Skip to main content

Plasticity of Adult-Derived Pancreatic Stem Cells

  • Chapter
Stem Cells Handbook

Abstract

The pancreas develops from fusion of dorsal and ventral evaginations from the primitive gut. Active notch signaling leads to expression of transcription factors for exocrine cells, and lack of notch to expression of factors for endocrine cells. The islets of Langerhans develop from a pool of undifferentiated precursor cells associated with the ductal epithelium that have the capacity to produce progeny that differentiate into each of the four islet-associated endocrine cells: glucagon producing α-cells, insulin-producing β-cells, somatostatin-producing δ-cells, and pancreatic polypeptide-producing γ-cells. Islets are formed by migration of the islet progenitor cells into the surrounding exocrine tissue associated with angiogenesis to provide a rich arteriolar blood supply. In the adult, the pancreatic ducts contain precursor cells, which are able to self-renew and differentiate into functional islets; exocrine cells; and, under certain conditions, hepatocytes. The isolation, culture, and transplantation of the progeny of these precursor cells for treatment of experimental diabetes are described and prospects for human use are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlgren, U., Plaff, S., Jessel, T. M., et al. (1997) Independent requirement for ISL1 in the formation of the pancreatic mesenchyme and islet cells. Nature 385:257–260.

    Article  PubMed  CAS  Google Scholar 

  • Al-Abdullah, I. H., Ayala, T., Panigrahi, D., et al. (2000) Neogenesis of pancreatic endocrine cells in copper-derived rat models. Pancreas 21: 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Bhutani, M. S. (1999) Interventional Endoscopic Ultrasound, Harwood, Amsterdam, The Netherlands.

    Google Scholar 

  • Bjorson, C. R. R., Reitza, R. L., Reynolds, B. A., et al. (1999) Turning brain into blood: a hemopoietic fate adopted by adult neural stem cells in vivo. Science 283:534–537.

    Article  Google Scholar 

  • Bonner-Weir, S. and Orci, L. (1982) New perspectives on the microvasculature of the islets of Langerhans in the rat. Diabetes 41:93–97.

    Google Scholar 

  • Bonner-Weir, S., Deery, D., Leahy, J. L., et al. (1989) Compensatory growth of pancreatic beta-cells in adults after short-term glucose infusion. Diabetes 38,49–53.

    Article  PubMed  CAS  Google Scholar 

  • Bonner-Weir, S., Baxter, L. A., Schuppin, G. T., et al. (1993) A second pathway for regeneration of adult exocrine and endocrine pancreas: a possible recapitulation of embryonic development. Diabetes 42: 1715–1720.

    Article  PubMed  CAS  Google Scholar 

  • Bonner-Weir, S., Taneja, M., Weir, G., et al. (2000) In vitro cultivation of human islets from expanded ductal tissue. Proc. Natl. Acad. Sci. USA 97:7999–8004.

    Article  PubMed  CAS  Google Scholar 

  • Bouwens, L. and Pipeleers, D. G. (1998) Extra-insular beta cells associated with ductules are frequent in adult human pancreas. Diabetologia 41:629–633.

    Article  PubMed  CAS  Google Scholar 

  • Brelje, T. C., Scharp, D. W., Lacy, P. E., et al. (1993) Effect of homologous placenta lactogens, prolactins, and growth hormones on islet Bcell division and insulin secretion in rat, mouse, and human islets: implication for placental lactogen regulation of islet function during pregnancy. Endocrinology 132:879–887.

    Article  PubMed  CAS  Google Scholar 

  • Cantenys, D., Portha, B., Dutrillaux, M. C., et al. (1981) Histogenesis of the endocrine pancreas in newborn rats after destruction by streptozotocin: an immunocytochemical study. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 35:109–122.

    Article  PubMed  CAS  Google Scholar 

  • Carel, J. C., Lotten, C., and Bourgneres, P. (1997) Prediction and prevention of type 1 diabetes: what can be expected from genetics. Diabetes Metab. 2:29–33.

    Google Scholar 

  • Clarke, D. L., Johansson, C. B., Wilbertz, J., et al. (2000) Generalized potential of adult neural stem cells. Science 288:1660–1663.

    Article  PubMed  CAS  Google Scholar 

  • Cornelius, J. G., Tchernev, V., Kao, K. J., et al. (1997) In vitro generation of islets in long term cultures of pluripotent stem cells from adult mouse pancreas. Horm. Metab. Res. 29:271–277.

    Article  PubMed  CAS  Google Scholar 

  • Diabetes Control and Complications Trial Research Group. (1993) The effects of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329:977–986.

    Article  Google Scholar 

  • Drachenberg, C. B., Klassen, D. K., Weir, M. R., et al. (1999) Islet cell damage associated with tacrolimus and cyclosporin: morphological features in pancreas allograft biopsies and clinical correlation. Transplantation 68:396–402.

    Article  PubMed  CAS  Google Scholar 

  • Eisenbarth, G. S. (1986) Type 1 diabetes: a chronic autoimmune disease. N. Engl. J. Med. 314:1360–368.

    Article  PubMed  CAS  Google Scholar 

  • Fernandes, A., King, L. C., Guz, Y., et al. (1997) Differentiation of new insulin-producing cells is induced by injury in adult pancreatic islets. Endocrinology 138:1750–1762.

    Article  PubMed  CAS  Google Scholar 

  • Gmyr, V., Kerr-Conte, J., Belaich, S., et al. (2000) Adult human cytokeratin 19-positive cells reexpress insulin promoter factor 1 in vitro. Diabetes 49:1671–1680.

    Article  PubMed  CAS  Google Scholar 

  • Gmyr, V., Kerr-Conte, J., Vandewalle, B., et al. (2001) Human pancreatic duct cells: large-scale isolation and expansion. Cell Transplant. 10: 109–121.

    PubMed  CAS  Google Scholar 

  • Gu, D. and Sarvetnick, N. (1993) Epithelial cell proliferation and islet neogenesis in IFN-g transgenic mice. Development 118:33–46.

    PubMed  CAS  Google Scholar 

  • Harris, M. I. (1999) Newly revised classification and diagnostic criteria for diabetes mellitus. In: Current Review of Diabetes (Taylor, S. T., ed.), Current Medicine, Philadelphia, PA, pp.1–9.

    Google Scholar 

  • Harrison, K. A., Druey, K. M., Deguchi, Y., et al. (1994) A novel human homeobox gene distantly related to proboscipedia is expressed in lymphoid and pancreatic tissues. J. Biol. Chem. 269:19,968–19,975.

    Google Scholar 

  • Hayek, A., Beattie, G. M., Cirulli, V., et al. (1995) Growth factor/matrix-induced proliferation of human adult beta cells. Diabetes 44: 1458–1460.

    Article  PubMed  CAS  Google Scholar 

  • Hellerstrom, C. (1984) The life story of the pancreatic B cell. Diabetologia 28:393–400.

    Google Scholar 

  • Hering, B. J. and Ricordi, C. (1999) Islet transplantation in type 1 diabetes: results, research priorities and reasons for optimism. Graft 2:12–27.

    Google Scholar 

  • Hering, B. J., Brendel, M. D., Schultz, A. O., et al. (1996) Newslett. No. 7. Int. Islet Transplant Registry 6:1–20.

    Google Scholar 

  • Jensen, J., Pedersen, P., Galante, P., et al. (2000) Control of endodermal endocrine development by Hes-1. Nat. Genet. 24:36–44.

    Article  PubMed  CAS  Google Scholar 

  • Kendall, D. and Robertson, R. P. (1997) Pancreas and islet transplantation: challenges for the twenty first century. Endocrinol. Metab. Clin. North Am. 26:611–30.

    Article  PubMed  CAS  Google Scholar 

  • Kern, H. and Logothetopoulos, J. (1970) Steroid diabetes in the guinea pig. Studies on islet-cell ultrastucture and regeneration. Diabetes 19: 145–154.

    PubMed  CAS  Google Scholar 

  • Kerr-Conte, J., Pattou, F., Lecomte-Houcke, M., et al. (1996) Ductal cyst formation in collagen-embedded adult human islet preparations. Diabetes 45:1108–1114.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. K., Hebrok, M., and Melton, D. A. (1997) Notochord to endoderm signaling is required for pancreas development. Development 124: 4243–4252.

    PubMed  CAS  Google Scholar 

  • Korcakova, L. (1971) Mitotic division and its significance for regeneration of granulated B-cells in the islets of Langerhans in allozan-diabetic rats. Folia Morphol. (Praha) 19:24–30.

    CAS  Google Scholar 

  • Lanza, P. P. and Chick, W. L. (1997) Transplantation of encapsulated cells and tissues. Surgery 121:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Lieter, E. H., Prochazka, M. and Coleman, D. L. (1987) The non-obese diabetic (NOD) mouse. Am. J. Pathol. 128:380–383.

    Google Scholar 

  • Logothetopoulos, J. and Bell, E. G. (1966) Histological and autoradiographic studies of the islets of mice injected with insulin antibody. Diabetes 15:205–211.

    PubMed  CAS  Google Scholar 

  • Marynissen, G., Aerts, L., and Van Assche, F. A. (1983) The endocrine pancreas during pregnancy and lactation in the rat. J. Dev. Physiol. 5: 373–381.

    PubMed  CAS  Google Scholar 

  • Menger, M. D., Vajkoczy, P., Beger, C., and Messmer, K. (1994) Orientation of microvascular blood flow in pancreatic islet isografts. J. Clin. Invest. 93:2280–2285.

    Article  PubMed  CAS  Google Scholar 

  • Morshead, C.M., Benveniste, P., Iscove, N.N., et al. (2002) Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat. Med. 8:268–273.

    Article  PubMed  CAS  Google Scholar 

  • Navsaria, H. A., Myers, S. R., Leigh, I. M., et al. (1995) Culturing skin in vitro for wound therapy. Trends Biotech. 13:91–100.

    Article  CAS  Google Scholar 

  • Naya, F. J., Huang, H. P., Qui, Y., et al. (1997) Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/NeuroD-deficient mice. Genes Dev. 11:2323–2334.

    Article  PubMed  CAS  Google Scholar 

  • Otonkoski, T., Beattie, G. M., Rubin, J. S., et al. (1994) Hepatocyte growth factor/scatter factor has insulinotropic activity in human fetal pancreatic cells. Diabetes 43:947–953.

    Article  PubMed  CAS  Google Scholar 

  • Peck, A. B. and Cornelius, J. G. (1995) In vitro growth of mature pancreatic islets of Langerhans from single, pluripotent stem cells isolated from prediabetic adult pancreas. Diabetes 44:10A.

    Google Scholar 

  • Peters, J., Jurgensen, A., and Kloppel, G. (2000) Ontogeny, differentiation and growth of the endocrine pancreas. Virchows Arch. 436:527–538.

    Article  PubMed  CAS  Google Scholar 

  • Pictet, R. L. and Rutter, W. J. (1972) The endocrine pancreas. In: Handbook of Physiology (Steiner, D. and Frienkel, N., eds.), Williams & Wilkins, Baltimore, MD, pp. 25–66.

    Google Scholar 

  • Rafaeloff, R., Pittenger, G., Barlow, S., et al. (1997) Cloning and sequencing of the pancreatic islet neogenesis associated protein (INGAP) gene and its expression in islet neogenesis in hamsters. J. Clin. Invest. 9:2100–2109.

    Article  Google Scholar 

  • Ramiya, V. K., Maraist, M., Arfors, K. E., et al. (2000) Reversal of insulin dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat. Med. 6:278–282.

    Article  PubMed  CAS  Google Scholar 

  • Rao, M. S., Dwivedi, R. S., Yeldandi, A. V., et al. (1989) Role of periductal and ductular epithelial cells of the adult rat pancreas in pancreatic hepatocyte lineage: a change in the differentiation commitment. Am. J. Pathol. 134:1069–1086.

    PubMed  CAS  Google Scholar 

  • Ricordi, C. and Hering, B. J. (1999) Pancreas and islet transplantation. In: Current Review ofDiabetes (Taylor, S., ed.), Current Medicine, Philadelphia, PA, pp. 49–60.

    Google Scholar 

  • Rooman, I., Heremans, Y., Heimberg, H., et al. (2000) Modulation of rat pancreatic acinoductal transdifferentiation and expression of PDX-1 in vitro. Diabetologia 43:907–914.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, L. and Vinik, A. I. (1992) Trophic stimulation of the ductularislet cell axis: a new approach to the treatment of diabetes. Adv. Exp. Med. Biol. 321:95–104.

    Article  PubMed  CAS  Google Scholar 

  • Scharp, D. W., Swanson, C. J., Olack, B. J., et al. (1994) Protection of encapsulated human islets implanted without immunosuppression in patients with type I diabetes or type II diabetes and in nondiabetic control subjects. Diabetes 43:1167–1170.

    Article  PubMed  CAS  Google Scholar 

  • Schmied, B.M., Liu, G., Matsuzaki, H., et al. (2000) Differentiation of islet cells in long-term culture. Pancreas 20:337–347.

    Article  PubMed  CAS  Google Scholar 

  • Schmied, B.M., Ulrich, A., Matsuzaki, H., et al. (2001) Transdifferentiation of human islet cells in a long-term culture. Pancreas 23:157–171.

    Article  PubMed  CAS  Google Scholar 

  • Siena, S., Schiavo, R., Pedrazoli, P., et al. (2000) Therapeutic relevance of CD34 cell dose in blood cell transplantation for cancer therapy. J. Clin. Oncol. 18:1360–1377.

    PubMed  CAS  Google Scholar 

  • Silverstein, J. and Rosenbloom, A. (2000) New Developments in type 1 (insulin dependent) diabetes. Clin. Pediatr. 39:257–66.

    Article  CAS  Google Scholar 

  • Sutherland, D. E., Gores, P. F., Bernhard, H. J., et al. (1996) Islet transplantation: an update. Diabetes Metab. Rev. 12:137–150.

    PubMed  CAS  Google Scholar 

  • Swenne, I. (1992) Pancreatic beta-cell growth and diabetes mellitus. Diabetologia 35:193–201.

    Article  PubMed  CAS  Google Scholar 

  • Teitelman, G., Alpert, S., Polak, J.M., et al. (1993) Precursor cells of mouse endocrine pancreas coexpress insulin, glucagon and the neuronal protein tyrosine hydroxylase and neuropeptide Y, but not pancreatic polypeptide. Development 118:1031–1039.

    PubMed  CAS  Google Scholar 

  • Teitelman, G., Alpert, S., and Hanahan, D. (1998) Proliferation, senescence, and neoplastic progression of β cells in hyperplasic pancreatic islets. Cell 52:97–105.

    Article  Google Scholar 

  • UK Prospective Diabetes Study (UKPDS) Group. (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS-34). Lancet 352:854–65.

    Article  Google Scholar 

  • Vescovi, A. L. (2000) Skeletal myogenic potential of human and mouse neural stem cells. Nat. Neurosci. 3:986–991.

    Article  PubMed  Google Scholar 

  • Vogel, G., Marshall, E., Barinaga, M, et al. (2000) Stem cell research and ethics. Science 287:1417–1442.

    Article  Google Scholar 

  • Weaver, C. V., Sorenson, R. L., and Kaung, H. C. (1985) Immunocytochemical localization of insulin-immunoreactive cells in the pancreatic ducts of rats treated with trypsin inhibitor. Diabetologia 28: 781–785.

    PubMed  CAS  Google Scholar 

  • Weir, G. C. and Bonner-Weir, S. (1990) Islets of Langerhans: the puzzle of intraislet interactions and their relevance to diabetes. J. Clin. Invest. 85:983–987.

    Article  PubMed  CAS  Google Scholar 

  • Wessels, N. K. and Cohen, N. H. (1967) Early pancreas organogenesis: morphogenesis, tissue interactions and mass effects. Dev. Biol. 15: 237–270.

    Article  Google Scholar 

  • Wu, K., Gannon, M., Peshavaria, M., et al. (1997) Hepatocyte nuclear factor 3beta is involved in pancreatic beta-cell specific transcription of the Pdx-1 gene. Mol. Cell Biol. 17:6002–6013.

    PubMed  CAS  Google Scholar 

  • Yang, L.-J., Li, S.-W., Hatch, H., et al. (2002) In vitro trans-differentiation of adult hepatic stem cells into endocrine hormone-producing cells. Proc. Natl. Acad. Sci. USA 99:8078–8083.

    Article  PubMed  CAS  Google Scholar 

  • Zulewski, H., Abraham, E. J., Gerlach, M. J., et al. (2001) Multipotential nestin-postitive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine and hepatic phenotypes. Diabetes 50:521–533.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Peck, A.B., Ramiya, V.K. (2004). Plasticity of Adult-Derived Pancreatic Stem Cells. In: Sell, S. (eds) Stem Cells Handbook. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-411-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-411-5_37

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-367-1

  • Online ISBN: 978-1-59259-411-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics