Skip to main content

The Use of Neurotoxins to Lesion Catecholamine-Containing Neurons to Model Clinical Disorders

Approach for Defining Adaptive Neural Mechanisms and Role of Neurotrophic Factors in Brain

  • Chapter
Highly Selective Neurotoxins

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

The compound 6-hydroxydopamine (6-OHDA) was the first neurotoxin documented to produce long-term depletion and destruction of norepinephrine in peripheral sympathetic neurons without affecting central catecholamine content (1–3). Subsequently, it was found that this neurotoxic compound would produce a selective destruction of brain catecholamine-containing neurons if administered directly into brain (4–7). In addition to the use of 6-OHDA, the discovery and development of a second compound, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which selectively destroys central dopaminergic neurons, will be reviewed (8,9). The various techniques utilized to provide effective lesions of catecholamine-containing neurons with these neurotoxins will be described (see 10,11), as well as how the use of these neurotoxic compounds has made significant contributions to our knowledge of the structural organization, physiological role, and neural mechanisms of central catecholamine-containing systems. Recently initiated work to investigate the action and role of neurotrophic factors in relation to the growth, maintenance, and recovery of central catecholamine-containing neurons after neurotoxin treatment will be examined. Subsequently, we will review how these neurotoxin treatments are being used to model two clinical disorders with neuropathology to dopamine-containing systems in brain, parkinsonism and Lesch-Nyhan disease. Finally, we will describe the various efforts undertaken with the neurotoxin-treated animals to enhance dopaminergic function in vivo and the application of these results to the restoration of dopaminergic function in Parkinson’s patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Porter, C., Totara, J., and Stone, C. (1963) Effect of 6-hydroxydopamine and some other compounds on the concentration of norepinephrine in the heart of mice. J. Pharmacol. Exp. Ther. 140, 308–316.

    PubMed  CAS  Google Scholar 

  2. Laverty, R., Sharman, D., and Vogt, M. (1965) Action of 2,4,5-tri-hydroxyphenylethylamine on the storage and release of noradrenaline. Br. J. Pharmacol. 24, 549–560.

    CAS  Google Scholar 

  3. Thoenen, H. and Tranzer, J. P. (1968) Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine. Naunyn-Schmiedeberg’s Arch. Pharmacol. 261, 271–288.

    Article  CAS  Google Scholar 

  4. Ungerstedt, U. (1968) 6-Hydroxydopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol. 5, 107–110.

    Article  PubMed  CAS  Google Scholar 

  5. Bloom, F. E., Algeri, S., Croppetti, A., Revuelta, A., and Costa, E. (1969) Lesions of Central norepinephrine terminals with 6-OH-dopamine: Biochemistry and fine structure. Science 166, 1284–1286.

    Article  PubMed  CAS  Google Scholar 

  6. Breese, G. R. and Traylor, T. D. (1970) Effects of 6-hydroxydopamine on brain norepinephrine and dopamine: Evidence for selective degeneration of catecholamine neurons. J. Pharmacol. Exp. Ther. 174, 413–420.

    PubMed  CAS  Google Scholar 

  7. Uretsky, N. J. and Iversen, L. L. (1970) Effects of 6-hydroxydopamine on catecholamine neurones in the rat brain. J. Neurochem. 17, 269–278.

    Article  PubMed  CAS  Google Scholar 

  8. Davis, G. C., Williams, A. C., Markey, S. P., Ebert, M. H., Caine, E. D., Reichert, C. M., and Kopin, I. J. (1979) Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatr. Res. 1, 249–254.

    Article  CAS  Google Scholar 

  9. Langston, J. W., Ballard, P., Tetrud, J. W., and Irwin, I. (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979–980.

    Article  PubMed  CAS  Google Scholar 

  10. Kostrzewa, R. and Jacobowitz, D. (1974) Pharmacological actions of 6-hydroxydopamine. Pharmacol. Rev. 26, 199–288.

    PubMed  CAS  Google Scholar 

  11. Breese, G. R. (1975) Chemical and immunochemical lesions by specific neurotoxic substances and antisera, in Handbook of Psychopharmacology, vol. 1 (Iversen, L. L., Iversen, S. D., and Snyder, S. H., eds.), Plenum, New York, pp. 137–189.

    Google Scholar 

  12. Iversen, L. L. and Uretsky, N. J. (1970) Regional effects of 6-hydroxydopamine on catecholamine containing neurons in rat brain and spinal cord. Brain. Res. 24, 364–367.

    Article  PubMed  CAS  Google Scholar 

  13. Jacks, B. R., DeChamplain, J., and Cordeau, J. P. (1972) Effects of 6-hydroxydopamine on putative transmitter substances in the central nervous system. Euro. J. Pharmacol. 18, 353–360.

    Article  CAS  Google Scholar 

  14. Jalfre, M. and Haefely, W. (1971) Effects of some centrally acting agents in rats after intraventricular injections of 6-hydroxydopamine, in 6-Hydroxydopamine and Catecholamine Neurons (Malmfors, T. and Thoene, H., eds.), North Holland Publishing, Amsterdam, The Netherlands, pp. 333–346.

    Google Scholar 

  15. Ungerstedt, U. (1971) Stereotaxic mapping of th monoamine pathways in the rat brain. Acta. Physiol. Scand. 367, 1–48.

    CAS  Google Scholar 

  16. Frigyesi, T. L., Ige, A., Iulo, A., and Schwartz, R. (1971) Denigration and sensorimotor disability induced by ventral tegmental injection of 6-hydroxydopamine in the cat. Exp. Neurol. 33, 78–87.

    Article  PubMed  CAS  Google Scholar 

  17. Hökfelt, T. and Ungerstedt, U. (1973) Specificity of 6-hydroxydopamine induced degeneration of central monoamine neurons: An electron and fluorescence microscopy study with special reference to intracerebral injection on the nigrostriatal dopamine system. Brain Res. 60, 269–298.

    Article  PubMed  Google Scholar 

  18. Butcher, L. L., Eastgate, S. M., and Hodge, G. K. (1974) Evidence that punctuate intracerebral administration of 6-hydroxydopamine fails to produce selective neuronal degeneration. Comparison with copper sulfate and factors governing the deportment of fluids injected into brain. Naunyn-Schmeideberg’s Arch. Pharmacol. 235, 31–70.

    Article  Google Scholar 

  19. Poirier, L. J., Langlier, P., Roberge, A., Boucher, R., and Kitsikis, A. (1972) Nonspecific histopathological changes induced by the intracerebral injection of 6-hydroxy-dopamine (6-OH-DA). J. Neurol. Sci. 16, 401–416.

    Article  PubMed  CAS  Google Scholar 

  20. Bell, L. J., Iversen, L. L., and Uretsky, N. J. (1970) Time course of the effects of 6-hydroxydopamine on catecholamine-containing neurones in rat hypothalamus and striatum. Be J. Pharmacol. 40, 790–799.

    Article  CAS  Google Scholar 

  21. Breese, G. R. and Traylor, T. D. (1971) Depletion of brain noradrenaline and dopamine by 6-hydroxydopamine. Be J. Pharmacol. 42, 88–99.

    Article  CAS  Google Scholar 

  22. McGeer, E. G., Fibiger, H. C., McGeer, P. L., and Brooke, S. (1973) Temporal changes in amine synthesizing enzymes of rat extrapyramidal structures after hemitransections or 6-hydroxydopamine administration. Brain Res. 52, 289–300.

    Article  PubMed  CAS  Google Scholar 

  23. Breese, G. R. and Traylor, T. D. (1972) Developmental characteristics of brain catecholamines and tyrosine hydroxylase in the rat: Effects of 6-hydroxydopamine. Be J. Pharmacol. 44, 210–222.

    Article  CAS  Google Scholar 

  24. Lytle, L., Shoemaker, W., Cottman, K., and Wurtman, R. (1972) Long-term effects of postnatal 6-hydroxydopamine treatment on tissue catecholamine levels. J. Pharmacol. Exp. Thee. 183, 56–64.

    CAS  Google Scholar 

  25. Smith, R. D., Cooper, B. R., and Breese, G. R. (1973) Growth and behavioral changes in developing rats treated intracisternally with 6-hydroxydopamine: Evidence for involvement of brain dopamine. J. Pharmacol. Exp. Ther. 185, 609–619.

    PubMed  CAS  Google Scholar 

  26. Sachs, C. and Jonsson, G. (1975) Effects of 6-hydroxydopamine on central noradrenaline neurons during ontogeny. Brain Res. 99, 277–291.

    Article  PubMed  CAS  Google Scholar 

  27. Sachs, C., Pycok, P., and Jonsson, G. (1974) Altered development of central noradrenaline neurons during ontogeny by 6-hydroxydopamine. Med. Biol. 52, 55–65.

    PubMed  CAS  Google Scholar 

  28. Breese, G. R., Baumeister, A. A., McCown, T. J., Emerick, S. G., Frye, G. D., and Mueller, R. A. (1984) Neonatal-6-hydroxydopamine: Model of susceptibility for self-mutilation in the Lesch-Nyhan Syndrome. Pharmacol. Biochem. Behan 21, 459–461.

    Article  CAS  Google Scholar 

  29. Breese, G. R., Baumeister, A. A., McCown, T. J., Emerick, S. G., Frye, G. D., and Mueller, R. A. (1984) Behavioral differences between neonatal and adult 6-hydroxydopamine-treated rats: Relevance to neurological symptoms in clinical syndromes with reduced dopamine. J. Pharmacol. Exp. Ther. 231, 343–354.

    PubMed  CAS  Google Scholar 

  30. Konkol, R. J., Benedeich, E. G., and Breese, G. R. (1978) A biochemical and morphological study of the altered growth pattern of central catecholamine neurons following 6-hydroxydopamine. Brain Res. 140, 125–135.

    Article  PubMed  CAS  Google Scholar 

  31. Breese, G. R., Cooper, B. R., and Smith, R. D. (1973) Biochemical and behavioral alterations following 6-hydroxydopamine administration into brain, in Frontiers in Catecholamine Research (Usdin, E. and Snyder, S., eds.), Pergamon, UK, pp. 701–706 (Reprint: Biochem. Pharmacol. 23 Suppl. Part 2, 574–579.)

    Google Scholar 

  32. Breese, G. R., Cooper, B. R., and Hollister, A. S. (1974) Relationship of biogenic amines to behavior, in Catecholamines and Their Enzymes in the Neuropharmacology of Schizophrenia (Kety, S. S. and Mattysee, S., eds.), North Holland Publishing, Amsterdam, The Netherlands, Suppl. to J. Psychiat. Res. 11, 125–134.

    Google Scholar 

  33. Ungerstedt, U. (1971) Use of intracerebral injections of 6-hydroxdopamine as a tool for morphological and functional studies on central catecholamine neurons, in 6-Hydroxydopamine and Catecholamine Neurons (Malmfors, T. and Thoenen, H., eds.), North-Holland, Amsterdam, pp. 315–332.

    Google Scholar 

  34. Palmer, G. C. (1972) Increased cyclic AMP response to norepinephrine in rat brain following 6-hydroxydopamine. Neuropharmacology 11, 145–149.

    Article  PubMed  CAS  Google Scholar 

  35. Teicher, M. H., Barber, N. I., Reichheld, J. H., Baldess, R. J., and Finklestein, S. P. (1986) Selective depletion of cerebral norepinephrine with 6-hydroxydopamine and GBR-12909 in neonatal rat. Dey. Brain Res. 30, 124–128.

    Article  CAS  Google Scholar 

  36. Molina-Holgado, E., Dewar, K. M., Descarries, L., and Reader, T. A. (1994) Altered dopamine and serotonin metabolism in the dopamine-denervated and serotonin-hyperinnervated neostriatum of adult rat after neonatal 6-hydroxydopamine. J. Pharmacol. Exp. Ther. 270, 713–721.

    PubMed  CAS  Google Scholar 

  37. Stone, C., Porter, C., Stavorski, J., Ludden, C., and Totaro, J. (1964) Antagonism of certain effects of catecholamine-depleting agents by antidepressant and related drugs. J. Pharmacol. Exp. Ther. 144, 196–204.

    PubMed  CAS  Google Scholar 

  38. Evetts, K. D. and Iversen, L. L. (1970) Effects of protriptyline on the depletion of catecholamines induced by 6-hydroxdopamine in the brain of the rat. J. Pharm. Pharmacol. 22, 540–542.

    Article  PubMed  CAS  Google Scholar 

  39. Breese, G. R., Criswell, H. E., Johnson, K. B., O’Callaghn, J. P., Duncan, G. E., Jensen, K. E, Simson, P. E., and Mueller, R. A. (1994) Neonatal destruction of dopaminergic neurons. Neurotoxicology 15, 149–160.

    PubMed  CAS  Google Scholar 

  40. Agid, Y., Javoy, F., Glowinski, J., Bouvet, D., and Sotelo, C. (1973) Injection of 6-hydroxydopamine into the substantia nigra of the rat. II. Diffusion and specificity. Brain Res. 58, 291–301.

    Article  PubMed  CAS  Google Scholar 

  41. Burns, R. S., Chiueh, C. C., Markey, S. P., Ebert, M. H., Jacobowitz, D. M., and Kopin, I. J. (1983) A primate model of Parkinsonism: Selective destruction dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc. Natl. Acad. Sci. USA 80, 4546–4550.

    Article  PubMed  CAS  Google Scholar 

  42. Langston, J. W., Forno, L. S., Rebert, C. S., and Irwin, I. (1984) Selective nigral toxicity after systemic administration of 1-methyl-4–1,2,5,6-tetrahydropyridine (MPTP) in the squirrel monkey. Brain Res. 292, 390–394.

    Article  PubMed  CAS  Google Scholar 

  43. Jenner, P., Rupniak, N. M. Y., Rose, S., Kelly, E., Kilpatrick, G., Lees, A., and Marsden, C. D. (1984) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the common marmoset. Neurosci. Lett. 50, 85–90.

    Article  PubMed  CAS  Google Scholar 

  44. Kitt, C. A., Cork, L. C., Eidelburg, F., Joh, T. H., and Price, D. L. (1986) Injury of nigral neurons exposed to 1-methyl-4–1,2,3,6-tetrahydropyridine: A tyrosine hydroxylase immunocytochemical study in monkey. Neuroscience 17, 1089–1103.

    Article  PubMed  CAS  Google Scholar 

  45. Weihmuller, F. B., Hadjiconstantinou, M., and Bruno, J. R (1989) Dissociation between biochemical and behavioral recovery in MPTP-treated mice. Pharmacol. Biochem. Behay. 34, 113–117.

    Article  CAS  Google Scholar 

  46. Jenner, P. G., Marsden, C. D., Costall, B., and Marsden, C. D. (1986) MPTP and MPP+ induced toxicity in rodents and the common marmoset as experimental models for investigating Parkinson’s disease, in: MPTP: A Neurotoxin Producing a Parkinsonian Syndrome (Markey, S. R, Castagnoli, N., Trevor, A. J., and Kopin, I. J., eds.), Academic, New York, pp. 45–68.

    Google Scholar 

  47. Eidelberg, E., Brooks, B. A., Morgan, W. W., Walden, J. G., and Kokemoor, R. H. (1986) Variability and functional recovery in the N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of parkinsonism in monkeys. Neuroscience 18, 817–822.

    Article  PubMed  CAS  Google Scholar 

  48. Rose, S., Nomoto, M., Kelly, E., Kilpatrick, G., Jenner, R, and Marsden, C. D. (1989) Increased caudate dopamine turnover may contribute tot he recovery of motor function in marmosets treated with the dopaminergic neurotoxin MPTP. Neurosci. Lett. 101, 305–310.

    Article  PubMed  CAS  Google Scholar 

  49. Ueki, A., Chong, R. N., Albanese, A., Rose, S., Chivers, J. K., Jenner, R, and Marsden, C. D. (1989) Further treatment with MPTP does not produce parkinsonism in marmosets showing behavioral recovery from motor deficits induced by an earlier exposure to the toxin. Neuropharmacology 28, 1089–1097.

    Article  PubMed  CAS  Google Scholar 

  50. Heikkila, R. E., Cabbat, F. S., Manzino, L., and Duvoisin, R. C. (1984) Effects of 1-methyl-4-phenyl 1,2,5,6-tetrahydropyridine on neostriatal dopamine in mice. Neuropharmacology 23, 711–713.

    Article  PubMed  CAS  Google Scholar 

  51. Heikkila, R. E., Hess, A., and Duvoisn, R. C. (1984) Dopaminergic neurotoxicity of 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine (MPTP) in mice. Science 224, 1451–1453.

    Article  PubMed  CAS  Google Scholar 

  52. Heikkila, R. E. (1985) Differential neurotoxicity of 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine (MPTP) in Swiss-Webster mice from different sources. Eur. J. Pharmacol. 117, 131–133.

    Article  PubMed  CAS  Google Scholar 

  53. Heikkila, R. E., Sieber, B-E., Manzino, L., and Sonsalla, P. K. (1989) Some features of the nigrostriatal dopaminergic neurotoxin 1-methyl-4-phenyl 1,2,3,6-tetrahydropyrdine (MPTP) in the mouse. Mol. Chem. Neuropathol. 10, 171–183.

    Article  PubMed  CAS  Google Scholar 

  54. Sonsalla, P. K. and Heikkila, R. E. (1986) The influence of dose and dosing internal on MPTP-induced dopaminergic neurotoxicity in mice. Eur. J. Pharmacol. 129, 339–345.

    Article  PubMed  CAS  Google Scholar 

  55. Sonsalla, P. K., Youngster, S. K., Kindt, M. V., and Heikkila, R. E. (1987) Characteristics of 1-methyl-4-(2’methylphenyl)-1,2,3,6-tetrahydropyridine-induced neurotoxicity in the mouse. J. Pharmacol. Exp. Ther. 242, 850–857.

    PubMed  CAS  Google Scholar 

  56. Youngster, S. K., Duvoisin, R. C., Hess, A., Sonsalla, P. K., Kindt, M. V., and Heikkila, R. E. (1986) 1-Methyl-4-(2’-methylphenyl)- 1,2,3,6-tetrahydropyridine (2’-CH3-MPTP) is a more potent dopaminergic neurotoxin than MPTP in mice. Eur. J. Pharmacol. 122, 283–287.

    Article  PubMed  CAS  Google Scholar 

  57. Rose, S., Nomoto, M., Jackson, E. A., Gibb, W. R. G., Jenner, P., and Marsden, C. D. (1990) 1-Methyl-4-phenyl 1,2,3,6-tetrahydropyridine (2’-methyl-MPTP) is less neurotoxic than MPTP in the common marmoset. Eur. J. Pharmacol. 181, 97–103.

    Article  PubMed  CAS  Google Scholar 

  58. Heikkila, R. and Cohen, G. (1971) Inhibition of biogenic amine uptake by hydrogen peroxide: A mechanism for toxic effects of 6-hydroxydopamine. Science 172, 1257–1258.

    Article  PubMed  CAS  Google Scholar 

  59. Heikkila, R. and Cohen, G. (1972) Further studies on the generation of hydrogen peroxide by 6-hydroxydopamine:Potentiation by ascorbic acid. Mol. Pharmacol. 8, 241–248.

    PubMed  CAS  Google Scholar 

  60. Heikkila, R. E. and Cohen, G. (1973) 6-Hydroxydopamine: Evidence for superoxide radical as an oxidative intermediate. Science 181, 456–457.

    Article  PubMed  CAS  Google Scholar 

  61. Jeon, B. S., Jackson-Lewis, V., and Burke, R. E. (1995) 6-Hydroxydopamine lesion of the rat substantia nigra: time course and morphology of cell death. Neurodegeneration. 4, 131–137.

    Article  PubMed  CAS  Google Scholar 

  62. Chiba, K., Trevor, A., and Castagonoli, N., Jr. (1984). Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem. Biophys. Res. Commun. 120, 574–578.

    Article  PubMed  CAS  Google Scholar 

  63. Salach, J. I., Singer, T. P., Castagnoli, N., and Trevor, A., Jr. (1984) Oxidation of the neurotoxic amine 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) by monoamine oxidases A and B and suicide inactivation of the enzymes by MPTP. Biochem. Biophys. Res. Commun. 125, 831–835.

    Article  PubMed  CAS  Google Scholar 

  64. Heikkila, R. E., Manzino, L., Cabbat, E. S., and Duvoisin, R. C. (1985) Studies on the oxidation of the dopaminergic neurotoxin 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine by monoamine oxidase B. J. Neurochem. 45, 1049–1054.

    Article  PubMed  CAS  Google Scholar 

  65. Javitch, J. A., D’Amato, R. J., Strittmatter, S. M., and Snyder, S. H. (1985) Parkinsonism-inducing neurotoxin, N-methyl-4-phenylpyridine by dopamine: Uptake of the metabolite N-methyl-4-phenylpyridine dopamine neurons explains selective toxicity. Proc. Natl. Acad. Sci. USA 82, 2173–2177.

    Article  PubMed  CAS  Google Scholar 

  66. Mayer, R. A., Kindt, M. V., and Heikkila, R. E. (1986) Prevention of the nigrostriatal toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by inhibitors of 3,4-dihhydroxphenylethylamine transport. J. Neurochem. 47, 1073–1079.

    Article  PubMed  CAS  Google Scholar 

  67. Ramsay, R. R. and Singer, T. P. (1986) Energy-dependent uptake of N-methylphenylpyridinium, the neurotoxic metabolite of 1-mehtyl-4-phenyl-1,2,3,6-tetrahydroppyridine, by mitochondria. J. Biol. Chem. 261, 7585–7587.

    PubMed  CAS  Google Scholar 

  68. Ramsay, R. R., Salach, J. I., and Singer, T. P. (1986) Uptake of the neurotoxin 1-methyl4-phenylpyridine (MPP+) by mitochondria and its relation to the inhibition of the mitochondrial oxidation of NAD+-linked substrates by MPP+. Biochem Biophys. Res. Commun. 134, 743–748.

    Article  PubMed  CAS  Google Scholar 

  69. Nicklas, W. J., Vyas, I., and Heikkila, R. E. (1985) Inhibition of NADH-linked oxidation brain mitochondria by 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine. Life Sci. 36, 2503–2508.

    Article  PubMed  CAS  Google Scholar 

  70. Vyas, I., Heikkila, R. E., and Nicklas, W. J. (1986) Studies on the neurotoxicity of 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine: Inhibition of NAD-linked substrate oxidation by its metabolite, 1-methyl-4-phenylpyridinium. J. Neurochem. 46, 1501–1507.

    Article  PubMed  CAS  Google Scholar 

  71. Halliwell, B. and Gutteridge, J. M. (1991) Free Radicals in Biology and Medicine. Clarendon, Oxford.

    Google Scholar 

  72. Przedborski, S., Kostic, V., Jackson-Lewis, V., Naini, A. B., Simonetti, S., Fahn, S., Carlson, E., Epstein, C. J., and Cadet, J. L. (1992) Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. J. Neurosci. 12, 1658–1667.

    PubMed  CAS  Google Scholar 

  73. Przedborski, S., Jackson-Lewis, V., Yokoyama, R., Shibata, T., Dawson, V. L., and Dawson, T. M. (1996) Role of neuronal nitric oxide in 1-methyl-4-phenyl-l,2,3,6tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Proc. Natl. Acad. Sci. USA 93, 4565–4571.

    Article  PubMed  CAS  Google Scholar 

  74. Laverty, R. and Taylor, K. (1970) Effects of intraventricular 2,4,5-trihydrophenylethylamine on the storage and release of noradrenaline. Br. J. Pharmacol. 40, 836–846.

    Article  PubMed  CAS  Google Scholar 

  75. Herman, Z. S., Kmieciak-Kolada, K., and Brus, R. (1972) Behavior of rats and biogenic amine level in brain after 6-hydroxydopamine. Psychopharmacologia 24, 407–416.

    Article  PubMed  CAS  Google Scholar 

  76. Fibiger, H. C., Lonsbury, B., Cooper, H. P., and Lytle, L. D. (1972) Early behavioral effects of intraventricular administration of 6-hydroxydopamine in rat. Nature New Biol. 236,209–211.

    Article  PubMed  CAS  Google Scholar 

  77. Simmonds, M. A. and Uretsky, N. J. (1970) Central effects of 6-hydroxydopamine and 1–5-hydroxytryptophan on body temperature in the rat. Br. J. Pharmacol. 40, 630–638.

    Article  PubMed  CAS  Google Scholar 

  78. Nakamura, K. and Thoenen, H. (1971) Hypothermia induced by intraventricular administration of 6-hydroxydopamine in rats. Eur. J. Pharmacol. 16, 46–54.

    Article  PubMed  CAS  Google Scholar 

  79. Breese, G. R. and Howard, J. L. (1971) Effect of central catecholamine alterations on the hypothermic response to 6-hydroxydopamine in desipramine-treated rats. Br. J. Pharmacol. 43, 671–674.

    Article  PubMed  CAS  Google Scholar 

  80. Breese, G. R., Moore, R. A., and Howard, J. L. (1972) Central actions of 6-hydroxydopamine and other phenylethylamine derivatives on body temperature in the rat. J. Pharmacol. Exp. Ther. 180, 591–602.

    PubMed  CAS  Google Scholar 

  81. Ungerstedt, U. (1971) Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system in the rat brain. Acta Physiol. Scand. 367, 95–122.

    CAS  Google Scholar 

  82. Zigmond, M. J. and Stricker, E. M. (1972) Deficits in feeding behavior after intraventricular injection of 6-hydroxydopamine in rats. Science 177, 1211–1214.

    Article  PubMed  CAS  Google Scholar 

  83. Fibiger, H. C., Zis, A. P., and McGeer, E. G. (1973) Feeding and drinking deficits after 6-hydroxdopamine administration in the rat: Similarities to the lateral hypothalamic syndrome. Brain Res. 53, 135–148.

    Article  Google Scholar 

  84. Breese, G. R., Smith, R. D., Cooper, B. R., and Grant, L. D. (1973) Alterations in consummatory behavior following intracisternal injection of 6-hydroxydopamine. Pharmacol. Biochem. Behay. 1, 319–328.

    Article  CAS  Google Scholar 

  85. Breese, G. R., Prange, A. J., Jr., Howard, J. L., Lipton, M. A., McKinney, W. T., Bowman, R. E., and Bushnell, P. (1972) 3-Methoxy-4-hydroxyphenylglycol excretion and behavioral changes in rat and monkey after central sympathectomy with 6-hydroxydopamine. Nature New Biol. 240, 286–287.

    PubMed  CAS  Google Scholar 

  86. Redmond, D. E., Jr., Hinrichs, R. L., Maas, J. W., and Kling, A. (1973) Behavior of free-ranging macaques after intraventricular 6-hydroxydopamine. Science 181, 1256–1258.

    Article  PubMed  CAS  Google Scholar 

  87. Howard, J. L. and Breese, G. R. (1974) Physiological and behavioral effects of centrally-administered 6-hydroxydopamine in cats. Pharmacol. Biochem. Behan 2, 651–661.

    Article  CAS  Google Scholar 

  88. Cooper, B. R., Grant, L. D., and Breese, G. R. (1973) Comparison of the behavioral depressant effects of biogenic amine depleting and neuroleptic agents following various 6-hydroxydopamine treatments. Psychopharmacologia 31, 95–109.

    Article  PubMed  CAS  Google Scholar 

  89. Teitelbaum, P., Cheng, M. F., and Rozin, P. (1969) Stages of recovery and development of lateral hypothalamic control of food and water intake. Ann. NY Acad. Sci. 157, 849–860.

    Article  PubMed  CAS  Google Scholar 

  90. Marshall, J. F. and Teitelbaum, P. (1973) A comparison of the eating in response to hypothermic and glucoprivic challenges after nigral 6-hydroxydopamine and lateral hypothalamic electrolytic lesions in rats. Brain Res. 55, 229–233.

    Article  PubMed  CAS  Google Scholar 

  91. Marshall, J. F., Richardson, J. S., and Teitelbaum, P. (1974) Nigrostriatal bundle damage and the lateral hypothalamic syndrome. J. Comp. Physiol. Psychol. 87, 808–830.

    Article  PubMed  CAS  Google Scholar 

  92. Fitzsimons, J. T. (1972) Thirst. Physiol. Rev. 52, 468–561.

    Google Scholar 

  93. Stricker, E. M. and Zigmond, M. J. (1974) Effects of homeostasis of intraventricular injection of 6-hydroxydopamine in rats. J. Comp. Pyschol. 86, 973–994.

    Article  CAS  Google Scholar 

  94. Cooper, B. R. and Breese, G. R. (1974) Relationship of dopamine neural systems to the behavioral alterations produced by 6-hydroxydopamine administration into brain, in Neuropsychopharmacology of Monoamines and Their Regulatory Enzymes (Usdin, E., ed.), Raven, New York, pp. 353–368.

    Google Scholar 

  95. Cooper, B. R., Howard, J. L., Grant, L. D., Smith, R. D., and Breese, G. R. (1974) Alteration of avoidance and ingestive behavior after destruction of central catecholamine pathways with 6-hydroxydopamine. Pharmacol. Biochem. Behay. 2, 639–649.

    Article  CAS  Google Scholar 

  96. Stodgell, C. J., Schroeder, S. R., and Tessel, R. E. (1996) FR discrimination training reverses 6-hydroxydopamine-induced striatal dopamine depletion in a rat model of Lesch-Nyhan syndrome. Brain Res. 713, 246–252.

    Article  PubMed  CAS  Google Scholar 

  97. Zigmond, M. J. and Stricker, E. M. (1984) Parkinson’s disease: Studies with an animal model. Life Sci. 35, 5–18.

    Article  PubMed  CAS  Google Scholar 

  98. Cooper, B. R., Breese, G. R., Howard, J. L., and Grant, L. D. (1972) Enhanced behavioral depressant effects of reserpine and alpha-methyltyrosine after 6-hydroxydopamine treatment. Psychopharmacologia 27, 99–110.

    Article  PubMed  CAS  Google Scholar 

  99. Ungerstedt, U. (1971) Post synaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigrostriatal dopamine system. Acta Physiol. Scand. 367, 69–93.

    CAS  Google Scholar 

  100. Uretsky, N. J. and Schoenfeld, R. I. (1971) Effect of L-DOPA on the locomotor activity of rats pretreated with 6-hydroxydopamine. Nature New Biol. 234, 157–159.

    PubMed  CAS  Google Scholar 

  101. Hollister, A. S., Breese, G. R., and Mueller, R. A. (1979) Role of monoamine neural systems in L- dihydroxyphenylalanine stimulated activity. J. Pharmacol. Exp. Ther. 208, 37–43.

    PubMed  CAS  Google Scholar 

  102. Jenner, P. (1992) MPTP-induced parkinsonism: Recovery, species differences, and relevance to Parkinson’s Disease, in Progress in Parkinson’s Disease Research (Hefti, F. and Weiner, W. J., eds.), Futura, Mt. Kisco, NY, pp. 15–38.

    Google Scholar 

  103. Cooper, B. R., Breese, G. R., Howard, J. L., and Grant, L. D. (1972) Effect of central catecholamine alterations by 6-hydroxydopamine on shuttle box avoidance acquisition. Physiol. Behay. 9, 727–731.

    Article  CAS  Google Scholar 

  104. Cooper, B. R., Breese, G. R., Grant, L. D., and Howard, J. L. (1973) Effects of 6-hydroxydopamine treatments on active avoidance responding: Evidence for involvement of brain dopamine. J. Pharmacol. Exp. Ther. 185, 358–370.

    PubMed  CAS  Google Scholar 

  105. Cooper, B. R., Cott, J. M., and Breese, G. R. (1974) Effects of catecholaminedepleting drugs and amphetamine on self-stimulation of brain following various 6-hydroxydopamine treatments. Psychopharmacologia 37, 235–248.

    Article  PubMed  CAS  Google Scholar 

  106. Howard, J. L., Grant, L. D., and Breese, G. R. (1974) Effects of intracisternal 6-hydroxydopamine treatment acquisition and performance of rats in a double-T-Maze. J. Comp. Physiol. Psychol. 86, 995–1007.

    Article  PubMed  CAS  Google Scholar 

  107. Schoenfeld, R. I. and Uretsky, N. J. (1972) Operant behavior and catecholamine-containing neurons: Prolonged increase in lever-pressing after 6-hydroxydopamine. Eur. J. Pharmacol. 20, 357–362.

    Article  PubMed  CAS  Google Scholar 

  108. Howard, J. L., Leahy, J. P., and Breese, G. R. (1971) Some physiological and behavioral consequences of acute and chronic injection of 6-hydroxydopamine (6-OHDA). Fed. Proc. 30, 541.

    Google Scholar 

  109. Gupta, R. R, Drimai, R. C., and Dhawan, B. N. (1972) Central cardiovascular effects of 6-hydroxydopamine. Eur. J. Pharmacol. 20, 215–223.

    Article  PubMed  CAS  Google Scholar 

  110. Bolme, R, Fuxe, K., Nygren, L. G., Olson, L., and Sachs, C. (1974) Enhanced sensitivity to the noradrenaline receptor stimulating agent, clonidine, following degeneration of noradrenaline pathways: Studies on arterial pressure, heart rate and respiration, in Dynamics of Degeneration and Growth in Neurons (Fuxe, K., Olson, L., and Zotterman, Y., eds.), Pergamon, New York, pp. 597–602.

    Google Scholar 

  111. Howard, J. L., Smith, R. D., Mueller, R. A., and Breese, G. R. (1974) Cardiovascular changes following DOPA/NaC1 or conditioning in 6-hydroxydopamine-treated rats. Pharmacol. Biochem. Behay. 2, 537–543.

    Article  CAS  Google Scholar 

  112. Hartman, N., Chung, R., Draskoczy, P. R., and Schildkraut, J. J. (1971) Effects of 6-hydroxydopamine on sleep in the rat. Nature 233, 425–427.

    Article  Google Scholar 

  113. Eichelman, B. S., Jr., Thoa, N. B., and Ng, K. Y. (1972) Facilitated aggression in the rat following 6-hydroxydopamine administration. Physiol. Behay. 8, 1–3.

    Article  CAS  Google Scholar 

  114. Nakamura, K. and Thoenen, H. (1972) Increased irritability: A permanent behavior change induced in rat by intraventricular administration of 6-hydroxydopamine. Psychopharmacolgia 24, 359–372.

    Article  CAS  Google Scholar 

  115. Jimerson, D. and Reis, D. J. (1973) Effects of intrahypothalamic injection of 6-hydroxydopamine on predatory aggression in rat. Brain Res. 61, 141–152.

    Article  PubMed  CAS  Google Scholar 

  116. Anlezark, G. M., Crow, T. J., and Greenway, A. P. (1973) Impaired learning and decreased cortical norepinephrine after bilateral locus ceruleus lesions. Science 181, 682–684.

    Article  PubMed  CAS  Google Scholar 

  117. Ahlskog, J. E. and Hoebel, G. G. (1973) Overeating and obesity from damage to a noradrenergic system in brain. Science 182, 166–169.

    Article  PubMed  CAS  Google Scholar 

  118. Bonaz, B., Martin, L., Beurriand, E., Hostein, J., and Feuerstein, C. (1995) Brain noradrenergic systems modulate the ceco-colonic myoelectric activity in rats. Neurogastroenterol. Motil. 7, 101–110.

    Article  PubMed  CAS  Google Scholar 

  119. Stein, L. and Wise, C. (1971) Possible etiology of schizophrenia: Progressive damage to the noradrenergic reward system of 6-hydroxydopamine. Science 171, 1032–1037.

    Article  PubMed  CAS  Google Scholar 

  120. Antelman, S. M., Lippa, A. S., and Fisher, A. E. (1972) 6-hydroxydopamine, noradrenergic reward and schizophrenia. Science 175, 919–920.

    Article  Google Scholar 

  121. Bowers, M. G., Jr. and VanWoert, M. H. (1972) 6-Hydroxydopamine, noradrenergic reward and schizophrenia. Science 175, 920–921.

    Google Scholar 

  122. Stein, L. (1964) Self-stimulation of the brain and the central stimulant action of amphetamine. Fed. Proc. 23, 836–850.

    PubMed  CAS  Google Scholar 

  123. Breese, G. R., Howard, J. L., and Leahy, J. P. (1971) Effects of 6-hydroxydopamine on electrical self-stimulation of the brain. Br. J. Pharmacol. 43, 255–257.

    Article  PubMed  CAS  Google Scholar 

  124. Breese, G. R. and Cooper, B. R. (1975) Relationship of dopamine neural systems to the maintenance of self-stimulation, in Neurotransmitter Balances Regulating Behavior. (Domino, E. F. and Davis, J. M., eds.), Ann Arbor, MI, pp. 37–56.

    Google Scholar 

  125. Bruno, J. P., Stricker, E. M., and Zigmond, M. J. (1985) Rats given dopamine-depleting brain lesions as neonates are subsensitive to dopaminergic antagonists as adults. Behay. Neurosci. 99, 771–775.

    Article  CAS  Google Scholar 

  126. Duncan, G., Criswell, H., McCown, T. J., Paul, I., Mueller, R. A., and Breese, G. R. (1987) Behavioral and neurochemical response to haloperidol and SCH-23390 in rats treated neonatally or as adults with 6-hydroxydopamine. J. Pharmacol. Exp. Ther. 243, 1027–1034.

    PubMed  CAS  Google Scholar 

  127. de Brabander, J. M., de Bruin, M. P. C., and van Eden, C. G. (1991) Comparison of the effects of neonatal and adult medial prefrontal cortex lesions on food hoarding and spatial delayed alternation. Behay. Brain Res. 42, 67–75.

    Article  Google Scholar 

  128. Bruno, J. P., Snyder, A. M., and Stricker, E. M. (1984) Effect of dopamine-depleting brain lesions on suckling and weaning in rats. Behay. Neurosci. 98, 156–161

    Article  CAS  Google Scholar 

  129. Bruno, J. P., Zigmond, M. J., and Stricker, E. M. (1986) Rats given dopamine-depleting brain lesions as neonates do not respond to acute homeostatic imbalances as adults. Behay. Neurosci. 100, 125–128.

    Article  CAS  Google Scholar 

  130. Weihmuller, F. B. and Bruno, J. P. (1989) Age-dependent plasticity in the dopaminergic control of sensorimotor development. Behay. Brain Res. 35, 95–109.

    Article  CAS  Google Scholar 

  131. Weihmuller, F. B. and Bruno, J. P. (1989) Drinking behavior and motor function in rat pups depleted of brain dopamine during development. Dev. Psychobiol. 22, 101–113.

    Article  PubMed  CAS  Google Scholar 

  132. Breese, G. R., Napier, T. C., and Mueller, R. A. (1985) Dopamine agonist-induced locomotor activity in rats treated with 6-hydroxydopamine at differing ages: Functional supersensitivity of D-1 dopamine receptors in neonatally lesioned rats. J. Pharmacol. Exp. Ther. 234, 447–455.

    PubMed  CAS  Google Scholar 

  133. Breese, G. R., Baumeister, A., Napier, T. C., Frye, G. D., and Mueller, R. A. (1985) Evidence that D-1 dopamine receptors contribute to supersensitive behavioral responses induced by L-dihydroxyphenylalanine in rats treated neonatally with 6-hydroxydopamine. J. Pharmacol. Exp. Ther. 235, 287–295.

    PubMed  CAS  Google Scholar 

  134. Creese, I. and Iversen, S. D. (1972) Amphetamine response in rat after dopamine neurone destruction. Nature New Biol. 238, 247–248.

    PubMed  CAS  Google Scholar 

  135. Creese, I. and Iversen, S. D. (1973) Blockade of amphetamine induced motor stimulation and stereotype in the adult rat following neonatal treatment with 6-hydroxdopamine. Brain Res. 55, 369–382.

    Article  PubMed  CAS  Google Scholar 

  136. Hollister, A. S., Breese, G. R., and Cooper, B. R. (1974) Comparison of tyrosine hydroxylase and dopamine-beta-hydroxylase inhibition with the effects of various 6-hydroxydopamine treatments on d-amphetamine induced motor activity. Psychopharmacologia 36, 1–16.

    Article  PubMed  CAS  Google Scholar 

  137. Ungerstedt, U. (1971) Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behavior. Acta Physiol Scand. 367, 49–68.

    CAS  Google Scholar 

  138. Evetts, K. D., Uretsky, N. J., Iversen, L. T., and Iversen, S. D. (1970) Effects of 6-hydroxydopamine on CNS catecholamines, spontaneous motor activity and amphetamine induced hyperactivity in rats. Nature 225, 961–962.

    Article  PubMed  CAS  Google Scholar 

  139. Von Voigtlander, P. and Moore, K. (1973) Turning behavior of mice with unilateral 6-hydroxydopamine lesions in the striatum: Effects of apomorphine, L-DOPA, amantadine, amphetamine and other psychomotor stimulants. Neuropharmacology 12, 451–462.

    Article  Google Scholar 

  140. Christie, J. E. and Crow, T. J. (1971) Turning behaviour as an index of the action of amphetamines and ephedrines on central dopamine-containing neurones. Br. J. Pharmacol. 53, 658–667.

    Article  Google Scholar 

  141. Fibiger, H. C., Fibiger, H. P., and Zis, A. P. (1973) Attenuation of amphetamine-induced motor stimulation and stereotypy by 6-hydroxydopamine in the rat. Br. J. Pharmacol. 47, 683–692.

    Article  PubMed  CAS  Google Scholar 

  142. Marsden, C. A. and Guldberg, H. D. (1973) The role of monoamines in rotation induced or potentiated by amphetamine after nigral, raphe and mesencephalic reticular lesions in the rat brain. Neuropharmacology 12, 195–211.

    Article  PubMed  CAS  Google Scholar 

  143. Peterson, D. W. and Sparber, S. B. (1974) Increased fixed ratio performance and differential d-and (—)-amphetamine action following norepinephrine depletion by intraventricular 6-hydroxydopamine. J. Pharmacol. Exp. Ther. 191, 349–357.

    PubMed  CAS  Google Scholar 

  144. Dearry, A., Gingrich, J. A., Falardeau, P., Fremeau, R. T., Jr., Bates, M. D., and Caron, M. G. (1990) Molecular cloning and expression of the gene for a human D1 dopamine receptor. Nature 347, 72–76.

    Article  PubMed  CAS  Google Scholar 

  145. Gingrich, J. A., Dearry, A., Falardeau, P., Fremeau, R. T., Jr., Bates, M. D., and Caron, M. G. (1991) Molecular characterization of G-protein coupled receptors: isolation and cloning of a Dl dopamine receptor. J. Receptor Res. 11, 521–534.

    CAS  Google Scholar 

  146. Fremeau, R. T., Jr., Duncan, G. E., Fornaretto, M. G., Dearry, A., Gingrich, J. A., Breese, G. R., and Caron, M. G. (1991) Localization of Di dopamine receptor mRNA in brain supports a role in cognitive, affective, and neuroendocrine aspects of dopaminergic neurotransmission. Proc. Natl. Acad. Sci. USA 88, 3772–3776.

    Article  PubMed  CAS  Google Scholar 

  147. Criswell, H. E., Breese, G. R., and Mueller, R. A. (1989) Priming of Di-dopamine receptor responses: Long lasting supersensitivity to Di -dopamine agonist following repeated administration to neonatal 6-hydroxydopamine lesioned rats. J. Neurosci. 9, 125–133.

    PubMed  CAS  Google Scholar 

  148. Johnson, K. B., Criswell, H. E., Jensen, K. F., Simson, P. E., Mueller, R. A., and Breese, G. R. (1992) Comparison of the Di-dopamine agonists SKF-38393 and A-68930 in neonatal 6-OHDA-lesioned rats: Behavioral effects and induction of c-Fos immunoreactivity. J. Pharmacol. Exp. Ther. 262, 855–865.

    PubMed  CAS  Google Scholar 

  149. Criswell, H. E., Mueller, R. A., and Breese, G. R. (1990) Long-term Di-dopamine receptor sensitization in neonatal-6-OHDA-lesioned rats is blocked by an NMDA antagonist. Brain Res. 512, 284–290.

    Article  PubMed  CAS  Google Scholar 

  150. Paulson, P. E., Camp, D. M., and Robinson, T. E. (1991) Time course of transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. Psychopharmacology 103, 480–492.

    Article  PubMed  CAS  Google Scholar 

  151. Ujike, H., Onoue, R., Akiyama, K., Hamamura, T., and Otsuki, S. (1989) Effects of selective D-1 and D-2 dopamine antagonists on development of methamphetamineinduced behavioral sensitization. Psychopharmacology 98, 89–92.

    Article  PubMed  CAS  Google Scholar 

  152. Drew, K. L. and Glick, S. D. (1990) Role of D-1 and D-2 receptor stimulation in sensitization to amphetamine-induced circling behavior and in expression and extinction of the Pavlovian conditioned response. Psychopharmacol. (Berl.) 101, 465–471.

    Article  CAS  Google Scholar 

  153. Vezina, P. (1996) Di Dopamine receptor activation is necessary for the induction of sensitization by amphetamine in the ventral tegmental area. J. Neurosci. 16, 2411–2420.

    PubMed  CAS  Google Scholar 

  154. Robinson, T. E., Jurson, P. A., Bennett, J. A., and Bentgen, K. M. (1988) Persistent sensitization of dopamine neurotransmission in ventral striatum (nucleus accumbens) produced by prior experience with (+)-amphetamine: a microdialysis study in freely moving rats. Brain Res. 462, 211–222.

    Article  PubMed  CAS  Google Scholar 

  155. Stewart, J. and Vezina, P. (1989) Microinjections of SCH-23390 into the ventral tegmental area and substantia nigra pars reticulata attenuate the development of sensitization to the locomotor activating effects of systemic amphetamine. Brain Res. 495, 401–406.

    Article  PubMed  CAS  Google Scholar 

  156. Pierce, R. C., Born, B., Adams, M., and Kalivas, P. W. (1996) Repeated intra-ventral Tegmental area administration of SKF-38393 induces behavioral and neurochemical sensitization to a subsequent cocaine challenge. J. Pharmacol. Exp. Ther. 278, 384–392.

    PubMed  CAS  Google Scholar 

  157. Karler, R., Calder, L. D., Chaudhry, I. A., and Turkanis, S. A. (1989) Blockade of reverse tolerance to cocaine and amphetamine by MK-801. Life Sci. 45, 599–606.

    Article  PubMed  CAS  Google Scholar 

  158. Kalivas, P. W. and Alesdatter, J. E. (1993) Involvement of NMDA receptor stimulation in the VTA and amygdala in behavioral sensitization to cocaine. J. Pharmacol. Exp. Ther. 267, 486–495.

    PubMed  CAS  Google Scholar 

  159. Wolf, M. E., White, F. J., and Hu, X-T. (1994) MK-801 prevents alterations in the mesoaccumbens dopamine system associated with behavioral sensitization to amphetamine. J. Neurosci. 14, 1735–1745.

    PubMed  CAS  Google Scholar 

  160. Breese, G. R. and Mueller, R. A. (1985) SCH-23390 antagonism of a D-2 dopamine agonist depends upon catecholaminergic neurons. Eur. J. Pharmacol. 113, 109–114.

    Article  PubMed  CAS  Google Scholar 

  161. Walters, J. R., Bergstrom, D. A., Carlson, J. H., Chase, T. N., and Braun, A. R. (1987) D-1 dopamine receptor activation required for postsynaptic expression of D-2 agonist effects. Science 236, 719–722.

    Article  PubMed  CAS  Google Scholar 

  162. Jackson, D. M., Ross, S. B., and Hashizume, M. (1987) Dopamine-mediated behaviors produced in naive mice by bromocriptine plus SKF-38393. J. Pharm. Pharmacol. 40, 221–222.

    Article  Google Scholar 

  163. Longoni, R., Spina, L., and Di Chiara, G. (1987) Permissive role of D-1 receptor stimulation for the expression of D-2 mediated behavioral responses: A quantitative phenomenological study in rats. Life Sci. 41, 2135–2145.

    Article  PubMed  CAS  Google Scholar 

  164. Graybiel, A. M. and Ragsdale, C. W., Jr. (1983) Biochemical anatomy of the striatum, in Chemical Neuroanatomy (Emson, P. C., ed.), Raven, New York, pp. 427–504.

    Google Scholar 

  165. Vankova, M., Arluison, M., Boyer, P. A., Bourgoin, S., and Quignon, M. (1991) Enkephalin-containing nerve cell bodies in the substantia nigra of the rat: demonstration by immunohistochemistry and in situ hybridization. Brain Res. Bull. 27, 19–27.

    Article  PubMed  CAS  Google Scholar 

  166. Kubota, Y., Inagaki, S., and Kito, S. (1986) Innervation of substance P neurons by catecholaminergic terminals in the neostriatum. Brain Res. 375, 163–167.

    Article  PubMed  CAS  Google Scholar 

  167. Kubota, Y., Inagaki, S., Kito, S., Takagi, H., and Smith, A. D. (1986) Ultrastructural evidence of dopaminergic input to enkephalinergic neurons in rat neostriatum. Brain Res. 367, 374–378.

    Article  PubMed  CAS  Google Scholar 

  168. Kawai, Y., Takagi, H., Kumoi, Y., Shiosaka, S., and Tohyama, M. (1987) Nigrostriatal dopamine neurons receive substance P-ergic inputs in the substantia nigra: application of the immunoelectron microscopic mirror technique to fluorescent double-staining for transmitter-specific projections. Brain Res. 401, 371–376.

    Article  PubMed  CAS  Google Scholar 

  169. Voorn, P., Roest, G., and Groenewegen, H. J. (1987) Increase of enkephalin an decrease of substance P immunoreactivity in the dorsal and ventral striatum of the rat after midbrain the 6-hydroxydopamine-lesions. Brain Res. 412, 391–396.

    Article  PubMed  CAS  Google Scholar 

  170. Engber, T. M., Susel, Z., Kuo, S., Gerfen, C. R., and Chase, T. N. (1991) Levodopa replacement therapy alters enzyme activities in striatum and neuropeptide content in striatal output regions of the 6-hydroxydopamine-lesioned rats. Brain Res. 552, 113–118.

    Article  PubMed  CAS  Google Scholar 

  171. Taylor, M. D., De Ceballos, M. L., Rose, S., Jenner, P., and Marsden, C. D. (1992) Effects of a unilateral the 6-hydroxydopamine-lesion and prolonged L-3, 4-dihydroxyphenylalanine treatment on peptidergic system in rat basal ganglia. Eur. J. Pharmacol. 219, 183–192.

    Article  PubMed  CAS  Google Scholar 

  172. Cenci, M. A. and Björklund, A. (1993) Transection of corticostriatal afferents reduces amphetamine-and apomorphine-induced striatal Fos expression and turning behaviour in unilaterally 6-hydroxydopamine-lesioned rats. Eur. J. Neurosci. 5, 1062–1070.

    Article  PubMed  CAS  Google Scholar 

  173. Campbell, K. and Björklund, A. (1994) Prefrontal corticostriatal afferents maintain increased enkephalin gene expression in the dopamine-denervated rat striatum. Eur. J. Neurosci. 6, 1371–1383.

    Article  PubMed  CAS  Google Scholar 

  174. Thal, L. J., Sharpless, N. S., Hirschhorn, I. D., Horowitz, S. G., and Makman, M. H. (1983) Striatal met-enkephalin concentration increases following nigrostriatal denervation. Biochem. Pharmacol. 32, 3297–3301.

    Article  PubMed  CAS  Google Scholar 

  175. Sivam, S. P. (1989) D1 dopamine receptor mediated substance P depletion in the striatonigral neurons of rats subjected to neonatal dopaminergic denervation: implications for self-injurious behavior. Brain Res. 500, 119–130.

    Article  PubMed  CAS  Google Scholar 

  176. Sivam, S. P., Breese, G. R., Krause, J. E., Napier, T. C., Mueller, R. A., and Hong, J. S. (1987) Neonatal and adult-6-hydroxydopamine-induced lesions differentially alter tachykinin and enkephalin gene expression. J. Neurochem. 49, 1623–1633.

    Article  PubMed  CAS  Google Scholar 

  177. Sivam, S. P., Krause, J. E., Breese, G. R., and Hong, J. S. (1991) Dopamine-dependent postnatal development of enkephalin and tachykinin neurons of rat basal ganglia. J. Neurochem. 56, 1499–1508.

    Article  PubMed  CAS  Google Scholar 

  178. Ingham, C. A., Hood, S. H., and Arbuthnott, G. W. (1991) A light and electron microscopical study of enkephalin-immunoreactive structures in the rat neostriatum after removal of the nigrostriatal dopaminergic pathway. Neuroscience 42, 715–730.

    Article  PubMed  CAS  Google Scholar 

  179. Gerfen, C. R., McGinty, J. F., and Young, W. S. (1991) Dopamine differentially regulates dynorphin, substance P, and enkephalin expression in striatal neurons: in situ hybridization histochemical analysis. J. Neurosci. 11, 1016–1031.

    PubMed  CAS  Google Scholar 

  180. Campbell, K., Wictorin, K., and Björklund, A. (1992) Differential regulation of neuropeptide mRNA expression in intrastriatal striatal transplants by host dopaminergic afferents. Proc. Natl. Acad. Sci. USA 89, 10,489–10,493.

    Google Scholar 

  181. Cenci, M. A., Campbell, K., and Björklund, A. (1993) Neuropeptide messenger RNA expression in the 6-hydroxydopamine-lesioned rat striatum reinnervated by fetal dopaminergic transplants: differential effects of the grafts on preproenkephalin, preprotachykinin and prodynorphin messenger RNA levels. Neuroscience 57, 275–296.

    Article  PubMed  CAS  Google Scholar 

  182. Nisenbaum, L. K., Kitai, S. T., and Gerfen, C. R. (1994) Dopaminergic and muscarinic regulation of striatal enkephalin and substance P messenger RNAs following striatal dopamine denervation: effects of systemic and central administration of quinpirole and scopolamine Neuroscience 63, 435–439.

    Article  PubMed  CAS  Google Scholar 

  183. Nisenbaum, L. K., Kitai, S. T., Crowley, W. R., and Gerfen, C. R. (1994) Temporal dissociation between changes in striatal enkephalin and substance P messenger RNAs following striatal dopamine depletion. Neuroscience 60, 927–937.

    Article  PubMed  CAS  Google Scholar 

  184. Voorn, P., Docter, G. J., Jongen-Relo, A. L., and Jonker, A. J. (1994) Rostrocaudal subregional differences in the response of enkephalin, dynorphin and substance P synthesis in rat nucleus accumbens to dopamine depletion. Eur. J. Neurosci. 6, 486–496.

    Article  PubMed  CAS  Google Scholar 

  185. Zeng, B. Y., Jolkkonen, J., Jenner, P., and Marsden, C. D. (1995) Chronic L-DOPA treatment differentially regulates gene expression of glutamate decarboxylase, preproenkephalin and preprotachykinin in the striatum of 6-hydroxdopamine-lesioned rat. Neuroscience 66, 19–28.

    Article  PubMed  CAS  Google Scholar 

  186. Abrous, D. N., Manier, M., Mennicken, F., Feuerstein, C., Le Moal, M., and Herman, J. P. (1993) Intrastriatal transplants of embryonic dopaminergic neurons counteract the increase of striatal enkephalin immunostaining but not serotoninergic sprouting elicited by a neonatal lesion of the nigrostriatal dopaminergic pathway. Eur. J. Neurosci. 5, 128–136.

    Article  PubMed  CAS  Google Scholar 

  187. Bal, A., Savasta, M., Chritin, M., Mennicken, F., Abrous, D. N., Le Moal, M., Feuerstein, C., and Herman, J. P. (1993) Transplantation of fetal nigral cells reverses the increase of preproenkephalin mRNA levels in the rat striatum caused by 6-OHDA lesion of the dopaminergic nigrostriatal pathway: a quantitative in situ hybridization study. Brain Res. Mol. 18, 221–227.

    Article  CAS  Google Scholar 

  188. Sivam, S. P., Breese, G. R., Napier, T. C., Mueller, R. A., and Hong, J. S. (1986) Dopaminergic regulation of prenkephalin-A gene expression in the basal ganglia. NIDA Res. Monogr. 75, 389–392.

    PubMed  CAS  Google Scholar 

  189. Kurumaji, A., Takashima, M., Watanabe, S., and Takahashi, K. (1988) An increase in striatal Met-enkephalin-like immunoreactivity in neonatally dopamine-depleted rats. Neurosci. Lett. 87, 109–113.

    Article  PubMed  CAS  Google Scholar 

  190. Sivam, S. P. and Krause J. E. (1990) The adaptation of enkephalin, tachykinin and monoamine neurons of the basal ganglia following neonatal dopaminergic denervation is dependent on the extent of dopamine depletion. Brain Res. 536, 169–175.

    Article  PubMed  CAS  Google Scholar 

  191. Cimino, M., Zoli, M., and Weiss, B. (1991) Differential ontogenetic expression and regulation of proenkephalin and preprosomatostatin mRNAs in rat caudate-putamen as studied by in situ hybridization histochemistry. Brain Res. Dey. Brain Res. 60, 115–122.

    Article  CAS  Google Scholar 

  192. Soghomonian, J. J. (1994) Differential regulation of glutamate decarboxylase and preproenkephalin mRNA levels in the rat striatum. Brain Res. 640, 146–154.

    Article  PubMed  CAS  Google Scholar 

  193. Synder-Keller, A. M. (1991) Developmental striatal compartmentalization following pre-or postnatal dopamine depletion. J. Neurosci. 11, 810–821.

    Google Scholar 

  194. Perez-Navarro, E., Alberch, J., and Marsal, J. (1993) Postnatal development of functional dopamine, opioid and tachykinin receptors that regulate acetylcholine release from rat neostriatal slices. Effect of 6-hydroxydopamine lesion. Int. J. Dey. Neurosci. 11, 701–708.

    Article  CAS  Google Scholar 

  195. Roeling, T. A., Docter, G. J., Voorn, P., Melchers, B. P., Wolters, E. C., and Groenewegen, H. J. (1995) Effects of unilateral 6-OHDA lesions on neuropeptide immunoreactivity in the basal ganglia of the common marmoset, Callithrix Jacchus, a quantitative immunohistochemical analysis. J. Chem. Neuroanat. 9, 155–164.

    Article  PubMed  CAS  Google Scholar 

  196. Sivam, S. P. (1991) Dopamine dependent decrease in enkephalin and substance P levels in basal ganglia regions of postmortem parkinsonian brains. Neuropeptides 18, 201–207.

    Article  PubMed  CAS  Google Scholar 

  197. Schiffmann, S. N. and Vanderhaeghen, J. J. (1992) Lesion of the nigrostriatal pathway induces cholecystokinin messenger RNA expression in the rat striatum. Neuroscience 50, 551–557.

    Article  PubMed  CAS  Google Scholar 

  198. Engber, T. M., Boldry, R. C., Kuo, S., and Chase, T. N. (1992) Dopaminergic modulation of striatal neuropeptides: differential effects of D1 and D2 receptor stimulation on somatostatin, neuropeptide Y, neurotensin, dynorphin and enkephalin. Brain Res. 581, 261–268.

    Article  PubMed  CAS  Google Scholar 

  199. Savasta, M., Ruberte, E., Palacious, J. M., and Mengod, G. (1989) The co-localization of cholecystokinin and tyrosine hydroxylase mRNAs in mesencephalic dopaminergic neurons in the rat brain examined by in situ hybridization. Neuroscience 29, 363–369.

    Article  PubMed  CAS  Google Scholar 

  200. Burgunder, J. M. and Young, W. S. (1989) Distribution, projection and dopaminergic regulation of the neurokinin B mRNA-containing neurons of the rat caudate-putamen. Neuroscience 32, 323–335.

    Article  PubMed  CAS  Google Scholar 

  201. Churchill, L. and Kalivas, P. W. (1992) Dopamine depletion produces augmented behavioral responses to a mu-, but not a delta-opioid receptor agonist in the nucleus accumbens: lack of a role for receptor upregulation. Synapse 11, 47–57.

    Article  PubMed  CAS  Google Scholar 

  202. Delfs, J. M., Ciaramitaro, V. M., Parry, T. J., and Chesselet, M. F. (1995) Subthalamic nucleus lesions: widespread effects on changes in gene expression induced by nigrostriatal dopamine depletion in rats. J. Neurosci. 15, 6562–6575.

    PubMed  CAS  Google Scholar 

  203. Kaakkola, S. (1980) Contralateral circling behaviour induced by intranigral injection of morphine and enkephalin analogue FK 33–824 in rats. Acta Pharmacol. Toxicol. 47, 385–393.

    Article  CAS  Google Scholar 

  204. Stefano, G. B., Surkin, R. S., and Kream, R. M. (1982) Evidence for the presynaptic localization of a high affinity opiate binding site on dopamine neurons in the pedal ganglia of Mytilus edulis (Bivalvia). J. Pharmacol. Exp. Ther. 222, 759–764.

    PubMed  CAS  Google Scholar 

  205. Kalivas, P. W., Widerlove, E., Stanley, D., Breese, G., and Prange, A. J., Jr. (1983) Enkephalin action on the mesolimbic system: a dopamine-dependent and a dopamine-independent increase in locomotor activity. J. Pharmacol. Exp. Ther. 227, 229–237.

    PubMed  CAS  Google Scholar 

  206. Arenander, A. T., de Vellis, J., and Herschman, H. R. (1989) Induction of c-Fos and TIS genes in cultured rat astrocytes by neurotransmitters. J. Neurosci. Res. 24, 107–114.

    Article  PubMed  CAS  Google Scholar 

  207. Chang, S. L., Squinto, S. P., Harlan, R. E. (1988) Morphine activation of c-Fos expression in rat brain. Biochem. Biophys. Res. Commun. 157, 698–704.

    Article  PubMed  CAS  Google Scholar 

  208. Sonnenberg, J. L., Mitchelmore, C., Macgregor-Leon, P. F., Hempstead, J., Morgan, J. I., and Curran, T. (1989) Glutamate receptor agonists increase the expression of Fos, Fra, and AP-1 DNA binding activity in the mammalian brain. J. Neurosci. Res. 24, 72–80.

    Article  PubMed  CAS  Google Scholar 

  209. Gubits, R. M., Smith, T. M., Fairhurst, J. L., and Yu, H. (1994) Adrenergic receptors mediate changes in c-Fos mRNA levels in brain. Brain Res. Mol. Brain Res. 18, 39–45.

    Google Scholar 

  210. Robertson, G. S., Herrera, D. G., Dragunow, M., and Robertson, H. A. (1989) L-DOPA activates c-Fos in the striatum ipsilateral to a 6-hydroxydopamine lesion of the substantia nigra. Eur. J. Pharmacol. 159, 99–100.

    Article  PubMed  CAS  Google Scholar 

  211. Robertson, H. A., Peterson, M. R., Murphy, K., and Robertson, G. S. (1989) D1-Dopamine receptor agonists selectively activate striatal c-Fos independent of rotational behaviour. Brain Res. 503, 346–349.

    Article  PubMed  CAS  Google Scholar 

  212. Dragunow, M., Leah, J. D., and Faull, R. L. (1991) Prolonged and selective induction of Fos-related antigen(s) in striatal neurons after 6-hydroxydopamine lesions of the rat substantia nigra pars compacta. Brain Res. Mol. Brain Res. 10, 355–358.

    Article  PubMed  CAS  Google Scholar 

  213. Morelli, M., Cozzolino, A., Pinna, A., Fenu, S., Carta, A., and Di Chiara, G. (1993) L-DOPA stimulates c-Fos expression in dopamine denervated striatum by combined activation of D1-and D2-receptors. Brain Res. 623, 334–336.

    Article  PubMed  CAS  Google Scholar 

  214. Cole, D. G., Growdon, J. H., and Difiglia, M. (1993) Levodopa induction of Fos immunoreactivity in rat brain following partial and complete lesions of the substantia nigra. Exp. Neurol. 120, 223–232.

    Article  PubMed  CAS  Google Scholar 

  215. Mueller, R. A., Grimes, L. M., Criswell, H. E., Carter, L. S., McGimsey, W. C., Stumpf, W., and Breese, G. R. (1989) D1 Dopamine agonist induces c-Fos protein in the striatum of 6-OHDA-lesioned rats. Soc. Neurosci. Abstracts 15, 430.

    Google Scholar 

  216. Simson, P. E., Johnson, K. B., Jurevics, H. A., Criswell, H. E., Napier, T. C., Duncan, G. E., Mueller, R. A., and Breese, G. R. (1992) Augmented sensitivity of D1-dopamine receptors in lateral but not medial striatum after 6-hydroxydopamine-induced lesions in the neonatal rat. J. Pharmacol. Exp. Ther. 263, 1454–1463.

    PubMed  CAS  Google Scholar 

  217. Paul, M. L., Graybiel, A. M., David, J. C., and Robertson, H. A. (1992) D1-like and D2-like dopamine receptors synergistically activate rotation and c-Fos expression in the dopamine-depleted striatum in a rat model of Parkinson’s disease. J. Neurosci. 12, 3729–3742.

    PubMed  CAS  Google Scholar 

  218. Pennypacker, K. R., Hong, J. S., and McMillian, M. K. (1995) Implications of prolonged expression of Fos-related antigens. Trends Pharmacol. Sci. 16, 317–321.

    Article  PubMed  CAS  Google Scholar 

  219. Robertson, G. S., Vincent, S. R., and Fibiger, H. C. (1990) Striatonigral projection neurons contain D1 dopamine receptor-activated c-Fos. Brain Res. 523, 288–290.

    Article  PubMed  CAS  Google Scholar 

  220. Marshall, J. F., Cole, B. N., and LaHoste, G. J. (1993) Dopamine D2 receptor control of pallidal Fos expression: comparisons between intact and 6-hydroxydopamine-treated hemispheres. Brain Res. 632, 308–313.

    Article  PubMed  CAS  Google Scholar 

  221. Criswell, H. E., Johnson, K. B., Mueller, R. A., and Breese, G. R. (1993) Evidence for involvement of brain dopamine and other mechanisms in the behavioral action of the N-methyl-D-aspartic acid antagonist MK-801 in control and 6-hydroxydopaminelesioned rats. J. Pharmacol. Exp. Ther. 265, 1001–1010.

    PubMed  CAS  Google Scholar 

  222. Morelli, M., Pinna, A., Fenu, S., Carta, A., Cozzolino, A., and DiChiara, G. (1994) Differential effect of MK-801 and scopolamine on c-Fos expression induced by L-DOPA in the striatum of 6-hydroxydopamine lesioned rats. Synapse 18, 288–293.

    Article  PubMed  CAS  Google Scholar 

  223. Morelli, M., Fenu, S., Cozzolino, A., Pinna, A., Carta, A., and Di Chiara, G. (1993) Blockade of muscarinic receptors potentiates D1 dependent turning behavior and c-Fos expression in 6-hydroxydopamine-lesioned rats but does not influence D2 mediated responses. Neuroscience 53, 673–678.

    Article  PubMed  CAS  Google Scholar 

  224. Robertson, G. S. and Staines, W. A. (1994) D1 dopamine receptor agonist-induced Fos-like immunoreactivity occurs in basal forebrain and mesopontine tegmentum cholinergic neurons and striatal neurons immunoreactive for neuropeptide Y. Neuroscience 59, 375–387.

    Article  CAS  Google Scholar 

  225. Fenu, S., Carta, A., and Morelli, M. (1995) Modulation of dopamine D1-mediated turning behavior and striatal c-Fos expression by the substantia nigra. Synapse 19, 233–240.

    Article  PubMed  CAS  Google Scholar 

  226. Singh, B. and de Champlan, J. (1972) Altered ontogenesis of central noradrenergic neurons following neonatal treatment of 6-hydroxydopamine. Brain Res. 48, 432–437.

    Article  PubMed  CAS  Google Scholar 

  227. Jonsson, G., Pycock, C., Fuxe, K., and Sachs, C. H. (1974) Changes in the development of central noradrenaline neurons following neonatal administration of 6-hydroxydopamine. J. Neurochem. 22, 419–426.

    Article  PubMed  CAS  Google Scholar 

  228. Loizou, L. A. (1972) The postnatal ontogeny of monoamine-containing neurons in the central nervous system of the albino rat. Brain Res. 40, 395–418.

    Article  PubMed  CAS  Google Scholar 

  229. Pappas, B. A. and Sobrian, S. K. (1972) Neonatal sympathectomy by 6-hydroxydopamine in the rat: no effects on behavior but changes in endogenous brain norepinephrine. Life Sci. 11, 653–659.

    Article  CAS  Google Scholar 

  230. Pappas, B. A., Peters, D. A. V., Sobrian, S. K., Blouin, A., and Drew, B. (1975) Early behavioral and catecholaminergic effects of 6-hydroxydopamine and quanethidine in the neonatal rat. Pharmacol. Biochem. Behan 3, 681–685.

    Article  CAS  Google Scholar 

  231. Jonsson, G., Wiesel, F. A., and Hallman, H. (1979) Developmental plasticity of central noradrenaline neurons after neonatal damage-changes in transmitter functions. J. Neurobiol. 10, 337–353.

    Article  PubMed  CAS  Google Scholar 

  232. Gustafson, E. L. and Moore, R. Y. (1987) Noradrenaline neuron plasticity in developing rat brain: effects of neonatal 6-hydroxydopamine demonstrated by dopaminebeta-hydroxylase immunocytochemistry. Brain Res. 465, 143–155.

    PubMed  CAS  Google Scholar 

  233. Bendeich, E., Konkol, R. J., Krigman, M. R., and Breese, G. R. (1978) Morphological evidence for 6-hydroxydopamine-induced sprouting or noradrenergic neurons in the cerebellum. J. Neurol. Sci. 38, 47–57.

    Article  PubMed  CAS  Google Scholar 

  234. Hemmendinger, L. M. and Moore, R. Y. (1986) Synaptic reorganization in the motor trigeminal nucleus of the rat following neonatal 6-hydroxydopamine treatment. J. Comp. Neurol. 250, 462–468.

    Article  PubMed  CAS  Google Scholar 

  235. Zhou, F. C., Bledsoe, S., and Murphy, J. (1991) Serotonergic sprouting is induced by dopamine-lesion in substantia nigra of adult rat brain. Brain Res. 556, 108–116.

    Article  PubMed  CAS  Google Scholar 

  236. Towle, A. C., Maynard, E. H., Criswell, H. E., Lauder, J. M., Joh, T. H., Mueller, R. A., and Breese, G. R. (1989) Serotonergic innervation of the rat caudate following a neonatal-6-hydroxydopamine lesion: An anatomical, biochemical and pharmacological study. Pharmacol. Biochem. Behay. 34, 367–374.

    Article  CAS  Google Scholar 

  237. Luthman, J., Bolioli, B., Tsutsumi, T., Verhofstad, A., and Jonsson, G. (1987) Sprouting of striatal serotonin nerve terminals following selective lesions of nigrostriatal dopamine neurons in neonatal rat. Brain Res. Bull. 19, 269–274.

    Article  PubMed  CAS  Google Scholar 

  238. Jackson, D. and Abercrombie, E. D. (1992) In vivo neurochemical evaluation of striatal serotonergic hyperinnervation in rats depleted of dopamine at infancy. J. Neurochem. 58, 890–897.

    CAS  Google Scholar 

  239. Berger, T. W., Kaul, S., Stricker, E. M., and Zigmond, M. J. (1985) Hyperinnervation of the striatum by dorsal raphe afferents after dopamine-depleting brain lesions in neonatal rats. Brain Res. 336, 354–358.

    Article  PubMed  CAS  Google Scholar 

  240. Snyder, A. M., Zigmond, M. J., and Lund, R. D. (1986) Sprouting of serotoninergic afferents into striatum after dopamine-depleting lesions in infant rats: a retrograde transport and immunocytochemical study. J. Comp. Neurol. 245, 274–281.

    Article  PubMed  CAS  Google Scholar 

  241. Mrini, A., Soucy, J. P., Lafaille, F., Lemoine, P., and Descarries, L. (1995) Quantification of the serotonin hyperinnervation in adult rat neostriatum after neonatal 6-hydroxydopamine lesion of nigral dopamine neurons. Brain Res. 669, 303–308.

    Article  PubMed  CAS  Google Scholar 

  242. Numan, S., Lundgren, K. H., Wright, D. E., Herman, J. P., and Seroogy, K. B. (1995) Increased expression of 5HT2 receptor mRNA in rat striatum following 6-OHDA lesions of the adult nigrostriatal pathway. Brain Res. Mol. 29, 391–396.

    Article  CAS  Google Scholar 

  243. Radja, F., Descarries, L., Dewar, K. M., and Reader, T. A. (1993) Serotonin 5-HT1 and 5-HT2 receptors in adult rat brain after neonatal destruction of nigrostriatal dopamine neurons: a quantitative autoradiographic study. Brain Res. 606, 273–285.

    Article  PubMed  CAS  Google Scholar 

  244. Kostrzewa, R. M., Gong, L., and Brus, R. (1993) Serotonin (5-HT) systems mediate dopamine (DA) receptor supersensitivity. Acta Neurobiol. Exp. 53, 31–41.

    CAS  Google Scholar 

  245. Beck, K. D. (1994) Functions of brain-derived neurotrophic factor, insulin-like growth factor-I and basic fibroblast growth factor in the development and maintenance of dopaminergic neurons. Prog. Neurobiol. 44, 497–516.

    Article  PubMed  CAS  Google Scholar 

  246. Felten, D. L., Hallman, H., and Jonsson, G. (1982) Evidence for a neurotropic role of noradrenaline neurons in the postnatal development of rat cerebral cortex. J. Neurocytol. 11, 119–135.

    Article  PubMed  CAS  Google Scholar 

  247. Date, I. (1996) Parkinson’s disease, trophic factors, and adrenal medullary chromaffin cell grafting: Basic and clinical studies. Brain Res. Bull. 40, 1–19.

    Article  PubMed  CAS  Google Scholar 

  248. Lewin, G. R. and Barde, Y-A. (1996) Physiology of the neurotrophins. Annu. Rev. Neurosci. 19, 289–317.

    Article  PubMed  CAS  Google Scholar 

  249. Kupsch, A. and Oertel, W. H. (1994) Neural-transplantation, trophic factors and Parkinson’s disease. Life Sci. 55, 2083–2095.

    Article  PubMed  CAS  Google Scholar 

  250. Akaneya, Y., Takahashi, M., and Hatanaka, H. (1995) Selective acid vulnerability of dopaminergic neurons and its recovery by brain-derived neurotrophic factor. Brain Res. 704, 175–183.

    Article  PubMed  CAS  Google Scholar 

  251. Hou, J. G., Lin, L. F. H., and Mytilineou, C. (1996) Glial Cell Line-derived neurotrophic factor exerts neurotrophic effects on dopaminergic neurons in vitro and promotes their survival and regrowth after damage by 1-methyl-4-phenylpyridinium. J. Neurochem. 66, 74–82.

    Article  PubMed  CAS  Google Scholar 

  252. Casper, D. and Blum, M. (1995) Epidermal growth factor and basic fibroblast growth factor protect dopaminergic neurons from glutamate toxicity in culture. J. Neurochem. 65, 1016–1026.

    Article  PubMed  CAS  Google Scholar 

  253. Engele, J., Rieck, H., Choi-Lundberg, D., and Bohn, M. C. (1996) Evidence for a novel neurotrophic factor for dopaminergic neurons secreted from mesencephalic glial cell lines. J. Neurosci. Res. 43, 576–586.

    Article  PubMed  CAS  Google Scholar 

  254. Clarkson, E. D., Zawada, W. M., and Freed, C. R. (1996) GDNF reduces apoptosis in dopaminergic neurons in vitro. Neuroreport 7, 145–149.

    Google Scholar 

  255. Sauer, H., Fischer, W., Nikkhah, G., Wiegand, S. J., Brundin, P., Lindsay, R. M., and Björklund, A. (1993) Brain-derived neurotrophic factor enhances function rather than survival of intrastriatal dopamine cell-rich grafts. Brain Res. 626, 37–44.

    Article  PubMed  CAS  Google Scholar 

  256. Shults, C. W., Kimber, T., and Martin, D. (1996) Intrastriatal injection of GDNF attenuates the effects of 6-hydroxydopamine. Neurorep. 7, 627–631.

    Article  CAS  Google Scholar 

  257. Shults, C. W., O’Connor, D. T., Baird, A., Hill, R., Goetz, C. G., Watts, R. L., Klawans, H. L., Carvey, P. M., Bakay, R. A., Gage, F. H., et al. (1991) Clinical improvement in parkinsonian patients undergoing adrenal to caudate transplantation is not reflected by chromogranin A or basic fibroblast growth factor in ventricular fluid. Exp. Neurol. 111, 276–281.

    Article  PubMed  CAS  Google Scholar 

  258. Kirschner, P. B., Jenkins, B. F., Schulz, J. B., Finkelstein, S. P., Matthews, R. T., Rosen, B. R., and Beal, M. F. (1996) NGF, BDNF and NT-5, but not NT-3 potent against MPP+ toxicity and oxidative stress in neonatal animals. Brain. Res. 713, 178–185.

    Article  PubMed  CAS  Google Scholar 

  259. Niijima, K., Araki, M., Ogawa, M., Nagatsu, I., Sato, F., Kimura, H., and Yoshida, M. (1990) Enhanced survival of cultured dopamine neurons by treatment with soluble extracts from chemically deafferentiated striatum of adult rat brain. Brain Res. 528, 151–154.

    Article  PubMed  CAS  Google Scholar 

  260. Hyman, D., Hofer, M., Barde, Y. A., Juhasz, M., Yancopoulous, G. D., Squinto, S. P., and Lindsay, R. M. (1991) BDNF in a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350, 230–232.

    Article  PubMed  CAS  Google Scholar 

  261. Seroogy, K. B., Lundgren, K. H., Tran, T. M., Guthrie, K. M., Isackson, P. J., and Gall, C. M. (1994) Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs. J. Comp. Neurol. 342, 321–334.

    Article  PubMed  CAS  Google Scholar 

  262. Spina, M. B., Hyman, C., Squinto, S., and Lindsay, R. M. (1992) Brain-derived neurotrophic factor protects dopaminergic cells from 6-hydroxydopamine toxicity. Ann. NYAcad. Sci. 648, 348–350.

    Article  CAS  Google Scholar 

  263. Spina, M. B., Squinto, S. P., Miller, J., Lindsay, R. M., and Hyman, C. (1992) Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: involvement of the glutathione system. J. Neurochem. 59, 99–106.

    Article  PubMed  CAS  Google Scholar 

  264. Hoffer, B. J., Hoffman, A., Bowenkamp, K., Huettl, P., Hudson, J., Martin, D., Lin, L. F. H., and Gerhardt, G. A. (1994) Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo. Neurosci. Lett. 182, 107–111.

    Article  CAS  Google Scholar 

  265. Altar, C. A., Boylan, C. B., Fritsche, M., Jones, B. E., Jackson, C., Wiegand, S. J., Lindsay, R. M., and Hyman, C. (1994) Efficacy of brain-derived neurotrophic factor and neurotrophin-3 on neurochemical and behavioral deficits associated with partial nigrostriatal dopamine lesions. J. Neurochem. 63, 1021–1032.

    Article  PubMed  CAS  Google Scholar 

  266. Shults, C. W., Kimber, T., and Altar, C. A. (1995) BDNF attenuates the effects of intrastriatal injection of 6-hydroxydopamine. Neuroreport 6, 1109–1112.

    Article  PubMed  CAS  Google Scholar 

  267. Levivier, M., Przedborski, S., Bencsics, C., and Kang, U. J. (1995) Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson’s disease. J. Neurosci. 15, 7810–7820.

    PubMed  CAS  Google Scholar 

  268. Lucidi-Phillipi, C. A., Gage, F. H., Shults, C. W., Jones, K. R., Reichardt, L. E, and Kang, U. J. (1995) Brain-derived neurotrophic factor-transduced fibroblasts: production of BDNF and effects of grafting to the adult rat brain. J. Comp. Neurol. 354, 361–376.

    Article  PubMed  CAS  Google Scholar 

  269. Yoshimoto, Y., Lin, Q., Collier, T. J., Frim, D. M., Breakefield, X. O., and Bohn, M. C. (1995) Astrocytes retrovirally transduced with BDNF elicit behavioral improvement in a rat model of Parkinson’s disease. Brain Res. 691, 25–36.

    Article  PubMed  CAS  Google Scholar 

  270. Sauer, H., Wong, V., and Björklund, A. (1995) Brain-derived neurotrophic factor and neurotrophin-4/5 modify neurotransmitter-related gene expression in the 6-hydroxydopamine-lesioned rat striatum. Neuroscience 65, 927–933.

    Article  PubMed  CAS  Google Scholar 

  271. Arenas, E. and Persson, H. (1994) Neurotrophin-3 prevents the death of adult central noradrenergic neurons in vivo. Nature 367, 368–371.

    Article  CAS  Google Scholar 

  272. Hynes, M. A., Poulsen, K., Armanini, M., Berkemeier, L., Phillips, H., and Rosenthal, A. (1994) Neurotrophin-4/5 is a survival factor for embryonic midbrain dopaminergic neurons in enriched cultures. J. Neurosci. Res. 37, 144–154.

    Article  PubMed  CAS  Google Scholar 

  273. Lewis, M. E., Brown, R. M., Brownstein, M. J., Hart, T., and Stein, D. G. (1979) Nerve growth factor: effects on D-amphetamine-induced activity and brain monoamines. Brain Res. 176, 297–310.

    Article  PubMed  CAS  Google Scholar 

  274. Bergdall, V. K. and Becker, J. B. (1994) Effects of nerve growth factor infusion on behavioral recovery and graft survival following intraventricular adrenal medulla grafts in the unilateral 6-hydroxydopamine lesioned rat. J. Neural Trans. Plast. 5, 163–167.

    CAS  Google Scholar 

  275. Stromberg, I., Herrera-Marschitz, M., Ungerstedt, U., Ebendal, T., and Olson, L. (1985) Chronic implants of chromaffin tissue into the dopamine-denervated striatum. Effects of NGF on graft survival, fiber growth and rotational behavior. Exp. Brain. Res. 60, 335–349.

    Article  PubMed  CAS  Google Scholar 

  276. Pezzoli, G., Fahn, S., Dwork, A., Truong, D. D., De Yebenes, J. G., Jackson-Lewis, V., Herbert, J., and Cadet, J. L. (1988) Non-chromaffin tissue plus nerve growth factor reduces experimental parkinsonism in aged rats. Brain Res. 459, 398–403.

    Article  PubMed  CAS  Google Scholar 

  277. Cunningham, L. A., Short, M. P., Breakefield, X. O., and Bohn, M. C. (1994) Nerve growth factor released by transgenic astrocytes enhances the function of adrenal chromaffin cell grafts in a rat model of Parkinson’s disease. Brain Res. 658, 219–231.

    Article  PubMed  CAS  Google Scholar 

  278. Olson, L., Backlund, E. O., Ebendal, T., Freedman, R., Hamberger, B., Hansson, P., Hoffer, B., Lindblom, U., Meyerson, B., Stromberg, I., et al. (1991) Intraputaminal infusion of nerve growth factor to support adrenal medullary autografts in Parkinson’s disease. One-year follow-up of first clinical trial. Arch. Neurol. 48, 373–381.

    Article  PubMed  CAS  Google Scholar 

  279. Knusel, B., Michel, P. P., Schwaber, J. S., and Hefti, F. (1990) Selective and nonselective stimulation of central cholinergic and dopaminergic development in vitro by nerve growth factor, basic fibroblast growth factor, epidermal growth factor, insulin and the insulin-like growth factors I and II. J. Neurosci. 10, 558–570.

    PubMed  CAS  Google Scholar 

  280. Mena, M. A., Casarejos, M. J., Gimenez-Gallego, G., and Garcia de Yebenes, J. (1995) Fibroblast growth factors: structure-activity on dopamine neurons in vitro. J. Neural Trans. Parkinson’s Disease Dementia Section 9, 1–14.

    Article  CAS  Google Scholar 

  281. Nakao, N., Odin, P., Lindvall, O., and Brundin, P. (1996) Differential trophic effects of basic fibroblast growth factor, insulin-like growth factor-1, and neurotrophin-3 on striatal neurons in culture. Exp. Neurol. 138, 144–157.

    Article  PubMed  CAS  Google Scholar 

  282. Otto, D. and Unsicker, K. (1990) Basic FGF reverses chemical and morphological deficits in the nigrostriatal system of MPTP-treated mice. J. Neurosci. 10, 1912–1921.

    PubMed  CAS  Google Scholar 

  283. Leonard, S., Luthman, D., Logel, J., Luthman, J., Antle, C., Freedman, R., and Hoffer, B. (1993) Acidic and basic fibroblast growth factor mRNAs are increased in striatum following MPTP-induced dopamine neurofiber lesion: assay by quantitative PCR. Brain Res. Mol. Brain Res. 18, 275–284.

    Article  PubMed  CAS  Google Scholar 

  284. Chadi, G., Moller, A., Rosen, L., Janson, A. M., Agnati, L. A., Goldstein, M., Ogren, S. O., Pettersson, R. F., and Fuxe, K. (1993) Protective actions of human recombinant basic fibroblast growth factor on MPTP-lesioned nigrostriatal dopamine neurons after intraventricular infusion. Exp. Brain Res. 97, 145–158.

    Article  PubMed  CAS  Google Scholar 

  285. Chadi, G., Cao, Y., Pettersson, R. F., and Fuxe, K. (1994) Temporal and spatial increase of astroglial basic fibroblast growth factor synthesis after 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine neurons. Neuroscience 61, 891–910.

    Article  PubMed  CAS  Google Scholar 

  286. Matsuda, S., Saito, H., and Nishiyama, N. (1992) Basic fibroblast growth factor ameliorates rotational behavior of substantia nigral-transplanted rats with lesions of the dopaminergic nigrostriatal neurons. Jpn. J. Pharmacol. 59, 365–370.

    Article  PubMed  CAS  Google Scholar 

  287. Date, I., Notter, M. F., Felten, S. Y., and Felten, D. L. (1990) MPTP-treated young mice but not aging mice show partial recovery of the nigrostriatal dopaminergic system by stereotaxic injection of acidic fibroblast growth factor (aFGF). Brain Res. 526, 156–160.

    Article  PubMed  CAS  Google Scholar 

  288. Beck, K. D., Knusel, B., and Hefti, F. (1993) The nature of the trophic action of brain-derived neurotrophic factor, des(1–3)-insulin-like growth factor-1, and basic fibroblast growth factor on mesencephalic dopaminergic neurons developing in culture. Neuroscience 52, 855–866.

    Article  PubMed  CAS  Google Scholar 

  289. Hwang, O. and Choi, H. J. (1995) Induction of gene expression of the catecholaminesynthesizing enzymes by insulin-like growth factor-I. J. Neurochem. 65, 1988–1996.

    Article  PubMed  CAS  Google Scholar 

  290. Hagg, T. and Varon, S. (1992) Ciliary neurotrophic factor (CNTF) prevents axotomyinduced degeneration of adult rat substantia nigra dopaminergic neurons. Soc. Neurosci. Abstracts 18, 390.

    Google Scholar 

  291. Krieglstein, K. and Unsicker, K. (1994) Transforming growth factor-(3 promotes survival of midbrain dopaminergic neurons and protects them against N-methyl-4pheynypyridinimum ion toxicity. Neuroscience 63, 1189–1196.

    Article  PubMed  CAS  Google Scholar 

  292. Jonsson, G. and Hallman, H. (1982) Substance P modifies the 6-hydroxydopamine induced alteration of postnatal development of central noradrenaline neurons. Neuroscience 7, 2909–2918.

    Article  PubMed  CAS  Google Scholar 

  293. Hadjiconstantinou, M., Rosette, Z. L., Paxton, R. C., and Neff, N. H. (1986) Administration of GM1 ganglioside restores the dopamine content in striatum after chronic treatment with MPTP. Neuropharmacology 25, 479–482.

    Article  Google Scholar 

  294. Schneider, J. S. and Distefano, L. (1995) Response of the damaged dopamine system to GM1 and semisynthetic gangliosides: effects of dose and extent of lesion. Neuropharmacology 34, 489–493.

    Article  PubMed  CAS  Google Scholar 

  295. Fadda, E., Negro, A., Facci, L., and Skaper, S. D. (1993) Ganglioside GM1 cooperates with brain-derived neurotrophic factor to protect dopaminergic neurons from 6-hydroxydopamine-induced degeneration. Neurosci. Lett. 159, 147–150.

    Article  PubMed  CAS  Google Scholar 

  296. Fusco, M., Vantini, G., Schiavo, N., Zanotti, A., Zanoni, R., Facci, L., and Skaper, S. D. (1993) Gangliosides and neurotrophic factors in neurodegenerative diseases: from experimental findings to clinical perspectives. Ann. NY Acad. Sci. 695, 314–317.

    Article  PubMed  CAS  Google Scholar 

  297. Iwashita, A., Hisajima, H., Notsu, Y., and Okuhara, M. (1996) Effects of fibroblast growth factor and ganglioside GM1 on neuronal survival in primary cultures and on eight-arm radial maze task in adult rats following partial fimbria transections. NaunynSchmiedeberg’s Arch. Pharmacol. 353, 342–348.

    Article  CAS  Google Scholar 

  298. Lin, L. F., Doherty, D. H., Lile, J. D., Bektesh, S., and Collins, F. (1993) GDNF:a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130–1132.

    Article  PubMed  CAS  Google Scholar 

  299. Beck, K. D., Irwin, I., Valverde, J., Brennan, T. J., Langston, J. W., amd Hefti, F. (1996) GDNF induces a dystonia-like state in neonatal rats and stimulates dopamine and serotonin synthesis. Neuron 16, 665–673.

    Article  PubMed  CAS  Google Scholar 

  300. Kearns, C. M. and Gash, D. M. (1995) GDNF protects nigral dopamine neurons against 6-hydroxydopamine in vivo. Brain Res. 672, 104–111.

    Article  CAS  Google Scholar 

  301. Tomac, A., Lindqvist, E., Lin, L-E H., Ogren, S. O., Young, D., and Hoffer, B. J. (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373, 335–339.

    Article  CAS  Google Scholar 

  302. Beck, K. D., Valverde, J., Alexi, T., Poulsen, K., Moffat, B., Vandlen, R. A., Rosenthal, A., and Hefti, F. (1995) Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature 373, 339–341.

    Article  PubMed  CAS  Google Scholar 

  303. Sauer, H., Rosenblad, C., and Björklund, A. (1995) Glial cell line-derived neurotrophic factor but not transforming growth factor beta 3 prevents delayed degeneration of nigral dopaminergic neurons following striatal 6-hydroxydopamine lesion. Proc. Natl. Acad. Sci. USA 92, 8935–8939.

    Article  PubMed  CAS  Google Scholar 

  304. Bowenkamp, K. E., Hoffman, A. F., Gerhardt, G. A., Henry, M. A., Biddle, P. T., Hoffer, B. J., and Granholm, A. C. (1995) Glial cell line-derived neurotrophic factor supports survival of injured midbrain dopaminergic neurons. J. Comp. Neurol. 355, 479–489.

    Article  PubMed  CAS  Google Scholar 

  305. Stromberg, I., Björklund, L., Johansson, M., Tomac, A., Collins, F., Olson, L., Hoffer, B., and Humpel, C. (1993) Glial cell line-derived neurotrophic factor is expressed in the developing but not adult striatum and stimulates developing dopamine neurons in vivo. Exp. Neurol. 124, 401–412.

    Article  CAS  Google Scholar 

  306. Schaar, D. G., Sieber, B. A., Dreyfus, C, F., and Black, I. B. (1993) Regional and cell-specific expression of GDNF in rat brain. Exp. Neurol. 124, 368–371.

    CAS  Google Scholar 

  307. Moore, M. W., Klein, R. D., Farinas, I., Sauer, H., Armanin, M., Phillips, H., Reichardt, L. F., Ryan, A. M., Carver-Moore, K., and Rosenthal, A. (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382, 76–79.

    Article  PubMed  CAS  Google Scholar 

  308. Durbec, P., Marcos-Gutierrez, C. V., Kilkenny, C., Grigoriou, M., Wartiowaara, K., Suvanto, P., Smith, D., Ponder, B., Costantini, E, Saarma, M., Sariola, H., and Pachnis, V. (1996) GDNF signaling through the Ret receptor tyrosine hydroxylase. Nature 381, 789–793.

    Article  PubMed  CAS  Google Scholar 

  309. Hornykiewicz, O. (1975) Brain monoamines and parkinsonism. NIDA: Res. Mon. Ser. 3, 13–21.

    CAS  Google Scholar 

  310. Eidelberg, D. (1992) Positron emission tomography studies in parkinsonism. Neurol. Clin. 10, 421–433.

    PubMed  CAS  Google Scholar 

  311. Eidelberg, D., Moeller, J. R., Ishikawa, T., Dhawan, V., Spetsieris, P., Chaly, T., Robeson, W., Dahl, J. R., and Margouleff, D. (1995) Assessment of disease severity in parkinsonism with flourine-18-fluorodeoxyglucose and PET. J. Nuclear Med. 36, 378–383.

    CAS  Google Scholar 

  312. Shinotoh, H. and Calne, D. B. (1995) The use of PET in Parkinson’s disease. Brain Cogn. 28, 297–310.

    Article  PubMed  CAS  Google Scholar 

  313. Albin, R. L., Young, A. B., and Penny, J. B. (1989) The functional neuroanatomy of basal ganglia disorders. TINS 12, 366–375.

    PubMed  CAS  Google Scholar 

  314. Jenner, P. (1990) Parkinson’s disease: Clues to the cause of cell death in substantia nigra. Semin. Neurosci. 2, 117–126.

    Google Scholar 

  315. Bean, A. J., Elde, R., Cao, Y. H., Oellig, C., Tamminga, C., Goldstein, M., Pettersson, R. F., and Hökfelt, T. (1991) Expression of acidic and basic fibroblast growth factors in the substantia nigra of rat, monkey, and human. Proc. Natl. Acad. Sci. USA 88, 10,237–10,241.

    Google Scholar 

  316. Nitta, A., Furukawa, Y., Hayashi, K., Hiramatsu, M., Kameyama, T., Hasegawa, T., and Nabeshima, T. (1992) Denervation of dopaminergic neurons with 6-hydroxydopamine increases nerve growth factor content in rat brain. Neurosci. Lett. 144, 152–156.

    Article  PubMed  CAS  Google Scholar 

  317. Venero, J. L., Beck, K. D., and Hefti, F. (1994) 6-Hydroxydopamine lesions reduce BDNF mRNA levels in adult rat brain substantia nigra. Neuroreport 5, 429–432.

    Article  PubMed  CAS  Google Scholar 

  318. Lorigados, L., Soderstrom, S., and Ebendal, T. (1992) Two-site enzyme immunoassay for beta NGF applied to human patient sera. J. Neurosci. Res. 32, 329–339.

    Article  PubMed  CAS  Google Scholar 

  319. Tooyama, I., Kawamata, T., Walker, D., Yamada, T., Hanai, K., Kimura, H., Iwane, M., Igarashi, K., McGeer, E. G., and McGeer, P. L. (1993) Loss of basic fibroblast growth factor in substantia nigra neurons in Parkinson’s disease. Neurology 43, 372–376.

    Article  PubMed  CAS  Google Scholar 

  320. Tooyama, I., McGeer, E. G., Kawamata, T., Kimura, H., and McGeer, P. L. (1994) Retention of basic fibroblast growth factor immunoreactivity in dopaminergic neurons of the substantia nigra during normal aging in humans contrasts with loss in Parkinson’s disease. Brain Res. 656, 165–168.

    Article  PubMed  CAS  Google Scholar 

  321. Mogi, M., Harada, M., Kondo, T., Riederer, P., Inagaki, H., Minami, M., and Nagatsu, T. (1994) Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci. Lett. 180, 147–150.

    Article  PubMed  CAS  Google Scholar 

  322. Mogi, M., Harada, M., Kondo, T., Narabayashi, H., Riederer, P., and Nagatsu, T. (1995) Transforming growth factor-beta 1 levels are elevated in the striatum and in ventricular cerebrospinal fluid in Parkinson’s disease. Neurosci. Lett. 193, 129–132.

    Article  PubMed  CAS  Google Scholar 

  323. Kluter, H., Vieregge, P., Stolze, H., and Kirchner, H. (1995) Defective production of interleukin-2 in patients with idiopathic Parkinson’s disease. J. Neurol. Sci. 133, 134–139.

    Article  PubMed  CAS  Google Scholar 

  324. Unsicker, K. (1994) Growth factors in Parkinson’s disease. Prog. Growth Factor Res. 5, 73–87.

    Article  PubMed  CAS  Google Scholar 

  325. Hefti, F., Michel, P. P., and Knusel, B. (1990) Neurotrophic factors and Parkinson’s disease. Adv. Neurol. 53, 123–127.

    Google Scholar 

  326. Lindsay, R. M., Altar, C. A., Cedarbaum, J. M., Hyman, C., and Wiegand, S. J. (1993) The therapeutic potential of neurotrophic factors in the treatment of Parkinson’s disease. Exp. Neurol. 124, 103–118.

    Article  PubMed  CAS  Google Scholar 

  327. Olson, L. (1990) Grafts and growth factors in CNS. Basic science with clinical promise. Stereotactic Func. Neurosurg. 54,55, 250–267.

    Google Scholar 

  328. Freed, W. J., Poltorak, M., Takashima, H., LaMarca, M. E., and Ginns, E. I. (1991) Brain grafts and Parkinson’s disease. J. Cell. Biochem. 45, 261–267.

    Google Scholar 

  329. Lindvall, O. (1991) Prospects of transplantation in human neurodegenerative diseases. TINS 14, 376–384.

    PubMed  CAS  Google Scholar 

  330. Ahlskog, J. E. (1993) Cerebral transplantation for Parkinson’s disease: current progress and future prospects. Mayo Clin. Proc. 68, 578–591.

    Article  PubMed  CAS  Google Scholar 

  331. Lopez-Lozano, J. J. and Brera, B. (1993) Neural transplants in Parkinson’s Disease. Transplant. Proc. 25, 1005–1011.

    PubMed  CAS  Google Scholar 

  332. Widner, H. and Rehncrona, S. (1993) Transplantation and surgical treatment of Parkinsonian syndromes. Curr. Opinion Neurol. Neurosurg. 6, 344–349.

    CAS  Google Scholar 

  333. Sweetman, L. and Nyhan, W. L. (1967) Excretion of hypoxanthine and xanthine in a genetic disease of purine metabolism. Nature 215, 859–860.

    Article  PubMed  CAS  Google Scholar 

  334. Nyhan, W. L. (1968) Clinical features of the Lesch-Nyhan syndrome: Introduction-clinical and genetic features. Fed. Proc. 27, 1027–1033.

    PubMed  CAS  Google Scholar 

  335. Lloyd, K. G., Hornykiewicz, O., Davidson, L., Shannak, K., Farley, I., Goldstein, M., Shibuya, M., Kelly, W. N., and Fox, I. H. (1981) Biochemical evidence of dysfunction of brain neurotransmitters in the Lesch-Nyhan syndrome. N. Engl. J. Med. 305, 1106–1111.

    Article  PubMed  CAS  Google Scholar 

  336. Wong, D. F., Harris, J. C., Naidu, S., Yokoi, F., Marenco, S., Dannals, R. F., Ravert, H. T., Yaster, M., Evans, A., Rousset, O., Bryan, R. N., Gjedde, A., Kuhar, M. J., and Breese, G. R. (1996) Dopamine transporters are markedly reduced in Lesch-Nyhan disease in vivo. Proc. Natl. Acad. Sci. USA 93, 5539–5543.

    Article  CAS  Google Scholar 

  337. Ernst, M., Zametkin, A. J., Matochik, J. A., Pascualvaca, D., Jons, P. H., Hardy, K., Hankerson, J. G., Doudet, D. J., and Cohen, R. M. (1996) Presynaptic dopaminergic deficits in Lesch-Nyhan disease. N. Engl. J. Med. 334, 1568–1572.

    Article  PubMed  CAS  Google Scholar 

  338. Fingers, S., Heavens, R. P., Sirinathsinghji, D. J., and Kuehn, M. R. (1988) Behavioral and neurochemical evaluation of a transgenic mouse model of Lesch-Nyhan syndrome. J. Neurol. Sci. 86, 203–213.

    Article  Google Scholar 

  339. Dunnett, S. B., Sirinathsinghji, D. J., Heavens, R., Rogers, D. C., and Kuehn, M. R. (1989) Monoamine deficiency in a transgenic (HPRT-) mouse model of Lesch-Nyhan syndrome. Brain Res. 501, 401–406.

    Article  PubMed  CAS  Google Scholar 

  340. Jinnah, H. A., Langlais, P. J., and Friedmann, T. (1992) Functional analysis of brain dopamine systems in a genetic mouse model of Lesch-Nyhan syndrome. J. Pharmacol. Exp. Ther. 263, 596–607.

    PubMed  CAS  Google Scholar 

  341. Jinnah, H. A., Wojcik, B. E., Hunt, M., Narang, N., Lee, K. Y., Goldstein, M., Wamsley, J. K., Langlais, P. J., and Friedmann, T. (1994) Dopamine deficiency in a genetic mouse model of Lesch-Nyhan disease. J. Neurosci. 14, 1164–1175.

    PubMed  CAS  Google Scholar 

  342. Schiffmann, S. N. and Vanderhaeghen, J. J. (1993) Adenosine A2 receptors regulate the gene expression of striatopallidal and striatonigral neurons. J. Neurosci. 13, 1080–1087.

    PubMed  CAS  Google Scholar 

  343. Morelli, M., Pinna, A., Wardas, J., and DiChiara, G. (1995) Adenosine A2 receptors stimulate c-Fos expression in striatal neurons of 6-hydroxydopamine-lesioned rats. Neuroscience 67, 49–55.

    Article  PubMed  CAS  Google Scholar 

  344. Pollack, A. E. and Fink, J. S. (1995) Adenosine antagonists potentiate D2 dopamine-dependent activation of Fos in the striatopallidal pathway. Neuroscience 68, 721–728.

    Article  PubMed  CAS  Google Scholar 

  345. Joyce, J. N. (1993) The dopamine hypothesis of schizophrenia: limbic interactions with serotonin and norepinephrine. Psychopharmacology 112, S 16–34.

    Google Scholar 

  346. Halberstadt, A. L. (1995) The phencyclidine-glutamate model of schizophrenia. Clin. Neuropharmacol. 18, 237–249.

    Article  PubMed  CAS  Google Scholar 

  347. Deutch, A. Y. (1994) The regulation of subcortical dopamine systems by the prefrontal cortex: interactions of central dopamine systems and the pathogenesis of schizophrenia. J. Neural Trans. 36, 61–89.

    Google Scholar 

  348. Schwarzkopf, S. B., Mitra, T., and Bruno, J. P. (1992) Sensory gating in rats depleted of dopamine as neonates: potential relevance to findings in schizophrenic patients. Biol. Psychiatr. 31, 759–773.

    Article  CAS  Google Scholar 

  349. Bubser, M. and Koch, M. (1994) Prepulse inhibition of the acoustic startle response of rats is reduced by 6-hydroxydopamine lesions of the medial prefrontal cortex. Psychopharmacol. 113, 487–492.

    Article  CAS  Google Scholar 

  350. Coyle, J. T. and Johnston, M. V. (1980) Functional hyperinnervation of cerebral cortex by noradrenergic neurons results from fetal lesions: parallels with schizophrenia. Psychopharmacol. Bull. 16, 27–29.

    PubMed  CAS  Google Scholar 

  351. Hudson, J. L., van Horne, C. G., Stromberg, I., Brock, S., Clayton, J., Masserano, J., Hoffer, B. J., and Gerhardt, G. A. (1993) Correlation of apomorphine-and amphetamine-induced turning with nigrostriatal dopamine content in unilateral 6-hydroxydopamine lesioned rats. Brain Res. 626, 167–174.

    Article  PubMed  CAS  Google Scholar 

  352. Lindvall, O. (1994) Clinical application of neuronal grafts in Parkinson’s disease. J. Neurol. 242, S54–56.

    Article  PubMed  CAS  Google Scholar 

  353. Backlund, E. O., Granberg, P. O., Hamberger, B., Knutsson, E., Martensson, A., Sevall, G., Seiger, A., and Olson, L. (1985) Transplantation of adrenal medullary tissue to striatum in parkinsonism: First clinical trials. J. Neurosurg. 62, 169–173.

    Article  PubMed  CAS  Google Scholar 

  354. Freed, W. J., Morishisa, J. M., Spoor, H. E., Hoffer, B. J., Olson, L., Seiger, A., and Wyatt, R. J. (1981) Transplanted adrenal chromaffin cells in rat brain reduce lesion-induced rotational behavior. Nature 292, 351–352.

    Article  PubMed  CAS  Google Scholar 

  355. Freed, W. J., Poltorak, M., and Becker, J. B. (1990) Intracerebral adrenal medulla grafts. A review. Exp. Neurol. 110, 139–166.

    Article  PubMed  CAS  Google Scholar 

  356. Madrazo, I., Drucker-Colin, R., Diaz, V., Martinez-Mata, J., Tones, C., and Becerri, J. J. (1987) Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s disease. N. Engl. J. Med. 316, 831–834.

    Article  PubMed  CAS  Google Scholar 

  357. Allen, G. S., Burns, R. S., Tulipan, N. B., and Parker, R. A. (1989) Adrenal medullary transplantation to the caudate nucleus in Parkinson’s disease. Arch. Neurol. 46, 487–491.

    Article  PubMed  CAS  Google Scholar 

  358. Lindvall, O., Backlund, E. O., Farde, L., Sedvall, G., Freedman, R., and Hoffer, B. (1987) Transplantation in Parkinson’s disease: Two cases of adrenal medullary grafts to the putamen. Ann. Neurol. 22, 457–568.

    Article  PubMed  CAS  Google Scholar 

  359. Broggi, G., Pluchino, E, Gennari, L., Geminian, S., Tamma, E, and Caraceni, T. (1991) Adrenal medulla autograft in caudate nucleus as treatment for Parkinson’s disease. Acta. Neurochir. Suppl. (Wien) 52, 45–47.

    CAS  Google Scholar 

  360. Ben, R., Ji-Chang, F., Yao-Dong, B., Yie-Jian, L., and Yi-Fang, Z. (1991) Transplantation of fetal adrenal medullary tissue into the brain of Parkinsonian. Acta. Neurochir. Suppl. (Wien) 52, 42–44.

    CAS  Google Scholar 

  361. Goetz, C. G., Stebbins, G. T., Klawans, H. L., Koller, W. C., Grossman, R. G., Bakay, R. A. E., and Penn, R. D. (1991) United Parkinson foundation neurotransplantation registry on adrenal medullary transplants: Presurgical, and 1-year and 2-year follow-up. Neurology 41, 1719–1722.

    Article  PubMed  CAS  Google Scholar 

  362. Widner, H., Brundin, P., Rehncrona, S., Gustavii, B., Frackowiak, R., Leenders, K. L., Sawle, G., Rothwell, J. C., Marsden, C. D., Björklund, A., et al. (1991) Transplanted allogeneic fetal dopamine neurons survive and improve motor function in idiopathic Parkinson’s disease. Transplant. Proc. 23, 793–795.

    PubMed  CAS  Google Scholar 

  363. Widner, H., Tetrud, J., Rehncrona, S., Snow, B., Grundin, P., Gustativii, B., Björklund, A., Lindvall, O., and Langston, J. W. (1992) Bilateral fetal mesencephalic granting in two patients with Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). N. Engl. J. Med. 327, 1556–1563.

    Article  PubMed  CAS  Google Scholar 

  364. Lindvall, O., Brundin, P., Widner, H., Rehncrona, S., Gustavii, B., Frackowiak, R., Lenders, K. L., Sawle, G., Rothwell, J. C., Marsden, C. D., and Björklund, A. (1990) Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 247, 574–577.

    Article  PubMed  CAS  Google Scholar 

  365. Lindvall, O., Widner, H., Rehncrona, S., Brundin, P., Odin, P., Gustavii, B., Franckowiak, R., Leenders, K. L., Sawle, G., Rothwell, J. C., Björklund, A., and Marsden, C. D. (1992) Transplantation of fetal dopamine neurons in Parkinson’s Disease: One year Clinical and Neurophysiological Observations in two patients with putaminal implants. Ann. Neurol. 31, 155–165.

    Article  PubMed  CAS  Google Scholar 

  366. Sawle, G., Bloomfield, P. M., Björklund, A., Brooks, D. J., Brundin, P., Leenders, K. L., Lindvall, O., Marsden, C. D., Rehcrona, S., Widner, H., and Frackowiak, R. S. J. (1992) Transplantation of fetal dopamine neurons in Parkinson’s disease: PET [’8F]6-L-Fluorodopa studies in two patients with putaminal implants. Ann. Neurol. 31, 166–173.

    Article  PubMed  CAS  Google Scholar 

  367. Freed, C. R., Breeze, R. E., Rosenberg, N. L., and Schneck, S. A. (1993) Embryonic dopamine cell implants as a treatment for the second phase of Parkinson’s disease. Replacing failed nerve terminals. Adv. Neurol. 60, 721–728.

    PubMed  CAS  Google Scholar 

  368. Redmond, D. E., Jr., Robbins, R. J., Naftolin, F., Marek, K. L., Vollmer, T. L., Leranth, C., Roth, R. H., Price, L. H., Gjedde, A., Bunney, B. S., et al. (1993) Cellular replacement of dopamine deficit in Parkinson’s disease using human fetal mesencephalic tissue: preliminary results in four patients. Res. Publications Assoc. Res. Nerv. Mental Dis. 71, 325–359.

    Google Scholar 

  369. Björklund, A. and Stenevi, U. (1979) Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res. 177, 555–560.

    Article  PubMed  Google Scholar 

  370. Freeman, T. B., Olanow, C. W., Hauser, R. A., Nauert, G. M., Smith, D. A., Borlongan, C. V., Sanberg, P. R., Holt, D. A., Kordower, J. H., Vingerhoets, F. J., et al. (1995) Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson’s disease. Ann. Neurol. 38, 379–388.

    Article  PubMed  CAS  Google Scholar 

  371. Freed, W. J., Perlow, M. J., Karoum, F., Seiger, A., Olson, L., Hoffer, B. J., and Wyatt, R. J. (1980) Restoration of dopaminergic function by grafting of fetal rat substantia nigra to the caudate nucleus: long-term behavioral, biochemical, and histochemical studies. Ann. Neurol. 8, 510–519.

    Article  PubMed  CAS  Google Scholar 

  372. Zhu, S. M., Kujirai, K., Dollison, A., Angulo, J., Fahn, S., and Cadet, J. L. (1992) Implantation of genetically modified mesencephalic fetal cells into the rat striatum. Brain Res. Bull. 29, 81–93.

    Article  PubMed  CAS  Google Scholar 

  373. Annett, L. E., Martel, F. L., Rogers, D. C., Ridley, R. M., Baker, H. F., and Dunnett, S. B. (1994) Behavioral assessment of the effects of embryonic nigral grafts in marmosets with unilateral 6-OHDA lesions of the nigrostriatal pathway. Exp. Neurol. 125, 228–246.

    Article  PubMed  CAS  Google Scholar 

  374. Annett, L. E., Torres, E. M., Ridley, R. M., Baker, H. F., and Dunnett, S. B. (1995) A comparison of the behavioural effects of embryonic nigral grafts in the caudate nucleus and in the putamen of marmosets with unilateral 6-OHDA lesions. Exp. Brain Res. 103,355–371.

    Article  PubMed  CAS  Google Scholar 

  375. Björklund, A., Dunnett, S. B., Stenevi, U., Lewish, M. E., and Iversen, S. D. (1980) Reinnervation of the denervated striatum by substantia nigra transplants: Functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res. 199, 307–333.

    Article  PubMed  Google Scholar 

  376. Taylor, J. R., Elsworth, J. D., Roth, R. H., Collier, T. J., Sladek, J. R., Jr., and Redmond, D. E., Jr. (1990) Improvements in MPTP-induced object retrieval deficits and behavioral deficits after fetal nigral grafting in monkeys. Prog. Brain Res. 82, 543–559.

    Article  PubMed  CAS  Google Scholar 

  377. Taylor, J. R., Elsworth, J. D., Roth, R. H., Sladek, J. R., Jr., Collier, T. J., and Redmond, D. E., Jr. (1991) Grafting of fetal substantia nigra to striatum reverses behavioral deficits induced by MPTP in primates: a comparison with other types of grafts as controls. Exp. Brain Res. 85, 335–348.

    Article  PubMed  CAS  Google Scholar 

  378. Collier, T. J. and Springer, J. E. (1991) Co-grafts of embryonic dopamine neurons and adult sciatic nerve into the denervated striatum enhance behavioral and morphological recovery in rats. Exp. Neurol. 114, 343–350.

    Article  PubMed  CAS  Google Scholar 

  379. Blunt, S. B., Jenner, P., and Marsden, C. D. (1992) Motor function, graft survival and gliosis in rats with 6-OHDA lesions and foetal ventral mesencephalic grafts chronically treated with L-DOPA and carbidopa. Exp. Brain Res. 88, 326–340.

    Article  PubMed  CAS  Google Scholar 

  380. Cenci, M. A., Kalen, P., Mandel, R. J., Wictorin, K., and Björklund, A. (1992) Dopaminergic transplants normalize amphetamine-and apomorphine-induced Fos expression in the 6-hydroxydopamine-lesioned striatum. Neuroscience 46, 943–957.

    Article  PubMed  CAS  Google Scholar 

  381. Savasta, M., Mennicken, E, Chritin, M., Arbous, D. N., Feuerstein, C., LeMoal, M., and Herman, J. P. (1992) Intrastriatal dopamine-rich implants reverse in the changes in dopamine D2 receptor densities caused by 6-hydroxydopamine lesion of the nigrostriatal pathway in rats: An autoradiographic study. Neuroscience 46, 729–738.

    Article  PubMed  CAS  Google Scholar 

  382. Rioux, L., Gagnon, C., Gaudin, D. P., Di Paolo, T., and Bedard, P. J. (1993) A fetal nigral graft prevents behavioral supersensitivity associated with repeated injections of L-DOPA in 6-OHDA rats. Correlation with D1 and D2 receptors. Neuroscience 56, 45–51.

    Article  PubMed  CAS  Google Scholar 

  383. Zhu, Y. S., Jones, S. B., Burke, R. E., Franklin, S. O., and Inturrisi, C. E. (1993) Quantitation of the levels of tyrosine hydroxylase and preproenkephalin mRNAs in nigrostriatal sites after 6-hydroxydopamine lesions. Life Sci. 52, 1577–1584.

    Article  PubMed  CAS  Google Scholar 

  384. Cenci, M. A. and Björklund, A. (1994) Transection of corticostriatal afferents abolishes the hyperexpression of Fos and counteracts the development of rotational overcompensation induced by intrastriatal dopamine-rich grafts when challenged with amphetamine. Brain Res. 665, 167–174.

    Article  PubMed  CAS  Google Scholar 

  385. Wang, Y., Lin, J. C., Chiou, A. L., Liu, J. Y., Liu, J. C., and Zhou, E C. (1995) Human ventromesencephalic grafts restore dopamine release and clearance in hemiparkinsonian rats. Exp. Neurol. 136, 98–106.

    Article  PubMed  CAS  Google Scholar 

  386. Abrous, D. N., Desjardins, S., Sorin, B., Hancock, S. D., Le Moal, M., and Herman, J-P. (1996) Changes in striatal immediate early gene expression following neonatal dopaminergic lesion and effects of intrastriatal dopaminergic transplants. Neuroscience 73, 145–159.

    Article  PubMed  CAS  Google Scholar 

  387. Nikkah, G., Cunningham, M. G., Cenci, M. A., McKay, R. D., and Björklund, A. (1995) Dopaminergic microtransplants into the substantia nigra of neonatal rats with bilateral 6-OHDA lesions. I. Evidence for anatomical reconstruction of the nigrostriatal pathway. J. Neurosci. 15, 3548–3561.

    Google Scholar 

  388. Nikkhah, G., Cunningham, M. G., McKay, R., and Björklund, A. (1995) Dopaminergic microtransplants into the substantia nigra of neonatal rats with bilateral 6-OHDA lesions. II. Transplant-induced behavioral recovery. J. Neurosci. 15, 3562–3570.

    PubMed  CAS  Google Scholar 

  389. Dunnett, S. B. (1991) Towards a neural transplantation therapy for Parkinson’s disease: experimental principles from animal studies. Acta Neurochir. Suppl. 52, 35–38.

    CAS  Google Scholar 

  390. Henderson, B. T., Kenny, B. G., Hitchcock, E. R., Hughes, R. C., and Clough, C. G. (1991) A comparative evaluation of clinical rating scales and quantitative measurements in assessment pre and post striatal implantation of human foetal mesencephalon in Parkinson’s disease. Acta Neurochirur. Suppl. 52, 48–50.

    Article  CAS  Google Scholar 

  391. Kordower, J. H., Freeman, T. B., Snow, B. J., Vingerhoets, F. J., Mufson, E. J., Sanberg, P. R., Hauser, R. A., Smith, D. A., Nauert, G. M., Perl, D. P., et al. (1995) Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N. Engl. J. Med. 332, 1118–1124.

    Article  PubMed  CAS  Google Scholar 

  392. Lindvall, O., Sawle, G., Widner, H., Rothwell, J. C., Björklund, A., Brooks, D., Brundin, P., Frackowiak, R., Marsden, C. D., Odin, P., et al. (1994) Evidence for longterm survival and function of dopaminergic grafts in progressive Parkinson’s disease. Ann. Neurol. 35, 172–180.

    Article  PubMed  CAS  Google Scholar 

  393. Ahlskog, J. E., Kelly, P. J., van Heerden, J. A., Stoddard, S. L., Tyce, G. M., Winde-bank, A. J., Bailey, P. A., Bell, G. N., Blexrud, M. D., and Carmichael, S. W. (1990) Adrenal medullary transplantation into the brain for treatment of Parkinson’s disease: clinical outcome and neurochemical studies. Mayo Clin. Proc. 65, 305–328.

    Article  PubMed  CAS  Google Scholar 

  394. Hitchcock, E. R., Kenny, B. G., Henderson, B. T., Clough, C. G., Hughes, R. C., and Detta, A. (1991) A series of experimental surgery for advanced Parkinson’s disease by foetal mesencephalic transplantation. Acta Neurochir. Suppl. 52, 54–57.

    CAS  Google Scholar 

  395. Hoffer, B. J., Leenders, K. L., Young, D., Gerhardt, G., Zerbe, G. O., Bygdeman, M., Seiger, A., Olson, L., Stromberg, I., and Freedman, R. (1992) Eighteen-month course of two patients with grafts of fetal dopamine neurons for severe Parkinson’s disease. Exp. Neurol. 118, 243–252.

    Article  PubMed  CAS  Google Scholar 

  396. Defer, G. L., Geny, C., Ricolfi, E, Fenelon, G., Monfort, J. C., Remy, P., Villafane, G., Jeny, R., Samson, Y., Keravel, Y., Gaston, A., Degos, J. D., Peschanski, M., Cesaro, E, and Nguyen, J. P. (1996) Long-term outcome of unilaterally transplanted parkinsonian patients. I. Clinical approach. Brain 119, 41–50.

    Article  PubMed  Google Scholar 

  397. Diamond, S. G., Markham, C. H., Rand, R. W., Becker, D. P., and Treciokas, J. (1994) Four-year follow-up of adrenal-to-brain transplants in Parkinson’s disease. Arch. Neurol. 51, 559–563.

    Article  PubMed  CAS  Google Scholar 

  398. Folkerth, R. D. and Durso, R. (1996) Survival and proliferation of nonneural tissues, with obstruction of cerebral ventricles, in a parkinsonian patient treated with fetal allografts. Neurology 46, 1219–1225.

    Article  PubMed  CAS  Google Scholar 

  399. Rosenstein, J. M. (1995) Why do neural transplants survive? An examination of some metabolic and pathophysiological considerations in neural transplantation. Exp. Neurol. 133, 1–6.

    Article  PubMed  CAS  Google Scholar 

  400. Shinoda, M., Hudson, J. L., Stromberg, I., Hoffer, B. J., Moorhead, J. W., and Olson, L. (1995) Allogeneic grafts of fetal dopamine neurons-immunological reactions following active and adoptive immunizations. Brain Res. 680, 180–195.

    Article  PubMed  CAS  Google Scholar 

  401. Fletcher, S. (1992) Innovative treatment or ethical headache? Fetal transplantation in Parkinson’s Disease. Prof Nurse 7, 592–595.

    PubMed  CAS  Google Scholar 

  402. Bain, L. (1993) Fetal tissue transplantation in Parkinson’s disease. Br. J. Nurs. 2, 1012–1016.

    PubMed  CAS  Google Scholar 

  403. Boer, G. J. (1994) Ethical guidelines for the use of human embryonic or fetal tissue for experimental and clinical neurotransplantation and research. Network of European CNS Transplantation and Restoration (NECTAR). J. Neurol. 242, 1–13.

    Article  PubMed  CAS  Google Scholar 

  404. Markowitz, M. S. (1993) Human fetal tissue: ethical implications for use in research and treatment. AWHONNS Clin. Issues Perinat. Womens Health Nurs. 4, 578–588.

    PubMed  CAS  Google Scholar 

  405. Ritschl, D. (1995) Use of embryonal CNS tissue in Parkinson disease from the medical ethics viewpoint. Zentralbl. Neurochir. 56, 206–209.

    PubMed  CAS  Google Scholar 

  406. Galpern, W. R., Burns, L. H., Deacon, T. W., Dinsmore, J., and Isacson, O. (1996) Xenotransplantation of porcine fetal ventral mesencephalon in a rat model of Parkinson’s disease: Functional recovery and graft morphology. Exp. Neurol. 140, 1–13.

    Article  PubMed  CAS  Google Scholar 

  407. Stromberg, I., Adams, C., Bygdeman, M., Hoffer, B., Boyson, S., and Humpel, C. (1995) Long-term effects of human-to-rat mesencephalic xenografts on rotational behavior, striatal dopamine receptor binding, and mRNA levels. Brain Res. Bull. 38, 221–233.

    Article  PubMed  CAS  Google Scholar 

  408. Brudin, P., Milsson, O. G., Gage, F. H., and Björklund, A. (1985) Cyclosporin A increases survival of cross-species intrastriatal grafts of embryonic dopamine-containing neurons. Exp. Brain Res. 60, 204–208.

    Google Scholar 

  409. Zhou, J., Date, I., Sakai, K., Yoshimoto, Y., Furuta, T., Asari, S., and Ohmoto, T. (1993) Xenogeneic dopaminergic grafts reverse behavioral deficits induced by 6-OHDA in rodents: effect of 15-deoxyspergualin treatment. Neurosci. Lett. 163, 81–84.

    Article  PubMed  CAS  Google Scholar 

  410. Kondoh, T., Pundt, L. L., and Low, W. C. (1995) Development of human fetal ventral mesencephalic grafts in rats with 6-OHDA lesions of the nigrostriatal pathway. Neurosci. Res. 21, 223–233.

    Article  PubMed  CAS  Google Scholar 

  411. Rosenfeld, J. V., Kilpatrick, T. J., and Bartlett, P. F. (1991) Neural transplantation for Parkinson’s disease: a critical appraisal. Aust. N. Zeal. J. Med. 21, 477–484.

    Article  CAS  Google Scholar 

  412. Hoffer, B. J. and van Home, C. (1995) Survival of dopaminergic neurons in fetal-tissue grafts. N. Engl. J. Med. 332, 1163–1164.

    Article  PubMed  CAS  Google Scholar 

  413. Date, I. and Ohmoto, T. (1996) Neural transplantation and trophic factors in Parkinson’s disease: Special reference to chromaffin cell grafting, NGF support from pretranseheral nerve, and encapsulated dopamine-secreting cell grafting. Exp. Neurol. 137, 333–344.

    Article  PubMed  CAS  Google Scholar 

  414. Niijima, K., Chalmers, G. R., Peterson, D. A., Fisher, L. J., Patterson, P. H., and Gage, F. H. (1995) Enhanced survival and neuronal differentiation of adrenal chromaffin cells cografted into the striatum. J. Neurosci. 15, 1180–1194.

    PubMed  CAS  Google Scholar 

  415. Westermann, R., Hardung, M., Meyer, D. K., Ekhrhard, P., Otten, U., and Unsicker, K. (1988) Neurotrophic factors released by C6 glioma cells. J. Neurochem. 50, 1747–1758.

    Article  PubMed  CAS  Google Scholar 

  416. Westlund, K. N., Lu, Y., Kadekaro, M., Harmann, P., Terrell, M. L., Pizzo, D. P., Hulsebosch, C. E., Eisenberg, H. M., and Perez-Polo, J. R. (1995) NGF-producing transfected 3T3 cells: behavioral and histological assessment of transplants in nigral lesioned rats. J. Neurosci. Res. 41, 367–373.

    Article  PubMed  CAS  Google Scholar 

  417. Kordower, J. H., Chen, E. Y., Mufson, E. J., Winn, S. R., and Emerich, D. F. (1996) Intrastriatal implants of polymer encapsulated cells genetically modified to secrete human nerve growth factor: Trophic effects upon cholinergic and noncholinergic striatal neurons. Neuroscience 72, 63–77.

    Article  PubMed  CAS  Google Scholar 

  418. Collier, T. J. and Springer, J. E. (1994) Neural graft augmentation through co-grafting: implantation of cells as sources of survival and growth factors. Prog. Neurobiol. 44, 309–311.

    Article  PubMed  CAS  Google Scholar 

  419. Frodin, M. and Gammeltoft, S. (1994) Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation. Proc. Natl. Acad. Sci. USA 91, 1771–1775.

    Article  PubMed  CAS  Google Scholar 

  420. Kordower, J. H., Fiandaca, M. S., Notter, M. F. D., Hansen, J. T., and Gash, D. M. (1990) NGF-like trophic support from peripheral nerve for grafted rhesus adrenal chromaffin cells. J. Neurosurg. 73, 418–428.

    Article  PubMed  CAS  Google Scholar 

  421. Doering, L. C. (1992) Peripheral nerve segments promote consistent long terms survival of adrenal medulla transplants in the brain. Exp. Neurol. 118, 253–260.

    Article  PubMed  CAS  Google Scholar 

  422. Hansson, H. A., Dahlin, L. B., Danielsen, N., Fryklund, L., Nachemson, K., Polleryd, P., Rozell, B., Skottner, A., Stemme, S., and Lundborg, G. (1986) Evidence indicating trophic important of IGF-1 in regenerating peripheral nerves. Acta. Physiol. Scand. 126, 609–614.

    Article  PubMed  CAS  Google Scholar 

  423. Manthorpe, M., Skaper, S. D., Williams, L. R., and Varon, L. (1986) Purification of adult rat sciatic nerve ciliary neurotrophic factor. Brain. Res. 367, 282–286.

    Article  PubMed  CAS  Google Scholar 

  424. Takayama, H., Ray, J., Raymon, H. K., Baird, A., Hogg, J., Fisher, L. J., and Gage, F. H. (1995) Basic fibroblast growth factor increases dopaminergic graft survival and function in a rat model of Parkinson’s disease. Nature Med. 1, 53–58.

    Article  PubMed  CAS  Google Scholar 

  425. Hague, N. S., Hlavin, M. L., Fawcett, J., and Dunnett, S. B. (1994) The effect of neurotrophin-5 on the growth and survival of nigral grafts in a rat model of Parkinson’s disease. Gene Ther. 1, S60.

    Google Scholar 

  426. Hague, N. S., Hlavin, M. L., Fawcett, J. W., and Dunnett, S. B. (1996) The neurotrophin NT4/5, but not NT3, enhances the efficacy of nigral grafts in a rat model of Parkinson’s disease. Brain Res. 712, 45–52.

    Article  Google Scholar 

  427. Yurek, D. M., Lu, W., Hipkens, S., and Wiegand, S. J. (1996) BDNF enhances the functional reinnervation of the striatum by grafted fetal dopamine neurons. Exp. Neurol. 137, 105–118.

    Article  PubMed  CAS  Google Scholar 

  428. Sheng, J. G., Shirabe, S., Nishiyama, N., and Schwartz, J. P. (1993) Alterations in striatal glial fibrillary acidic protein expression in response to 6-hydroxydopamine-induced denervation. Exp. Brain Res. 95, 450–456.

    Article  PubMed  CAS  Google Scholar 

  429. Freed, W. J., Geller, H. M., Poltorak, M., Cannon-Spoor, H. E., Cottingham, S. L., LaMarca, M. E., Schultzberg, M., Rehavi, M., Paul, S., and Ginns, E. I. (1990) Genetically altered and defined cell lines for transplantation in animal models of Parkinson’s disease. Prog. Brain Res. 82, 11–21.

    Article  PubMed  CAS  Google Scholar 

  430. Aebischer, P., Winn, S. R., Tresco, P. A., Jaeger, C. B., and Greene, L. A. (1991) Transplantation of polymer encapsulated neurotransmitter secreting cells: effect of the encapsulation technique. J. Biomech. Eng. 113, 178–183.

    Article  PubMed  CAS  Google Scholar 

  431. Chen, L. S., Ray, J., Fisher, L. J., Kawaja, M. D., Schinstine, M., Kang, U. J., and Gage, F. H. (1991) Cellular replacement therapy for neurologic disorders: potential of genetically engineered cells. J. Cell Biochem. 45, 252–257.

    Article  PubMed  CAS  Google Scholar 

  432. Gage, F. H., Fisher, L. J., Jinnah, H. A., Rosenberg, M. B., Tuszynski, M. H., and Friedmann, T. (1990) Grafting genetically modified cells to the brain: conceptual and technical issues. Prog. Brain Res. 82, 1–10.

    Article  PubMed  CAS  Google Scholar 

  433. Winn, S. R., Tresco, P. A., Zielinski, B., Greene, L. A., Jaeger, C. B., and Aebischer, P. (1991) Behavioral recovery following intrastriatal implantation of microencapsulated PC12 cells. Exp. Neurol. 113, 322–329.

    Article  PubMed  CAS  Google Scholar 

  434. Emerich, D. F., Winn, S. R., Christenson, L., Palmatier, M. A., Gentile, F. T., and Sanberg, P. R. (1992) A novel approach to neural transplantation in Parkinson’s disease: use of polymer-encapsulated cell therapy. Neurosci. Biobehay. Rev. 16, 437–447.

    Article  CAS  Google Scholar 

  435. Gumpert, J., Sharpe, D., and Curzon, G. (1973) Amine metabolites in the cerebrospinal fluid in Parkinson’s disease and the response to levodopa. J. Neurol. Sci. 19, 1–12.

    Article  PubMed  CAS  Google Scholar 

  436. Korf, J., van Praag, H. M., Schut, D., Nienhuis, R. J., and Lakke, J. P. (1974) Parkinson’s disease and amine metabolites in cerebrospinal fluid: implications for L-DOPA therapy. Eur. J. Neurol. 12, 340–350.

    Article  CAS  Google Scholar 

  437. Olson, L. (1993) Reparative strategies in the brain: treatment strategies based on trophic factors and cell transfer techniques. Acta Neurochir. Suppl. 58, 3–7.

    PubMed  CAS  Google Scholar 

  438. Redmond, D. E., Jr., Roth, R. H., Spencer, D. D., Naftolin, F., Leranth, C., Robbins, R. J., Marek, K. L., Elsworth, J. D., Taylor, J. R., Sass, K. J., et al. (1993) Neural transplantation for neurodegenerative diseases: past, present, and future. Ann. NYAcad. Sci. 695, 258–266.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Breese, C.R., Breese, G.R. (1998). The Use of Neurotoxins to Lesion Catecholamine-Containing Neurons to Model Clinical Disorders. In: Kostrzewa, R.M. (eds) Highly Selective Neurotoxins. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-477-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-477-1_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-047-2

  • Online ISBN: 978-1-59259-477-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics