 1996; 11: 707–730.

    Article  PubMed  CAS  Google Scholar 

  5. Graendak GA, Barrett-Connor E. Outcomes of osteoporosis fractures. In: Marcus R, Freedman D, Kelsey J, eds. Osteoporosis. Academic, Orlando, FL, 1996.

    Google Scholar 

  6. Magaziner J, Simonsick EM, Kashne TM, et al. Predictors of functional recovery one year following hospital discharge for hip fracture: a prospective study. J Gerontol 1990; 45: M101 — M107.

    Article  PubMed  CAS  Google Scholar 

  7. Cummings SR, Kelsey JL, Nevitt MC, O’Dowd KJ. Epidemiology of osteoporosis in osteoporotic fractures. Epidemiol Rev 1985; 7: 178–208.

    PubMed  CAS  Google Scholar 

  8. Browner WS, Pressman AR, Nevitt MC, Cummings SC for the Study of Osteoporotic Fractures Research Group. Mortality following fractures in older women: the study of osteoporotic fractures. Arch Intern Med 1996; 156: 1521–1525.

    Article  PubMed  Google Scholar 

  9. U.S. Congress Office of Technology Assessment. Effectiveness and costs of osteoporosis screening and hormone replacement therapy. Vol 1. Cost effectiveness analysis. OTA-BP-H-160. U.S. Government Printing Office, Washington, DC, 1995.

    Google Scholar 

  10. Miller CW. Survival and ambulation following hip fractures. J Bone Joint Surg 1978;60-A:930–934.

    Google Scholar 

  11. Melton LJ, III. How many women have osteoporosis now? J Bone Miner Res 1995; 10: 175–177.

    Article  PubMed  Google Scholar 

  12. Looker AC, Johnston CC, Jr, Wahner HW, et al. Prevalence of low femoral bone density in older US. women from NHANES III. J Bone Miner Res 1995; 10: 796–802.

    Article  PubMed  CAS  Google Scholar 

  13. Melton Li, III, Chrischilles EA, Cooper C, Lane AW, Riggs BL. Perspective: How many women have osteoporosis? J Bone Miner Res 1992; 7: 1005–1010.

    Article  PubMed  Google Scholar 

  14. National Osteoporosis Foundation. Osteoporosis: cost effectiveness analysis and review of the evidence for prevention, diagnosis and treatment. Osteoporosis Int 1998; 8 (suppl 4): S1 - S88.

    Article  Google Scholar 

  15. Ray NF, Chan JK, Thamer M, Melton LJ, III. Medical expenditures for the treatment of osteoporotic fracture in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res 1997; 12: 24–35.

    Article  PubMed  CAS  Google Scholar 

  16. Frost H. A new direction for osteoporosis: a review and proposal. Bone 1991; 12: 429–437.

    Article  PubMed  CAS  Google Scholar 

  17. Kanis JA. Estrogens, the menopause and osteoporosis. Bone; 1996: 19: 1855–1905.

    Article  Google Scholar 

  18. Baran RE. Anatomy and ultrastructure of bone. In: Fauvus MJ, ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Lippincott-Raven, Philadelphia, PA, 1996, pp. 3–10.

    Google Scholar 

  19. Pacifici R. Estrogen, cytokines and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res 1996; 11: 1043–1051.

    Article  PubMed  CAS  Google Scholar 

  20. Hughes DE, Jilka RL, Manolages S, et al. Sex steroids promote osteoclast apoptosis in vitro and in vivo. J Bone Miner Res 1995; 10: S48.

    Google Scholar 

  21. Chaudharg LR, Spelsberg TC, Riggs BL. Production of various cytokines by normal human osteoblast-like cells in response to interleukin 1B and tumor necrosis factor a: lack of regulation by 17b estradiol. Endocrinol 1992; 130: 2528–2534.

    Article  Google Scholar 

  22. Pacifici R, Rifas L, McCracken R, et al. Ovarian steroid treatment blocks a postmenopausal increase in blood monocyte ILI release. PNAS 1989; 86: 2398–2402.

    CAS  Google Scholar 

  23. Ralston SH. Analysis of gene expression in human bone biopsies by polymerase chain reaction. Evidence for enhanced cytokine expression in postmenopausal osteoporosis. J Bone Miner Res 1994; 9: 883–890.

    Article  PubMed  CAS  Google Scholar 

  24. Pacifici R, Vannice JL, Rifas L, Kimble RB. Monocytic secretion of ILI receptor antagonist in normal and osteoporotic women. Effects of menopause and estrogen: progesterone therapy. J Clin Endocrinol Metab 1993; 77: 1135–1141.

    Article  PubMed  CAS  Google Scholar 

  25. Sowers M. Pregnancy and lactation as risk factors for subsequent bone loss and osteoporosis. J Bone Miner Res 1996; 11: 1052–1060.

    Article  PubMed  CAS  Google Scholar 

  26. Arlot ME, Sornay-Rendu E, Garnero P, Vey-Marty B, Delmas PD. Apparent pre-and postmenopausal bone loss evaluated by DXA at different skeletal sites in women: the OFELY cohort. J Bone Miner Res 1997; 12: 683–690.

    Article  PubMed  CAS  Google Scholar 

  27. Wasnich RD. Epidemiology of osteoporosis. In: Fauvus, MJ ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Lippincott-Raven, Philadelphia, PA, 1996, pp. 249–251.

    Google Scholar 

  28. Black DM, Cummings SR, Melton LJ, III. Appendicular bone mineral and a woman’ s lifetime risk of hip fracture. J Bone Miner Res 1992b; 7: 639–646.

    Article  PubMed  CAS  Google Scholar 

  29. Cummings SR, Black DM, Nevitt MC, et al. Appendicular bone density and age predict hip fracture in women The Study of Osteoporotic Fractures Research Group. JAMA 1990; 263: 665–668.

    CAS  Google Scholar 

  30. Cummings SR, Black DM, Nevitt MC, et al. for the Study of Osteoporotic Fractures Research Group. Bone density at various sites for prediction of hip fractures. Lancet 1993; 341: 72–75.

    Article  PubMed  CAS  Google Scholar 

  31. Gardsell P, Johnell O, Nilsson BE, Gulberg B. Predicting various fragility fractures in women by forearm bone densitometry: a follow up study. Calcif Tiss Int 1993; 52: 348–353.

    Article  CAS  Google Scholar 

  32. Hui SL, Slemenda CW, Johnston CC, Jr. Age and bone mass as predictors of fracture in a prospective study. J Clin Invest 1988; 81: 1804–1809.

    Article  PubMed  CAS  Google Scholar 

  33. Hui SL, Slemenda CW, Johnston CC, Jr. Baseline measurement of bone mass predicts fracture in white women. Ann Int Med 1989; 111: 355–361.

    Article  PubMed  CAS  Google Scholar 

  34. Stevenson JC, Lees B, Davenport M, Cust MD, Ganger KF. Determinants of bone density in normal women: Risk factors for future osteoporosis. B Med J 1989; 298: 924–928.

    Article  CAS  Google Scholar 

  35. Slemenda CW, Hui SL, Longcope C, Wellman H, Johnston CC, Jr. Predictors of bone mass in perimenopausal women: a prospective study of clinical data using photon absorptiometry. Ann Intern Med 1990; 112: 96–101.

    Article  PubMed  CAS  Google Scholar 

  36. Bauer DC, Browner WS, Cauley JA, et al. Factors associated with appendicular bone mass in older women. Ann Intern Med 1993; 118: 657–665.

    Article  PubMed  CAS  Google Scholar 

  37. Pocock NA, Eisman JA, Hopper JL, Yeates MG, Sambrook PN, Ebert SE. Genetic determinants of bone mass in adults: a twin study. J Clin Invest 1987; 80: 706–710.

    Article  PubMed  CAS  Google Scholar 

  38. Slemenda CW, Christian JC, William CJ, Norton JA, Johnston CC, Jr. Genetic determinants of bone mass in adult women: a re-evaluation of the model and the potential importance of gene interaction on heritability estimates. J Bone Miner Res 6: 561–567.

    Google Scholar 

  39. Kelly PJ, Nguyen T, Pocock n, Hopper J, Sambrook PN, Eisman JA. Genetic determination of changes in bone density with age: a twin study. J Bone Miner Res 1993; 8: 11–17.

    Article  PubMed  CAS  Google Scholar 

  40. Lim SK, Park YS, Park JM, Song YD, Lee EJ, Kim KR, Lee HC, Huh KB. Lack of association between vitamin D receptor genotypes and osteoporosis in Koreans. J Clin Endocrinol Metab 1995; 80: 3677–3681.

    Article  PubMed  CAS  Google Scholar 

  41. Kelly PJ, Hopper JL, Macaskill GT, Pocock NA, Sambrook PN, Eisman JA. Genetic factors in bone turnover. J Clin Endocrinol Metab 1991; 72: 808–814.

    Article  PubMed  CAS  Google Scholar 

  42. Morrison NA, Qi JC, Tokita A, Kelly PJ, Croft L, Nguyen TV, Sambrook PN, Eisman JA. Prediction of bone density by vitamin D receptor alleles. Nature 1994; 367: 284–287.

    Article  PubMed  CAS  Google Scholar 

  43. Eisman J Vitamin D receptor gene alleles and osteoporosis: an affirmative view. J Bone miner Res 1995;10:1289–1293.

    Google Scholar 

  44. Ferrari S, Rizzoli R, Chevalley T, Slosman D, Eisman JA, Bonjour J-P. Vitamin D receptor gene polymorphisms and the rate of change of lumbar spine bone mineral density in elderly men and women. Lancet 345: 423–424.

    Google Scholar 

  45. Fleet JC, Harris SS, Wood RJ, Dawson-Hughes B. The BsmI vitamin D receptor restriction length polymorphism (BB) predicts low bone density in premenopausal black and white women. J Bone Miner Res 10: 985–990.

    Google Scholar 

  46. Garnero P, Borel O, Sornay-Rendu E, Delmas PD. Vitamin D receptor polymorphisms do not predict bone turnover and bone mass in healthy premenopausal women. J Bone Miner Res 10: 1283–1288.

    Google Scholar 

  47. Krall EA, Parry P, Lichter JB, Dawson-Hughes B. Vitamin D receptor alleles and rate of bone loss: influences of years since menopause and calcium intake. J Bone Miner Res 1995; 10: 978–984.

    Article  PubMed  CAS  Google Scholar 

  48. Matsuyama T, Ishii S, Tokita A, Yabuta K, Yamamori S, Morrison NA, Eisman JA. VDR gene polymorphisms and vitamin D analog treatment in Japanese. Lancet 1995; 345: 1238–1239.

    Article  PubMed  CAS  Google Scholar 

  49. Morrison NA, Yeoman R, Kelly PJ, Eisman JA. Contribution of transacting factor alleles to normal physiological variability: vitamin D receptor gene polymorphisms and circulating osteocalcin. Proc Natl Acad Sci USA 1992; 89: 6665–6669.

    Article  PubMed  CAS  Google Scholar 

  50. Nguyen TV, Kelly PJ, Morrison NA, Sambrook PN, Eisman JA. Vitamin D receptors genotypes in osteoporosis. Lancet 1994; 344: 1580, 1581

    Google Scholar 

  51. Riggs BL, Nguyen TV, Melton LJ, III, Morrison NA, O’Fallon WM, Kelly PJ, Logan KS, Sambrook PN, Muhs JM, Eisman JA. Contribution of vitamin D receptor gene alleles to the determination of bone mineral density in normal and osteoporotic women. J Bone Miner Res 1995; 10: 991–996.

    Article  PubMed  CAS  Google Scholar 

  52. Spector TD, Keen RW, Arden NK, Major PJ, Baker JR, Morrison NA, Nguyen TV, Kelly PJ, Sambrook PN, Lanchbury JS, Eisman JA. Vitamin D receptor gene (VDR) alleles and bone density in postmenopausal women: a UK study. Br Med J 1995; 310: 1357–1360.

    Article  CAS  Google Scholar 

  53. Cooper GS, Umbach DM. Are vitamin D receptor polymorphisms associated with bone mineral density? A meta-analysis. J Bone Miner Res 1996; 11: 1841–1849.

    Article  PubMed  CAS  Google Scholar 

  54. Sano M, Inoue S, Hosoi T, Ouchi Y, Emi M, Shiraki M, Orimo H. Association of estrogen receptor dinucleotide repeat polymorphism with osteoporosis. Biochem Biophys Res Comm 1995; 217: 378–383.

    Article  PubMed  CAS  Google Scholar 

  55. Kobayashi S, Inoeie S, Hosoi T, Auchi Y, Shiroki M, Orlmo H. Association of bone mineral density with polymorphism of the estrogen receptor gene. J Bone Miner Res 1996; 11: 306–311.

    Article  PubMed  CAS  Google Scholar 

  56. Shiroki M, Shiroki Y, Aoki C, et al. Association of bone mineral density with apolipoprotein E phenotype. J Bone Miner Res 1996; 11: S436.

    Google Scholar 

  57. Grant SF, Reid DM, Blake G, Herd R, Fogelman I, Ralston SH. Reduced bone density and osteoporosis associated with a polymorphic Sp 1 binding site in the collagen type 1 alpha 1 gene. Nature 1994; 367: 284–287.

    Article  Google Scholar 

  58. Franceschi S, Schinella D, Bidoli E, et al. The influence of body size, smoking and diet on bone density in pre-and post-menopausal women. Epidemiology 1996; 7: 411–414.

    Article  PubMed  CAS  Google Scholar 

  59. Orwoll ES, Bauer DC, Vogt TM, et al. Axial bone mass in older women. Ann Intern Med 1996; 124: 187–196.

    Article  PubMed  CAS  Google Scholar 

  60. Kritz-Silverstein D, Barrett-Connor E. Early menopause, number of reproductive years, and bone mineral density in post-menopausal women. Am J Public Health 1993; 83: 983–988.

    Article  PubMed  CAS  Google Scholar 

  61. Stevenson JC, lees B, Davenport M, Cust MP, Ganger KF. Determinants of bone density in normal women: risk factors for future osteoporosis? BMJ 1989; 298: 924–928.

    CAS  Google Scholar 

  62. Kiel DP, Zhang Y, Hannon MT, et al. The effect of smoking at different life stages on bone mineral density on elderly men and women. Osteoporosis Int 1996; 6: 240–248.

    Article  CAS  Google Scholar 

  63. Egger P, Suggleby S, Hobbs R, Fall C, Cooper C. Cigarette smoking and bone mineral density in the elderly. Epidemiol Community Health 1996; 50: 47–50.

    Article  CAS  Google Scholar 

  64. Felson DT, Zhang Y, Hannan MT, Kannel WB, Kiel DP. Alcohol intake and bone mineral density in elderly men and women: the Framingham Study. Am J Epidemiol 1995; 142: 485–492.

    PubMed  CAS  Google Scholar 

  65. Vuori I. Peak bone mass and physical activity: a short review. Nutr Rev 1996; 54: 511–514.

    Google Scholar 

  66. Paginini-Hill A, Chao A, Ross RK, Henderson BE. Exercise and other factors in the prevention of hip fractures. The Leisure World study. Epidemiology 1991; 2: 16–25.

    Article  Google Scholar 

  67. Heany RP. Nutrition and risk for osteoporosis. In: Marcus R, Feldman D, Kelsey J, eds. Osteoporosis. Academic Press, San Diego, 1996, pp. 483–505.

    Google Scholar 

  68. Chan GM, Hess M, Hollis J, Book LS. Bone mineral status and childhood accidental fractures. Am J Dis Child 1984; 138: 569–70.

    PubMed  CAS  Google Scholar 

  69. Matkovic V, Koshal K, Simonovic I, et al. Bone status and fracture risks in two regions of Yugoslavia. Am J Clin Nutr 1979; 32: 540–549.

    PubMed  CAS  Google Scholar 

  70. Faulkner KG, Cummings SR, Black D, et al. Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res 1993; 8: 1211–1217.

    Article  PubMed  CAS  Google Scholar 

  71. Heany RP. Pathogenesis of osteoporosis. In: Fauvus, MJ, ed. Primer on the Metabolic Bone Diseases and Disorders of Calcium Metabolism. Lippincott-Raven, Philadelphia, PA, 1996, pp. 252–258.

    Google Scholar 

  72. Cummings SR, Nevitt MC, Browner WS for the Study of Osteoporotic Fractures Research Group. Risk factors for hip fractures in white women. N Engl J Med 1995; 332: 767–773.

    Article  PubMed  Google Scholar 

  73. Dargent-Molina P, Favier F, Granjean H et al for the EPIDOS Study Group. Fall-related factors and risk of hip fracture. The EPIDOS prospective study. Lancet 1996; 348: 145–149.

    Article  PubMed  CAS  Google Scholar 

  74. Johnell O, Gullberg B, Kanis JA, et al. Risk factors for hip fracture in European women-The MEDOS study. J Bone Miner Res 1995; 10: 1802–1815.

    Article  PubMed  CAS  Google Scholar 

  75. Nelson HD, Nevitt MC, Scott JC, Stone K, Cummings SR. Effects of smoking and alcohol on neuromuscular function in older women. JAMA 1994; 272: 1825–1831.

    CAS  Google Scholar 

  76. Eamshaw SA, Hosking DJ. Clinical usefulness of risk factors for osteoporosis. Am Rheum Dis 1996; 55: 338–339.

    Article  Google Scholar 

  77. Kroger H, Tupparainen M, Hunkanen R, Alhava E, Saarokoski S. Bone mineral density and risk factors for osteoporosis-a population-based study of 1600 perimenopausal women. Calcif Tiss Int 1994; 55: 1–7.

    Article  CAS  Google Scholar 

  78. Ribot C, Pouilles JM, Bonneu M, Tremolliere F. Assessment of the risk of post-menopausal osteoporosis using clinical factors. Clin Endocrinol 1992; 36: 225–228.

    Article  CAS  Google Scholar 

  79. Kleerekoper M, Peterson E, Nelson D, et al. Identification of women at risk for developing postmenopausal osteoporosis with vertebral fractures: role of history and single photon absorptiometry. Bone Miner 1989; 7: 171–186.

    Article  PubMed  CAS  Google Scholar 

  80. Cummings SR. Treatable and untreatable risk factors for hip fracture. Bone 1996; 18: 165S - 1675.

    Article  PubMed  CAS  Google Scholar 

  81. Ross PD, Davis JW, Epstein RS, Wasnich RD. Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Int Med 1991; 114: 919–923.

    Article  PubMed  CAS  Google Scholar 

  82. Wasnich RD, Davis JW, Ross PD. Spine fracture risk is predicted by non-spine fractures. Osteoporosis Int 1994; 4: 1–5.

    Article  CAS  Google Scholar 

  83. Farmer ME, Harris T, Madans JH, et al. Anthropometric indicators and hip fracture: The NHANES I Epidemiologic Follow-up Study. J Am Geriatr Soc 1989; 37: 9–16.

    PubMed  CAS  Google Scholar 

  84. Grisso JA, Kelsey JL, Strom BL, et al. Risk factors for falls as a cause of hip fracture in women. N Engl J Med 1991; 324: 1326–1331.

    Article  PubMed  CAS  Google Scholar 

  85. Langlois JA, Harris T, Looker AC, Madans JH. Weight change between the age of 50 years and old age is associated with risk of hip fracture in white women aged 67 years and older. Arch Int Med 1996; 156: 989–994.

    Article  CAS  Google Scholar 

  86. Cooper C, Barker DJP, Wickham C. Physical activity, muscle strength and calcium intake in fracture of the proximal femur in Britain. BMJ 1988; 297: 1443–1446.

    CAS  Google Scholar 

  87. Krall EA, Dawson-Hughes B. Smoking and bone loss among post-menopausal women. J Bone Miner Res 1991; 6: 331–338.

    Article  PubMed  CAS  Google Scholar 

  88. Hoppe JL, Seeman E. The bone density of female twins discordant for tobacco use. N Engl J Med 1994; 330: 387–392.

    Article  Google Scholar 

  89. Williamson MR, Boyd CM, Williamson SL. Osteoporosis: Diagnosis by plain chest film versus dual photon bone densitometry. Skeletal Radiol 1990; 19: 27–30.

    Article  PubMed  CAS  Google Scholar 

  90. Virtama P. Uneven distribution of bone mineral and covering effect of non-mineralized tissue as reasons for impaired detectability of bone density from roentgenograms. Ann Med Int Fenn 1960; 49: 57–60.

    PubMed  CAS  Google Scholar 

  91. Finsen V, Anda S. Accuracy of visually estimated bone mineralization in routine radiographs of the lower extremity. Skeletal Radiol 1988; 17: 270–275.

    Article  PubMed  CAS  Google Scholar 

  92. Melton LJ, III, Atkinson EJ, O’Fallon WM, Wahner HW, Riggs BL. Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 1993; 8: 1227–1233.

    Article  PubMed  Google Scholar 

  93. Smith DM, Khairi MRA, Johnston CC, Jr. The loss of bone mineral with aging and its relationship to risk of fracture. J Clin Invest 1975; 56: 311–318.

    Article  PubMed  CAS  Google Scholar 

  94. Wasnich RD, Ross PD, Heilbrun LK, Vogel JM. Prediction of postmenopausal fracture risk with use of bone mineral measurements. Am J Obstet Gynecol 1985; 153: 745–751.

    PubMed  CAS  Google Scholar 

  95. Nevitt MC, Johnell O, Black DM, et al. Bone mineral density predicts non-spine fractures in very elderly women. Study of Osteoporotic Fractures Research Group. Osteoporos Int 1994; 4: 325–331.

    Article  PubMed  CAS  Google Scholar 

  96. Cosman F, Harrington B, Himmeistein S, Lindsay R. Radiographic absorptiometry: a simple method for determination of bone mass. Osteoporos Int 1991; 2: 34–38.

    Article  PubMed  CAS  Google Scholar 

  97. Grampp S, Genant HK, Mathur A, et al. Comparisons of non-invasive bone mineral measurements in assessing age-related loss, fracture discrimination and diagnostic classification. J Bone Miner Res 1997; 12: 697–711.

    Article  PubMed  CAS  Google Scholar 

  98. Kelly TL, Crane G, Baran DT. Single x-ray absorptiometry of the forearm: precision, correlation and reference data. Calcif Tiss Int 1994; 54: 212–218.

    Article  CAS  Google Scholar 

  99. Mazess R, Chesnut III CH, McClung M, Genant HK. Enhanced precision with dual-energy x-ray absorptiometry. Calcif Tiss Int 1992; 51: 14–17.

    Article  CAS  Google Scholar 

  100. Cann CE, Genant HK, Kolb FQ, Ettinger BE. Quantitative computed tomography for prediction of vertebral fracture risk. Bone 1988; 6: 1–7.

    Article  Google Scholar 

  101. Steiger P, Cummings SR, Black DM, Spencer NE, Genant HK. Age-related decrements in bone mineral density in women over 65. J Bone Miner Res 1992; 7: 625–632.

    Article  PubMed  CAS  Google Scholar 

  102. Silverman SL, Greenwald M, Klein RA, Drinkwater BL. Effect of bone density information on decisions about hormone replacement therapy: a randomized trial. Obstet Gynecol 1997; 89: 321–325.

    Article  PubMed  CAS  Google Scholar 

  103. Phillipov G, Mos E, Scinto S, Phillips PJ. Initiation of hormone replacement therapy after diagnosis of osteoporosis by bone densitometry. Osteoporos Int 1997; 7: 162–164.

    Article  PubMed  CAS  Google Scholar 

  104. Garnero P, Delmas PD. New developments in biochemical markers for osteoporosis. Calcif Tiss Int 1996; 59: S2 - S9.

    Article  CAS  Google Scholar 

  105. Calvo MS, Eyre DR, Gundberg CM. Molecular basis and clinical application of biological markers of bone turnover. Endocrine Rev 1996; 17: 333–368.

    CAS  Google Scholar 

  106. Panteghini M, Pagini. Biologic variation in urinary excretion of pyridinium cross-links• recommendation for the optimum specimen. Ann Clin Biochem 1996; 33: 36–42.

    PubMed  Google Scholar 

  107. Popp-Snijders C, Lips P, Netelenbos JC. Intra-individual variation in bone resorption markers in the urine. Ann Clin Biochem 1996; 33: 347–348.

    PubMed  Google Scholar 

  108. Garnero P, Hauseherr E, Chaupy MC, et al. Markers of bone resorption predict hip fracture in elderly women. The EPIDOS prospective study. J Bone Miner Res 1996; 11: 1531–1538.

    Article  PubMed  CAS  Google Scholar 

  109. Riffs BJ, Hansen MA, Jensen AM, Overgaard K, Christiansen C. Low bone mass and fast rate of bone loss at menopause are equal risks for future fracture: a fifteen year follow up study. Bone 1996; 19: 9–12.

    Article  Google Scholar 

  110. Lloyd T, Rollins N, Ander MB, et al. Enhance bone gain in early adolescence due to calcium supplementation does not persist in late adolescence. J Bone Miner Res 1996; 11: 5154.

    Google Scholar 

  111. Lee WTK, Leung SSF, Leung DMY, Chang JC. A follow-up study on the effects of calcium supplement withdrawal and puberty on bone acquisition of children. Am J Clin Nutr 1996; 64: 71–77.

    PubMed  CAS  Google Scholar 

  112. Dawson-Hughes B, Dallai GE, Krall EA, et al. A controlled trial of the effect of calcium supplementation on bone density in post-menopausal women. N Engl J Med 1990; 323: 878–883.

    Article  PubMed  CAS  Google Scholar 

  113. Kinyomu HK, Gallagher JC, Balhorn KE, et al. Serum vitamin D metabolites and calcium in normal young and elderly free-living women and in women living in nursing homes. Am J Clin Nutr 1997; 65: 71–77.

    Google Scholar 

  114. Dawson-Hughes B, Harns SS, Dallal GE. Plasma calcidiol, season, and serum parathyroid hormone concentrations in healthy elderly men and women. Am J Clin Nutr 1997; 65: 67–71.

    PubMed  CAS  Google Scholar 

  115. Lips P. Vitamin D deficiency and osteoporosis. The role of vitamin D deficiency and treatment with vitamin D and analogues in the prevention of osteoporosis-related fractures. Eur J Clin Invest 1996; 26: 436–442.

    Article  Google Scholar 

  116. Prince R, Devine A, Dick I, et al. The effects of calcium supplementation (milk powder or tablets) and exercise on bone density in post-menopausal women J Bone Miner Res 1995; 10: 1068–1075.

    CAS  Google Scholar 

  117. Reid IR, Ames RW, Evans MC, et al. Long-term effects of calcium supplementation on bone loss and fractures in post-menopausal women: a randomized controlled trial. Am J Med 1995; 98: 331–335.

    Article  PubMed  CAS  Google Scholar 

  118. Riffs B, Thomsen K, Christiansen C. Does calcium supplementation prevent post-menopausal bone loss. A double-blind controlled clinical trial. N Engl J Med 1987; 316: 173–177.

    Article  Google Scholar 

  119. Chapuy MC, Arlot ME, Dobouf F, et al. Vitamin D3 and calcium to prevent hip fractures in elderly women. N Engl J Med 1992; 327: 1637–1642.

    Article  PubMed  CAS  Google Scholar 

  120. Chapuy MC, Arlot ME, Delmas PD, et al. Effect of calcium and cholecalciferol treatment for three years on hip fractures in elderly women. BMJ 1994; 308: 1081–1082.

    CAS  Google Scholar 

  121. Dawson-Hughes B, Harris SS, Krall EA, Dallai GE. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age and older. N Engl J Med 1997; 337: 670–676.

    Article  PubMed  CAS  Google Scholar 

  122. NIH Consensus Conference. Optimal calcium intake. JAMA 1994; 272: 1942–1948.

    Google Scholar 

  123. Saunders D, Sillery J, Chapman R. Effect of calcium carbonate and aluminum hydroxide on human intestinal function. Dog Dis Sci 1988; 33: 409–413.

    Article  CAS  Google Scholar 

  124. Nordstrom P, Thorsenk K, Bergstrom E, Lorentzon R. High bone mass and altered relationships between bone mass, muscle strengthh and body constitution in adolescent boys on a high level of physical activity. Bone 1996; 19: 189–195.

    Article  PubMed  CAS  Google Scholar 

  125. Boot AM, deRidder MAJ, Pols HAP, et al. Bone mineral density in children and adolescents: relation to puberty, calcium intake and physical activity. J Clin Endocrinol Metab 1997; 82: 57–62.

    Article  PubMed  CAS  Google Scholar 

  126. Hapasalo H, Sievanan H, Kannus P, et al. Dimensions and estimated mechanical characteristics of the humerus after long-term tennis loading. J Bone Miner Res 1996; 11: 864–872.

    Article  Google Scholar 

  127. Etherington J, Harris PA, Nandra D, et al. The effect of weight-bearing exercise on bone density: a study of female ex-athletes and the general population. J Bone Miner Res 1996; 11: 1333–1338.

    Article  PubMed  CAS  Google Scholar 

  128. Karlsson MK, Hasserius R, Obrant ICJ. Bone mineral density in athletes during and after career: a comparison between loaded and unloaded skeletal regions. Calcif Tiss Int 1996; 59: 245–248.

    Article  CAS  Google Scholar 

  129. Huddleston AL, Rockwell D, Kuland DN, et al. Bone mass in lifetime tennis players. JAMA 1980; 244: 1107–1109.

    CAS  Google Scholar 

  130. Friedlander AL, Genant HK, Sadowsky S, Byl NN, Gluer CC. A two year program of aerobics and weight training enhances bone mineral density of young women. J Bone Miner Res 1995; 10: 574–585.

    Article  PubMed  CAS  Google Scholar 

  131. Lohman T, Going S, Pamonter S, et al. Effects of resistance raining on regional and total bone mineral density in premenopausal women: a randomized prospective study. J Bone Miner Res 1995; 10: 1015–1024.

    Article  PubMed  CAS  Google Scholar 

  132. Pruitt LA, Jackson RD, Bartels RL, Lehnard HJ. Weight training effects on bone. mineral density in early postmenopausal women. J Bone Miner Res 1992: 7: 179–185.

    Article  PubMed  CAS  Google Scholar 

  133. Dalsky G, Stocke KS, Eshani AA, et al. Weight bearing exercise training and lumbar bone mineral content in post-menopausal women. Ann Int Med 1988; 108: 824–828.

    Article  PubMed  CAS  Google Scholar 

  134. Menkes A, Mazel S, Richmond RA, et al. Strength training increases regional bone mineral density and bone remodeling in middle-aged and older men. J Appl Physiol 1993; 74: 2478–2484.

    PubMed  CAS  Google Scholar 

  135. Cavanaugh DJ, Cann CE. Brisk walking does not stop bone loss in post-menopausal women. Bone 1988; 9: 201–204.

    Article  PubMed  CAS  Google Scholar 

  136. Notelovitz M, Martin D, Tesar R, et al. Estrogen therapy and variable resistance weight training increase bone mineral in surgically menopausal women. J Bone Miner Res 1991; 6: 583–590.

    Article  PubMed  CAS  Google Scholar 

  137. Province MA, Hadley EC, Hornbrook MC, et al. The effects of exercise on falls in elderly patients. JAMA 1995; 273: 1341–1347.

    CAS  Google Scholar 

  138. Sinaki M, Mikkelsen BA. Postmenopausal spinal osteoporosis: flexion versus extension exercises. Arch Phys Med Rehabil 1984; 65: 593–596.

    PubMed  CAS  Google Scholar 

  139. Lindsay R, Bush TL, Grady D, Speroff L, Lobo RA. Therapeutic controversy. Estrogen replacement in menopause. J Clin Endocrinol Metab 1996; 81: 3829–3838.

    Article  PubMed  CAS  Google Scholar 

  140. Vedi S, Compston JE. The effects of long-term hormone replacement therapy on bone remodeling in post-menopausal women. Bone 1996; 19: 535–539.

    Article  PubMed  CAS  Google Scholar 

  141. Steiniche T, Hasling C, Charles P, et al. A randomized study on the effects of estrogen gestagen or high dose oral calcium on trabecular bone remodeling in postmenopausal osteoporosis. Bone 1989; 10: 313–320.

    Article  PubMed  CAS  Google Scholar 

  142. Ericksen EF, Langdahl B, Glerup A, et al. Hormone replacement therapy (HRT) preserves bone balance by preventing osteoclastic hyperactivity in post-menopausal women: a randomized prospective histomorphometric study. J Bone Miner Res 1996;11: sl.

    Google Scholar 

  143. Hughes DE, Dai A, Tiffae JC, et al. Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-B. Nat Med 1996; 2: 1132–1136.

    Article  PubMed  CAS  Google Scholar 

  144. Brockstedt H, Kassom M, Eriksen EF. Estrogen prevents cortical bone loss in early post-menopausal women: a histomorphometric study. Bone 1996; 19: 5133.

    Article  Google Scholar 

  145. Civitelli R, Agnus Dei D, Nardi P, et al. Effect of one year treatment with estrogens on bone mass, intestinal calcium absorption and 25 hydroxy vitamin D 1 alpha hydroxylase reserve in post-menopausal osteoporosis. Calcif Tiss Int 1988; 42: 77–86.

    Article  CAS  Google Scholar 

  146. Christiansen C, Christiansen Ms, Transbol I. Bone mass in postmenopausal women after withdrawal of oestrogengestagen replacement therapy. Lancet 1981; 1: 459–461.

    Article  PubMed  CAS  Google Scholar 

  147. Ettinger B, Genant HK, Cann CE. Long-term estrogen replacement therapy prevents bone loss and fractures. Ann Int Med 1985; 102: 319–324.

    Article  PubMed  CAS  Google Scholar 

  148. Ettinger B, Genant HK, Cann CE. Postmenopausal bone loss is prevented by treatment with low-dose estrogen and calcium. Ann Intern Med 1987; 106: 40–43.

    Article  PubMed  CAS  Google Scholar 

  149. Lindsay R, Tohme JF. Estrogen treatment of patients with established postmenopausal osteoporosis. Obstet Gynecol 1990; 76: 290–295.

    PubMed  CAS  Google Scholar 

  150. Prince RL, Smith M, Dick IM, et al. Prevention of postmenopausal osteoporosis. A comparative study of exercise, calcium supplementation and hormone-replacement therapy. N Engl J Med 1991; 325: 1189–1195.

    Article  PubMed  CAS  Google Scholar 

  151. Hutchinson TA, Polansy SM, Feinstein AR. Postmenopausal estrogens protect against fractures of the hip and distal radius. Lancet 1979; 2: 705–707.

    Article  PubMed  CAS  Google Scholar 

  152. Johnson RE, Specht EE. The risk of hip fracture in postmenopausal females with and without estrogen exposure. Am J Publ Health 1981; 71: 139–144.

    Google Scholar 

  153. Paganini-Hill A, Ross PD, Gerkins VR, et al. Menopausal estrogen therapy and hip fractures. Ann Int Med 1981; 95: 28–31.

    Article  PubMed  CAS  Google Scholar 

  154. Cauley JA, Seely DG, Ensrud K, et al. Estrogen replacement therapy and fractures in older women. Ann Int Med 1995; 122: 9–16.

    Article  PubMed  CAS  Google Scholar 

  155. Schneider Dl, Barrett-Connor EL, Martin DJ. Timing for postmenopausal estrogen for optimal bone mineral density-The Rancho Bernardo Study. JAMA 1997; 277: 543–547.

    Google Scholar 

  156. Marx CW, Dailey GE III, Cheney C, et al. Do estrogens improve bone mineral density in osteoporotic women over age 65? J Bone Miner Res 1992; 7: 1275–1279.

    Article  PubMed  CAS  Google Scholar 

  157. Quigley MET, Martin PL, Burner AM, et al. Estrogen therapy arrests bone loss in elderly women. Am J Obstet Gynecol 1987; 156: 1516–1523.

    PubMed  CAS  Google Scholar 

  158. Grady D, Rubin SM, Petitti DB, et al. Hormone replacement therapy to prevent disease and prolong life in post-menopausal women. Ann Int Med 1992; 117: 1016–1037.

    Article  PubMed  CAS  Google Scholar 

  159. Goldstein F, Stamfer MJ, Manson JE, et al. Postmenopausal estrogen and progestin use and the risk of cardiovascular disease. N Engl J Med 1996; 335: 453–461.

    Article  Google Scholar 

  160. The Writing Group for the PEPI Trial. Effects of hormone therapy on bone mineral density: Results from the Postmenopausal Estrogen/Progestin Interventions Trial. JAMA 1996; 276: 1389–1396.

    Google Scholar 

  161. Lindsay R, Hart DM, MacLean A, et al. Bone response to termination of estrogen treatment. Lancet 1978; 1: 1325–1327.

    Article  PubMed  CAS  Google Scholar 

  162. Eiken P, Kolyhoff N, Nielson SP. Effect of 10 years hormone replacement therapy on bone mineral content in post-menopausal women. Bone 1996; 19: 5191–5193.

    Article  Google Scholar 

  163. Reginster JY. Effect of calcitonin on bone mass and fracture rates. Am J Med 1991; 92: 19S - 22S.

    Article  Google Scholar 

  164. Gennari C, Cheichetti SM, Bigazzi S, et al. Comparative effects on bone mineral content of calcium or calcium plus salmon calcitonin given in two different regimens in post-menopausal osteoporosis. Curr Ther Res 1985; 38: 455–464.

    Google Scholar 

  165. Gennari C, Agnusdei D, Montagnani M, Gonnelli S, Civitelli R. An effective regimen of intranasal salmon calcitonin in early post-menopausal bone loss. Calcif Tiss Int 1992; 50: 381–383.

    Article  CAS  Google Scholar 

  166. Maclntyre I, Stevenson JC, Whitehead MI, et al. Calcitonin for the prevention of postmenopausal bone loss. Lancet 1988; 1: 900–902.

    Article  Google Scholar 

  167. Overgaard K, Hansen MA, Jensen SB, Christiansen C. Effect of salcatonin given intra nasally on bone mass and fracture rates in established osteoporosis: a dose-response study. BMJ 1992; 305: 556–561.

    CAS  Google Scholar 

  168. Reginster JY, Deroisy R, Lecart MP, et al. A double-blind placebo controlled dose-finding trial of intermittent nasal calcitonin for the prevention of postmenopausal lumbar spine loss. Am J Med 1995; 98: 4452–4458.

    Article  Google Scholar 

  169. Stock JL, Avioli LV, Baylink DJ, et al for the PROOF Study Group. Calcitonin-salmon nasal spray reduces the incidence of new vertebral fractures in postmenopausal women: Three year interim results of the PROOF study. J Bone Miner Res 1997; 12: s149.

    Google Scholar 

  170. Pun KK, Chan LWL. Analgesic effect of intranasal salmon calcitonin in the treatment of osteoporotic compression fractures. Clinical Ther 1989; 11: 205–209.

    CAS  Google Scholar 

  171. Healey JH. Orthopedic management of osteoporosis. Curr Opin Orthop 1996; 7: 1–4.

    Article  Google Scholar 

  172. Boyce BF, Fogelman I, Ralston S, et al. Focal osteomalacia due to low-dose diphosphonate therapy in Paget’s disease. Lancet 1984; 1: 821–824.

    Article  PubMed  CAS  Google Scholar 

  173. Seedor JG, Balena R, Masarachia P, et al. Comparison of the therapeutic potencies of two bisphosphonates. Bone 1992: 13: 5116.

    Article  Google Scholar 

  174. Liberman UA, Weiss SR, Broll J, et ai. for the Alendronate Phase III Osteoporosis Treatment Study Group. Effect of oral alendronate on bone mineral density and the Incidence of fractures in postmenopausal osteoporosis. N Engl J Med 1995; 333: 1437–1443.

    Article  PubMed  Google Scholar 

  175. Black DM, Cummings SR, Karpf DB, et al. Randomized trial of the effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet 1996; 1: 1535–1541.

    Article  Google Scholar 

  176. Eisman JA, Christiansen C, McClung M, et al. Alendronate prevents bone loss at the spine and hip in recently postmenopausal women. J Bone Miner Res 1995;10:s.

    Google Scholar 

  177. Stock J, Bell N, Chesnut C, et al. Resolution of alendronate effects on bone turnover and BMD after multi year treatment of osteoporotic women. J Bone Min Res 1995;10: s.

    Google Scholar 

  178. DeGroen PC, Lubbe DF, Hirsch LJ, et al. Esophagitis associated with the use of alendronate. N Engl J Med 1996; 335: 1016–1021.

    Article  CAS  Google Scholar 

  179. Tucci JR, Tonino RP, Emkey RD, et al. Effect of three years of oral alendronate treatment in postmenopausal women with osteoporosis. Am J Med 1996;101:488— 501.

    Google Scholar 

  180. Watts NB, Harris ST, Genant HK, et al. Intermittent cyclical etidronate treatment of postmenopausal osteoporosis. N Engl J Med 1990; 323: 73–79.

    Article  PubMed  CAS  Google Scholar 

  181. Storm T, Thamsborg G, Steiniche T, Genant HK, Sorensen OH. Effect of intermittent cyclical etidronate therapy on bone mass and fracture rate in women with postmenopausal osteoporosis. N Engl J Med 1990; 32: 1265–1271.

    Article  Google Scholar 

  182. Harris ST, Watts NB, Jackson, RD, et al. Four year study of intermittent cyclical etidronate treatment of postmenopausal osteoporosis: Three years of blinded treatment followed by one year of open therapy. Am J Med 1993; 95: 557–567.

    Article  PubMed  CAS  Google Scholar 

  183. Storm T, Sorensen HA, Thamsborg G, et al. Bone histomorphometric changes after up to seven years of cyclical etidronate treatment. J Bone Miner Res 1995; 10: s198.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jackson, R.D. (1999). Postmenopausal Osteoporosis. In: Seifer, D.B., Kennard, E.A. (eds) Menopause. Contemporary Endocrinology, vol 18. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-246-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-246-3_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-129-5

  • Online ISBN: 978-1-59259-246-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics