Skip to main content

Searching For SARA

The Role Of Selective Androgen-Receptor Antagonists in Prostate Cancer

  • Chapter
Cancer Chemoprevention

Abstract

In the US, one in six men will develop prostate cancer during his lifetime (1), and prostate cancer accounts for nearly 3% of all deaths in men over age 55 (2). Since prostate cancer is primarily a malignancy of the aged, these numbers are likely to increase as the population ages. Primary treatment for prostate cancer typically involves radical prostatectomy, external beam radiation, or brachytherapy (seeding the prostate with radioisotope). All these therapies lead to about a 30% rate of recurrence (2a). Androgen ablation is most often used as second-line therapy, since prostate-derived cancers are, at least initially, androgen-dependent for growth. Androgen ablation is commonly achieved by surgical castration, the use of GnRH super-agonists to block LH release and thus inhibit testosterone synthesis, or the use of androgen antagonists alone or in combination with GnRH agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Potosky AL, Miller BA, Albertson PC, et al. The role of increasing detection in the rising incidence of prostate cancer. JAMA 1995;273:548–552.

    PubMed  CAS  Google Scholar 

  2. Hanks GE, Myers CE, Scardino PT. Cancer of the prostate, in Cancer: Principles and Practice of Oncology, 4th ed. DeVita VT Jr, Hellman S, Rosenberg SA, eds. Philadelphia, PA, J.B. Lippincott Co. 1993, pp. 1073–1113.

    Google Scholar 

  3. Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer 2001;1:34–45.

    PubMed  CAS  Google Scholar 

  4. Nef S, Parada LF. Hormones in male sexual development. Genes Dev 2000;14:3075–3086.

    PubMed  CAS  Google Scholar 

  5. Guo Z, Benton WP, Krucken J, Wunderlich F. Nongenomic testosterone calcium signaling. Genotropic actions in androgen receptor-free macrophages. J Biol Chem 2002;277:29,600–29,607.

    CAS  Google Scholar 

  6. Beato M, Klug J. Steroid hormone receptors: an update. Hum Reprod Update 2000;6:225–236.

    PubMed  CAS  Google Scholar 

  7. Keller ET, Chang C, Ershler WB. Inhibition of NFκB activity through maintenance of IKBa levels contributes to dihydrotestosterone-mediated repression of the interleukin-6 promoter. J Biol Chem 1996;271:26,267–26,275.

    CAS  Google Scholar 

  8. Irani J, Ravery V., Pariente JL, et al. Effect of nonsteroidal anti-inflammatory agents and finasteride on prostate cancer risk. J Urol 2002;168:1985–1988.

    PubMed  CAS  Google Scholar 

  9. Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 2000;14:121–141.

    PubMed  CAS  Google Scholar 

  10. Beitel LK. http://ww2.mcgill.ca/androgendb/ARinteract.pdf. 2002.

  11. Sampson ER, Yeh SY, Chang HC, et al. Identification and characterization of androgen receptor associated coregulators in prostate cancer cells. J Biol Regul Homeost Agents 2001;15:123–129.

    PubMed  CAS  Google Scholar 

  12. Fujimoto N, Yeh S, Kang HY, et al. Cloning and characterization of androgen receptor coactivator, ARA55, in human prostate. J Biol Chem 1999;274:8316–8321.

    PubMed  CAS  Google Scholar 

  13. Weatherman RV, Fletterick RJ, Scanlan TS. Nuclear-receptor ligands and ligand-binding domains. Annu Rev Biochem 1999;68:559–581.

    PubMed  CAS  Google Scholar 

  14. Shang Y, Hu X, DiRenzo J, et al. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 2000;103:843–852.

    PubMed  CAS  Google Scholar 

  15. Negro-Vilar A. Selective androgen receptor modulators (SARMs): a novel approach to androgen therapy for the new millennium. J Clin Endocrinol Metab 1999;84:3459–3462.

    PubMed  CAS  Google Scholar 

  16. Reid P, Kantoff P, Oh W. Antiandrogens in prostate cancer. Investig New Drugs 1999;17:271–284.

    CAS  Google Scholar 

  17. He B, Kemppainen JA, Wilson EM. FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J Biol Chem 2000;275:22,986–22,994.

    CAS  Google Scholar 

  18. He B, Bowen NT, Minges JT, Wilson EM. Androgen-induced NH2- and COOH-terminal interaction inhibits p160 coactivator recruitment by activation function 2. J Biol Chem 2001;276:42,293–42,301.

    CAS  Google Scholar 

  19. Goueli SA, Holtzman JL, Ahmed K. Phosphorylation of the androgen receptor by a nuclear cAMP-independent protein kinase. Biochem Biophys Res Commun 1984;123:778–784.

    PubMed  CAS  Google Scholar 

  20. Gioeli D, Ficarro SB, Kwiek JJ, et al. Androgen receptor phosphorylation. Regulation and identification of the phosphorylation sites. J Biol Chem 2002;277:29,304–29,314.

    CAS  Google Scholar 

  21. Gaughan L, Logan IR, Cook S, et al. Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor. J Biol Chem 2002;277:25,904–25,913.

    CAS  Google Scholar 

  22. Nishida T, Yasuda H. PIAS 1 and PIASxalpha function as SUMO-E3 ligases toward androgen receptor and repress androgen receptor-dependent transcription. J Biol Chem 2002;277:41,311–41,317.

    CAS  Google Scholar 

  23. Nazareth LV, Weigel NL. Activation of the human androgen receptor through a protein kinase A signaling pathway. J Biol Chem 1996;271:19,900–19,907.

    CAS  Google Scholar 

  24. Farmer G, Connolly ES Jr, Mocco J, Freedman LP. Molecular analysis of the prostate-specific antigen upstream gene enhancer. Prostate 2001;46:76–85.

    PubMed  CAS  Google Scholar 

  25. Nelson PS, Clegg N, Arnold H, et al. The program of androgen-responsive genes in neoplastic prostate epithelium. Proc Natl Acad Sci USA 2002;99:11,890–11,895.

    CAS  Google Scholar 

  26. Pennefather JN, Lau WA, Mitchelson F, Ventura S. The autonomic and sensory innervation of the smooth muscle of the prostate gland: a review of pharmacological and histological studies. J Auton Pharmacol 2000;20:193–206.

    PubMed  CAS  Google Scholar 

  27. Kolvenbag GJ, Iversen P, Newling DW. Antiandrogen monotherapy: a new form of treatment for patients with prostate cancer. Urology 2001;58:16–23.

    PubMed  CAS  Google Scholar 

  28. Taplin ME, Ho SM. Clinical review 134: the endocrinology of prostate cancer. J Clin Endocrinol Metab 2001;86:3467–3477.

    PubMed  CAS  Google Scholar 

  29. Huggins C, Hodges CV. The effect of castration, of oestrogen and of androgen injections on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res 1941;1:293–297.

    CAS  Google Scholar 

  30. Bolla M, Gonzales D, Warde P, et al. Improved survival in patients with locally advanced prostate cancer treated with radiotherapy and goserelin. N Engl J Med 1997;337:295–300.

    PubMed  CAS  Google Scholar 

  31. Culig Z, Hobisch A, Bartsch G, Klocker H. Androgen receptor an update of mechanisms of action in prostate cancer. Urol Res 2000;28:211–219.

    PubMed  CAS  Google Scholar 

  32. de Winter JA, Trapman J, Brinkmann AO, et al. Androgen receptor heterogeneity in human prostatic carcinomas visualized by immunohistochemistry. J Pathol 1990;160:329–332.

    PubMed  Google Scholar 

  33. Baumann CT, Lim CS, Hager GL. Intracellular localization and trafficking of steroid receptors. Cell Biochem Biophys 1999;31:119–127.

    PubMed  CAS  Google Scholar 

  34. Trapman J, Cleutjens KB. Androgen-regulated gene expression in prostate cancer. Semin Cancer Biol 1997;8:29–36.

    PubMed  CAS  Google Scholar 

  35. van der Kwast TH, Schalken J, Ruizeveld de Winter JA, et al. Androgen receptors in endocrine-therapy-resistant human prostate cancer. Int J Cancer 1991;48:189–193.

    PubMed  Google Scholar 

  36. Lieberman R. Androgen deprivation therapy for prostate cancer chemoprevention: current status and future directions for agent development. Urology 2001;58(Suppl 1):83–90.

    PubMed  CAS  Google Scholar 

  37. Carroll PR, Kantoff PW, Balk SP, et al. Overview consensus statement. Newer approaches to androgen deprivation therapy in prostate cancer. Urology 2002;60(Suppl 1):1–6.

    PubMed  Google Scholar 

  38. Eisenberger MA, Blumenstein BA, Crawford ED, et al. Bilateral orchiectomy with or without flutamide for metastatic prostate cancer. N Engl J Med 1998;339:1036–1042.

    PubMed  CAS  Google Scholar 

  39. Caubet JF, Tosteson TD, Dong EW, et al. Maximum androgen blockade in advanced prostate cancer: a meta-analysis of published randomized controlled trials using nonsteroidal antiandrogens. Urology 1997;49:71–78.

    PubMed  CAS  Google Scholar 

  40. McLeod DG. Emerging role of adjuvant hormonal therapy. Urology 2002;60(Suppl 1):13–20.

    PubMed  Google Scholar 

  41. Iversen P, Melezinek I, Schmidt, A. Nonsteroidal antiandrogens: a therapeutic option for patients with advanced prostate cancer who wish to retain sexual interest and function. BJU Int 2001;87:47–56.

    PubMed  CAS  Google Scholar 

  42. Crook JM, Szumacher E, Malone S, et al. Intermittent androgen suppression in the management of prostate cancer. Urology 1999;53:530–534.

    PubMed  CAS  Google Scholar 

  43. Tyrrell CJ, Kaisary AV, Iversen P, et al. A randomised comparison of ‘Casodex’ (bicalutamide) 150 mg monotherapy versus castration in the treatment of metastatic and locally advanced prostate cancer. Eur Urol 1998;33:447–456.

    PubMed  CAS  Google Scholar 

  44. Iversen P, Tyrrell CJ, Kaisary AV, et al. Bicalutamide monotherapy compared with castration in patients with nonmetastatic locally advanced prostate cancer: 6.3 years of followup. J Urol 2000;164:1579–1582.

    PubMed  CAS  Google Scholar 

  45. Mazur DJ, Hickman DH. Patient preferences: survival vs quality-of-life considerations. J Gen Intern Med 1993;8:374–377.

    PubMed  CAS  Google Scholar 

  46. Singer PA, Tasch ES, Stocking C, et al. Sex or survival: trade-offs between quality and quantity of life. J Clin Oncol 1991;9:328–334.

    PubMed  CAS  Google Scholar 

  47. Eton DT, Lepore SJ. Prostate cancer and health-related quality of life: a review of the literature. Psychooncology 2002;11:307–326.

    PubMed  Google Scholar 

  48. de Bruijn M, Broekman M, van der Schoot P. Sexual interactions between estrous female rats and castrated male rats treated with testosterone propionate or estradiol benzoate. Physiol Behav 1988;43:35–39.

    PubMed  Google Scholar 

  49. Sodersten P, Eneroth P, Hansson T, et al. Activation of sexual behaviour in castrated rats: the role of oestradiol. J Endocrinol 1986;111:455–462.

    PubMed  CAS  Google Scholar 

  50. Crews D, Morgentaler A. Effects of intracranial implantation of oestradiol and dihydrotestosterone on the sexual behaviour of the lizard Anolis carolinensis. J Endocrinol 1979;82:373–381.

    CAS  Google Scholar 

  51. Verhelst J, Denis L, Van Vliet P, et al. Endocrine profiles during administration of the new non-steroidal anti-androgen Casodex in prostate cancer. Clin Endocrinol (Oxf) 1994;41:525–530.

    CAS  Google Scholar 

  52. Chodak G, Sharifi R, Kasimis B, et al. Single-agent therapy with bicalutamide: a comparison with medical or surgical castration in the treatment of advanced prostate carcinoma. Urology 1995;46:849–855.

    PubMed  CAS  Google Scholar 

  53. Boccardo F, Rubagotti A, Barichello M, et al. Bicalutamide monotherapy versus flutamide plus goserelin in prostate cancer patients: results of an Italian Prostate Cancer Project study. J Clin Oncol 1999;17:2027–2038.

    PubMed  CAS  Google Scholar 

  54. Narayan P, Trachtenberg J, Lepor H, et al. A dose-response study of the effect of flutamide on benign prostatic hyperplasia: results of a multicenter study. Urology 1996;47:497–504.

    PubMed  CAS  Google Scholar 

  55. Daniell HW. Osteoporosis after orchiectomy for prostate cancer. J Urol 1997;57:439–444.

    Google Scholar 

  56. Smith MR. Osteoporosis during androgen deprivation therapy for prostate cancer. Urology 2002;60(Suppl 1):79–86.

    PubMed  Google Scholar 

  57. Ross RW, Small EJ. Osteoporosis in men treated with androgen deprivation therapy for prostate cancer. J Urol 2002;167:1952–1956.

    PubMed  CAS  Google Scholar 

  58. Daniell HW, Dunn SR, Ferguson DW, et al. Progressive osteoporosis during androgen deprivation therapy for prostate cancer. J Urol 2000;163:181–186.

    PubMed  CAS  Google Scholar 

  59. Wei JT, Gross M, Jaffe CA, et al. Androgen deprivation therapy for prostate cancer results in significant loss of bone density. Urology 1999;4:607–611.

    Google Scholar 

  60. Daniell HW. Osteoporosis due to androgen deprivation therapy in men with prostate cancer. Urology 2001;58(Suppl 1):101–107.

    PubMed  CAS  Google Scholar 

  61. Iversen P. Antiandrogen monotherapy: indications and results. Urology 2002;60(Suppl 1):64–71.

    PubMed  Google Scholar 

  62. Grossmann ME, Huang H, Tindall DJ. Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst 2001;93:1687–1697.

    PubMed  CAS  Google Scholar 

  63. Moul JW, Srivastava S, McLeod DG. Molecular implications of the antiandrogen withdrawal syndrome. Semin Urol 1995;13:157–163.

    PubMed  CAS  Google Scholar 

  64. Visakorpi T, Hyytinen E, Koivisto P, et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 1995;9:401–406.

    PubMed  CAS  Google Scholar 

  65. Wallen MJ, Linja M, Kaartinen K, et al. Androgen receptor gene mutations in hormone-refractory prostate cancer. J Pathol 1999;189:559–563.

    PubMed  CAS  Google Scholar 

  66. Sadar MD, Hussain M, Bruchovsky N. Prostate cancer: molecular biology of early progression to androgen independence. Endocr Relat Cancer 1999;6:487–502.

    PubMed  CAS  Google Scholar 

  67. Balk SP. Androgen receptor as a target in androgen-independent prostate cancer. Urology 2002;60(Suppl 1):132–139.

    PubMed  Google Scholar 

  68. Crocitto LE, Henderson BE, Coetzee GA. Identification of two germline point mutations in the 5’ UTR of the androgen receptor gene in men with prostate cancer. J Urol 1997;158:1599–1601.

    PubMed  CAS  Google Scholar 

  69. Culig Z, Hobisch A, Cronauer MV, et al. Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol Endocrinol 1993;7:1541–1550.

    PubMed  CAS  Google Scholar 

  70. Ingles SA, Ross RK, Yu MC, et al. Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor. J Natl Cancer Inst 1997;89:166–170.

    PubMed  CAS  Google Scholar 

  71. Elo JP, Kvist L, Leinonen K, et al. Mutated human androgen receptor gene detected in a prostatic cancer patient is also activated by estradiol. J Clin Endocrinol Metab 1995;80:3494–3500.

    PubMed  CAS  Google Scholar 

  72. Fenton MA, Shuster TD, Fertig AM, et al. Functional characterization of mutant androgen receptors from androgen-independent prostate cancer. Clin Cancer Res 1997;3:1383–1388.

    PubMed  CAS  Google Scholar 

  73. Taplin ME, Bubley GJ, Shuster TD, et al. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 1995;332:1393–1398.

    PubMed  CAS  Google Scholar 

  74. Veldscholte J, Berrevoets CA, Mulder E. Studies on the human prostatic cancer cell line LNCaP. J Steroid Biochem Mol Biol 1994;49:341–346.

    PubMed  CAS  Google Scholar 

  75. Zhao XY, Malloy PJ, Krishnan AV, et al. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat Med 2000;6:703–706.

    PubMed  CAS  Google Scholar 

  76. Gregory CW, Johnson RT Jr, Mohler JL, et al. Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. Cancer Res 2001;61:2892–2898.

    PubMed  CAS  Google Scholar 

  77. Tan J, Sharief Y, Hamil GH, et al. Dehydroepiandrosterone activates mutant androgen receptors expressed in the androgen-dependent human prostate cancer xenograft CWR22 and LNCaP cells. Mol Endocrinol 1997;11:450–459.

    PubMed  CAS  Google Scholar 

  78. Veldscholte J, Ris-Stalpers C, Kuiper GG, et al. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun 1990;173:534–540.

    PubMed  CAS  Google Scholar 

  79. Veldscholte J, Berrevoets CA, Brinkmann AO, et al. Antiandrogens and the mutated androgen receptor of LNCaP cells: differential effects on binding affinity, heat-shock protein interaction, and transcription activation. Biochemistry 1992;31:2393–2399.

    PubMed  CAS  Google Scholar 

  80. Montgomery BT, Young CY, Bilhartz DL, et al. Hormonal regulation of prostate-specific antigen (PSA) glycoprotein in the human prostatic adenocarcinoma cell line, LNCaP. Prostate 1992;21:63–73.

    PubMed  CAS  Google Scholar 

  81. Chang CY, Walther PJ, McDonnell DP. Glucocorticoids manifest androgenic activity in a cell line derived from a metastatic prostate cancer. Cancer Res 2001;61:8712–8717.

    PubMed  CAS  Google Scholar 

  82. Culig Z, Hobisch A., Hittmair A, et al. Androgen receptor gene mutations in prostate cancer. Implications for disease progression and therapy. Drugs Aging 1997;10:50–58.

    PubMed  CAS  Google Scholar 

  83. Wirth MP, Froschermaier SE. The antiandrogen withdrawal syndrome. Urol Res 1997;25:S67-S71.

    PubMed  Google Scholar 

  84. Kelly WK, Slovin S, Scher HI. Steroid hormone withdrawal syndromes. Pathophysiology and clinical significance. Urol Clin North Am 1997;24:421–431.

    PubMed  CAS  Google Scholar 

  85. Scher HI, Kelly WK. Flutamide withdrawal syndrome: its impact on clinical trials in hormone-refractory prostate cancer. J Clin Oncol 1993;11:1566–1572.

    PubMed  CAS  Google Scholar 

  86. Nieh PT. Withdrawal phenomenon with the antiandrogen casodex. J Urol 1995;153:1070–1073.

    PubMed  CAS  Google Scholar 

  87. Small EJ, Carroll PR. Prostate-specific antigen decline after casodex withdrawal: evidence for an antiandrogen withdrawal syndrome. Urology 1994;43:408–410.

    PubMed  CAS  Google Scholar 

  88. Huan SD, Gerridzen RG, Yau JC, Stewart DJ. Antiandrogen withdrawal syndrome with nilutamide. Urology 1997;49:632–634.

    PubMed  CAS  Google Scholar 

  89. Taplin ME, Bubley GJ, Ko YJ, et al. Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res 1999;59:2511–2515.

    PubMed  CAS  Google Scholar 

  90. Marcelli M, Ittmann M, Mariani S, et al. Androgen receptor mutations in prostate cancer. Cancer Res 2000;60:944–949.

    PubMed  CAS  Google Scholar 

  91. Suzuki H, Sato N, Watabe Y, et al. Androgen receptor gene mutations in human prostate cancer. J Steroid Biochem Mol Biol 1993;46:759–765.

    PubMed  CAS  Google Scholar 

  92. Evans BA, Harper ME, Daniells CE, et al. Low incidence of androgen receptor gene mutations in human prostatic tumors using single strand conformation polymorphism analysis. Prostate 1996;28:162–171.

    PubMed  CAS  Google Scholar 

  93. Suzuki H, Akakura K, Komiya A, et al. Codon 877 mutation in the androgen receptor gene in advanced prostate cancer: relation to antiandrogen withdrawal syndrome. Prostate 1996;29:153–158.

    PubMed  CAS  Google Scholar 

  94. Watanabe M, Ushijima T, Shiraishi T, et al. Genetic alterations of androgen receptor gene in Japanese human prostate cancer. Jpn J Clin Oncol 1997;27:389–393.

    PubMed  CAS  Google Scholar 

  95. Chamberlain NL, Driver ED, Miesfeld RL. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res 1994;22:3181–3186.

    PubMed  CAS  Google Scholar 

  96. Irvine RA, Yu, MC, Ross RK, Coetzee GA. The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res 1995;55:1937–1940.

    PubMed  CAS  Google Scholar 

  97. Sartor O, Zheng Q, Eastham JA. Androgen receptor gene CAG repeat length varies in a race-specific fashion in men without prostate cancer. Urology 1999;53:378–380.

    PubMed  CAS  Google Scholar 

  98. Stanford JL, Just JJ, Gibbs M, et al. Polymorphic repeats in the androgen receptor gene: molecular markers of prostate cancer risk. Cancer Res 1997;57:1194–1198.

    PubMed  CAS  Google Scholar 

  99. Giovannucci E, Stampfer MJ, Krithivas K, et al. The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci USA 1997;94:3320–3323.

    PubMed  CAS  Google Scholar 

  100. Schoenberg MP, Hakimi JM, Wang S, et al. Microsatellite mutation (CAG24-->18) in the androgen receptor gene in human prostate cancer. Biochem Biophys Res Commun 1994;198:74–80.

    PubMed  CAS  Google Scholar 

  101. Hakimi JM, Rondinelli RH, Schoenberg MP, Barrack ER. Androgen-receptor gene structure and function in prostate cancer. World J Urol 1996;14:329–337.

    PubMed  CAS  Google Scholar 

  102. Irvine RA, Ma H, Yu MC, et al. Inhibition of p160-mediated coactivation with increasing androgen receptor polyglutamine length. Hum Mol Genet 2000;9:267–274.

    PubMed  CAS  Google Scholar 

  103. Hsiao PW, Lin DL, Nakao R, Chang C. The linkage of Kennedy’s neuron disease to ARA24, the first identified androgen receptor polyglutamine region-associated coactivator. J Biol Chem 1999;274:20,229–20,234.

    CAS  Google Scholar 

  104. Beilin J, Ball EM, Favaloro JM, Zajac JD. Effect of the androgen receptor CAG repeat polymorphism on transcriptional activity: specificity in prostate and non-prostate cell lines. J Mol Endocrinol 2000;25:85–96.

    PubMed  CAS  Google Scholar 

  105. Choong CS, Wilson EM. Trinucleotide repeats in the human androgen receptor: a molecular basis for disease. J Mol Endocrinol 1998;21:235–257.

    PubMed  CAS  Google Scholar 

  106. Park JJ, Irvine RA, Buchanan G, et al. Breast cancer susceptibility gene 1 (BRCAI) is a coactivator of the androgen receptor. Cancer Res 2000;60:5946–5949.

    PubMed  CAS  Google Scholar 

  107. Buchanan G, Greenberg NM, Scher HI, et al. Collocation of androgen receptor gene mutations in prostate cancer. Clin Cancer Res 2001;7:1273–1281.

    PubMed  CAS  Google Scholar 

  108. Isaacs JT. The biology of hormone refractory prostate cancer. Why does it develop? Urol Clin North Am 1999;26:263–273.

    CAS  Google Scholar 

  109. Culig Z, Hobisch A, Cronauer MV, et al. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 1994;54:5474–5478.

    PubMed  CAS  Google Scholar 

  110. Culig Z, Hobisch A, Hittmair A, et al. Expression, structure, and function of androgen receptor in advanced prostatic carcinoma. Prostate 1998;35:63–70.

    PubMed  CAS  Google Scholar 

  111. Heinlein CA, Chang C. Androgen receptor (AR) coregulators: an overview. Endocr Rev 2002;23:175–200.

    PubMed  CAS  Google Scholar 

  112. Navarro D, Luzardo OP, Fernandez L, et al. Transition to androgen-independence in prostate cancer. J Steroid Biochem Mol Biol 2002;81:191–201.

    PubMed  CAS  Google Scholar 

  113. Zhu W, Zhang JS, Young CY. Silymarin inhibits function of the androgen receptor by reducing nuclear localization of the receptor in the human prostate cancer cell line LNCaP. Carcinogenesis 2001;22:1399–1403.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chapman, M.S., Chang, W.Y., Negro-Vilar, A., Miner, J.N. (2004). Searching For SARA. In: Kelloff, G.J., Hawk, E.T., Sigman, C.C. (eds) Cancer Chemoprevention. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-767-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-767-3_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-342-8

  • Online ISBN: 978-1-59259-767-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics