Skip to main content

Chemopreventive Effects of Omega-3 Fatty Acids

  • Chapter
Cancer Chemoprevention

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Evidence increasingly suggests that 1 ω-3 fatty acids, particularly eicosapentaenoic acid (20:5n-3) (EPA) and docosahexaenoic acid (22:6n-3) (DHA) are protective against cancer, and the data is strongest for breast and colon cancer. These protective effects are mediated by a variety of different mechanisms, including the incorporation of n-3 fatty acids into cell membranes, which changes membrane fluidity, may affect the association of proteins within cell membranes, and/or may initiate different signal-transduction processes. Effects of n-3 fatty acids on eicosanoid synthesis are well documented, although it is not yet determined which products of lipoxygenase (LOX) or cyclooxygenase (COX) are responsible for the observed effects and the specific role of EPA as compared to DHA on these pathways. Omega-3 fatty acids have also been shown to decrease cell proliferation and/or increase apoptosis during the tumorigenic process. Of interest is lipid peroxidation and the role it may play in initiating apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hunter JE. n-3 Fatty acids from vegetable oils. Am J Clin Nutr 1990:51:809–814.

    PubMed  CAS  Google Scholar 

  2. Bang HO, Deyerberg J, Hjorne N. The composition of food consumed by Greenland Eskimos. Acta Med Scand 1976;200:69–73.

    PubMed  CAS  Google Scholar 

  3. Simopoulos A. Omega-3 fatty acids in health and disease and in growth and development. Am J Clin Nutr 1991;54:438–463.

    PubMed  CAS  Google Scholar 

  4. de Gomez Dumm IN, Brenner RR. Oxidative desaturation of alpha-linolenic, linoleic, and stearic acids by human liver microsomes. Lipids 1975;10:315–317.

    PubMed  Google Scholar 

  5. Pawlosky RJ, Hibbeln JR, Novotny JA, Salem NJ. Physiological compartmental analysis of alpha-linolenic acid metabolism in adult humans. J Lipid Res 2001;42:1257–1265.

    PubMed  CAS  Google Scholar 

  6. Lands WE, Hamazaki T, Yamazaki K, et al. Changing dietary patterns. Am J Clin Nutr 1990;51:991–993.

    PubMed  CAS  Google Scholar 

  7. Consensus conference. Lowering blood cholesterol to prevent heart disease. JAMA 1985;253:2080–2086.

    Google Scholar 

  8. Hague TA, Christoffersen BO. Effect of dietary fats on arachidonic acid and eicosapentaenoic acid biosynthesis and conversion of C22 fatty acids in isolated liver cells. Biochim Biophys Acta 1984;796:205–217.

    Google Scholar 

  9. Christiansen EN, Lund JS, Rortviet T, Rustan AC. Effect of dietary n-3 and n-6 fatty acids on fatty acid desaturation in rat liver. Biochim Biophys Acta 1991;1082:57–62.

    PubMed  CAS  Google Scholar 

  10. Sauer LA, Dauchy RT, Blask DE. Dietary linoleic acid intake controls the arterial blood plasma concentration and the rates of growth and linoleic acid uptake and metabolism in hepatoma 7288CTC in Buffalo rats. J Nutr 1997;127:1412–1421.

    PubMed  CAS  Google Scholar 

  11. Sauer LA, Dauchy RT, Blask DE. Mechanism for the antitumor and anticachectic effects of n-3 fatty acids. Cancer Res 2000;60:5289–5295.

    PubMed  CAS  Google Scholar 

  12. Subbaiah PV, Kaufman D, Bagddade JD. Incorporation of dietary n-3 fatty acids into molecular species of phosphatidyl choline and cholesteryl esters in normal human plasma. Am J Clin Nutr 1993;58:360–368.

    PubMed  CAS  Google Scholar 

  13. Karmali RA. Fatty acids: inhibition. Am J Clin Nutr 1987;45:225–229.

    PubMed  CAS  Google Scholar 

  14. Corey RJ, Shih C, Cashman JR. Docosahexaenoic acid is a strong inhibitor of prostaglandin but not leukotriene synthesis. Proc Natl Acad Sci USA 1980;80:3581–3584.

    Google Scholar 

  15. Brown ER, Subbaiah PV. Differential effects of eicosapentaenoic acid and docosahexaenoic acid on human skin fibroblasts. Lipids 1994;29:825–829.

    PubMed  CAS  Google Scholar 

  16. Kafrawy O, Zerouga M, Stillwell W, Jenski LJ. Docosahexaenoic acid in phosphatidylcholine mediates cytotoxicity more effectively than other omega 3 and omega 6 fatty acids. Cancer Lett 1998;132:23–29.

    PubMed  CAS  Google Scholar 

  17. McDowell MA, Briefel RR, Alaimo K, et al. Energy and macronutrient intakes of person ages 2 months and over in the United States: Third National Health and Nutrition Examination Survey, Phase I, 1988–1991. Advance Data 1994;255:1–24.

    PubMed  Google Scholar 

  18. Kang ZB, Ge YL, Chen ZH, et al. Adenoviral gene transfer of Caenorhabditis elegans n-3 fatty acid desaturase optimizes fatty acid composition in mammalian cells. Proc Nall Acad Sci USA 2001;98:4050–4054.

    CAS  Google Scholar 

  19. Spector AA. Essentiality of fatty acids. Lipids 1999;34:S1-S3.

    PubMed  CAS  Google Scholar 

  20. Zock PL, Katan MB. Linoleic acid intake and cancer risk: a review and meta-analysis. Am J Clin Nutr 1998;68:142–153.

    PubMed  CAS  Google Scholar 

  21. Horrobin DF. Workshop statement on the essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids-Commentary on the workshop statement-Are we really sure that arachidonic acid and linoleic acid are bad things. Prostaglandins Leukot Essent Fatty Acids 2000;63:145–147.

    PubMed  CAS  Google Scholar 

  22. Toriyama-Baba H, Iigo M, Asamoto M, et al. Organotropic chemopreventive effects of n-3 unsaturated fatty acids in a rat multi-organ carcinogenesis model. Jpn J Cancer Res 2001;92:1175–1183.

    PubMed  CAS  Google Scholar 

  23. Delorgeril M, Salen P, Martin JL, et al. Mediterranean dietary pattern in a randomized trial-prolonged survival and possible reduced cancer rate. Arch Intern Med 1998;158:1181–1187.

    CAS  Google Scholar 

  24. Kaizer L, Boyd NF, Kriukov V, Tritchler DL. Fish consumption and breast cancer risk: an ecological study. Nutr Cancer 1989;12:61–68.

    PubMed  CAS  Google Scholar 

  25. Caygill CPJ, Hill MJ. Fish, n-3 fatty acids and human colorectal and breast cancer. Eur J Cancer Prey 1995;4:329–332.

    CAS  Google Scholar 

  26. Caygill CPJ, Charlett A, Hill MJ. Fat, fish, fish oil and cancer. Br J Cancer 1996;74:159–164.

    PubMed  CAS  Google Scholar 

  27. Bartsch H, Nair J, Owen RW. Dietary polyunsaturated fatty acids and cancers of the breast and colorectum: emerging evidence for their role as risk modifiers. Carcinogenesis 1999;20:2209–2218.

    PubMed  CAS  Google Scholar 

  28. Potter JD. Risk factors for colon neoplasia: epidemiology and biology. Eur J Cancer 1995;31A:1033–1038.

    PubMed  CAS  Google Scholar 

  29. Rose DP. Effects of dietary fatty acids on breast and prostate cancer: evidence from in vitro experiments and animal studies. Am J Clin Nutr 1997;66:1513S-1522S.

    PubMed  CAS  Google Scholar 

  30. Rose DP. Dietary fatty acids and cancer. Am J Clin Nutr 1997;66:998S-1003S.

    PubMed  CAS  Google Scholar 

  31. Wynder EL, Cohen LA, Muscat JE, et al. Breast cancer: weighing the evidence for a promoting role of dietary fat. J Natl Cancer Inst 1997;89:766–775.

    PubMed  CAS  Google Scholar 

  32. Ip C. Review of the effects of trans fatty acids, oleic acid, n3 polyunsaturated fatty acids, and conjugated linoleic acid on mammary carcinogenesis in animals. Am J Clin Nutr 1997;66:1523S-1529S.

    PubMed  CAS  Google Scholar 

  33. Rose DP, Connolly JM. Omega-3 fatty acids as cancer chemopreventive agents. Pharmacol Ther 1999;83:217–244.

    PubMed  CAS  Google Scholar 

  34. Sasaki S, Horacesk M, Kesteloot H. An ecological study of the relationship between dietary fat intake and breast cancer mortality. Prey Med 1993;22:187–202.

    CAS  Google Scholar 

  35. Bang HO, Dyerberg J. Lipid metabolism and ischemic heart disease in Greenland Eskimos, in Advances in Nutritional Research, Vol. 3. Draper HH, ed. Plenum, New York, NY, 1980,pp.1–22.

    Google Scholar 

  36. Kromann N, Green A. Epidemiological studies in the Upernavik District, Greenland: incidence of some chronic diseases 1960–1974. Acta Med Scand 1980;208:401–406.

    PubMed  CAS  Google Scholar 

  37. Ingram DM, Nottage E, Roberts T. The role of diet in the development of breast cancer: a case-control study of patients with breast cancer, benign epithelial hyperplasia and fibrocystic disease of the breast. Br J Cancer 1991;64:187–191.

    PubMed  CAS  Google Scholar 

  38. Landa MC, Frago N, Tres A. Diet and the risk of breast cancer in Spain. Eur J Cancer Prey 1994;3:313–320.

    CAS  Google Scholar 

  39. Franceschi S, Favero A, La Vecchia C, et al. Influence of food groups and food diversity on breast cancer risk in Italy. Int J Cancer 1995;63:785–789.

    PubMed  CAS  Google Scholar 

  40. Braga C, La Vecchia C, Negri E, et al. Intake of selected foods and nutrients and breast cancer risk: an age- and menopause-specific analysis. Nutr Cancer 1997;28:258–263.

    PubMed  CAS  Google Scholar 

  41. Willett WC. Specific fatty acids and risks of breast and prostate cancer: dietary intake. Am J Clin Nutr 1997;66:1557S-15635.

    PubMed  CAS  Google Scholar 

  42. Vatten LJ, Solvoll K, Loken EB. Frequency of meat and fish intake and risk of breast cancer in a prospective study of 14,500 Norwegian women. Int J Cancer 1990;46:12–15.

    PubMed  CAS  Google Scholar 

  43. Petrek JA, Hudgins LC, Levine B, et al. Breast cancer risk and fatty acids in the breast and abdominal adipose tissues. J Natl Cancer Inst 1994;86:53–56.

    PubMed  CAS  Google Scholar 

  44. London SJ, Sacks FM, Stampfer MJ, et al. Fatty acid composition of the subcutaneous adipose tissue and risk of proliferative benign breast disease and breast cancer. J Natl Cancer Inst 1993;85:785–793.

    PubMed  CAS  Google Scholar 

  45. Boyd NF, Martin LJ, Noffel M, et al. A meta-analysis of studies of dietary fat and breast cancer risk. Br J Cancer 1993;68:627–636.

    PubMed  CAS  Google Scholar 

  46. Zaridze DG, Chevchenko VE, Levtshuk AA, et al. Fatty acid composition of phospholipids in erythrocyte membranes and risk of breast cancer. Int J Cancer 1990;45:807–810.

    PubMed  CAS  Google Scholar 

  47. Vatten LJ, Bjerve KS, Andersen A, Jellum E. Polyunsaturated fatty acids in serum phospholipids and risk of breast cancer: a case-control study from the Janus serum bank in Norway. Eur J Cancer 1993;29A:532–538.

    PubMed  CAS  Google Scholar 

  48. Pala V, Krogh V, Muti P, et al. Erythrocyte membrane fatty acids and subsequent breast cancer: a prospective Italian study. J Natl Cancer Inst 2001;93:1088–1095.

    PubMed  CAS  Google Scholar 

  49. Berrino F, Muti P, Micheli A, et al. Serum sex hormone levels after menopause and subsequent breast cancer. J Natl Cancer Inst 1996;88:291–296.

    PubMed  CAS  Google Scholar 

  50. Lu J, Pei H, Kaeck M, Thompson HJ. Gene expression changes associated with chemically induced rat mammary carcinogenesis. Mol Carcinog 1997;20:204–215.

    PubMed  CAS  Google Scholar 

  51. Khoo DE, Fermor B, Miller J, et al. Manipulation of body fat composition with sterculic acid can inhibit mammary carcinomas in vivo. Br J Cancer 1991;63:97–101.

    PubMed  CAS  Google Scholar 

  52. Simonsen N, Vantveer P, Strain JJ, et al. Adipose tissue omega-3 and omega-6 fatty acid content and breast cancer in the EURAMIC study. Am J Epidemiol 1998;147:342–352.

    PubMed  CAS  Google Scholar 

  53. Maillard V, Bougnoux P, Ferrari P, et al. N-3 and N-6 fatty acids in breast adipose tissue and relative risk of breast cancer in a case-control study in Tours, France. Int J Cancer 2002;98:78–83.

    PubMed  CAS  Google Scholar 

  54. Jurkowski JJ, Cave WT. Dietary effects of menhaden oil on the growth and membrane lipid composition of rat mammary tumors. J Natl Cancer Inst 1985;74:1145–1150.

    PubMed  CAS  Google Scholar 

  55. Braden LM, Carroll KK. Dietary polyunsaturated fat in relation to mammary carcinogenesis in rats. Lipids 1986;21:285–288.

    PubMed  CAS  Google Scholar 

  56. Abou-El-Ela SH, Prasse KW, Farrell RL, et al. Effects of d,1–2-difluoromethylornithine and indomethacin on mammary tumor promotion in rats fed high n-3 and/or n-6 fat diets. Cancer Res 1989;49:1434–1440.

    PubMed  CAS  Google Scholar 

  57. Cohen LA, Chen-Backlund JY, Sepkovic DV, Sugie S. Effect of varying proportions of dietary menhaden and corn oil on experimental rat mammary tumor promotion. Lipids 1993;28:449–456.

    PubMed  CAS  Google Scholar 

  58. Karmali RA, Marsh J, Fuchs C. Effect of omega-3 fatty acids on growth of a rat mammary tumor. J Nall Cancer Inst 1984;73:457–461.

    CAS  Google Scholar 

  59. Cave WT. Omega 3 fatty acid diet effects on tumorigenesis in experimental animals, in Health Effects of Omega 3 Polyunsaturated Fatty Acids in Seafoods, Vol. 66. Simopoulos AP, Kifer RR, Martin RE, Barlow SM, eds. Basel: Karger, 1991:pp.462–476.

    Google Scholar 

  60. Fernandes G, Venkatraman JT. Modulation of breast cancer growth in nude mice by omega 3 lipids, in Health Effects of Omega 3 Polyunsaturated Fatty Acids in Seafoods, Vol. 66. Simopoulos AP, Kifer RR, Martin RE, Barlow SM, eds. Karger, Basel 1991, pp.488–503.

    Google Scholar 

  61. Ip C, Carter CA, Ip MM. Requirement of essential fatty acid for mammary tumorigenesis in the rat. Cancer Res 1985;45:1997–2001.

    PubMed  CAS  Google Scholar 

  62. Connolly JM, Gilhooly EM, Rose DP. Effects of reduced dietary linoleic acid intake, alone or combined with an algal source of docosahexaenoic acid, on MDA-MB-231 breast cancer cell growth and apoptosis in nude mice. Nutr Cancer 1999;35:44–49.

    PubMed  CAS  Google Scholar 

  63. Kinoshita K, Noguchi M, Tanaka M. Effects of linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid on the growth and metastasis of MM48 mammary tumor transplants in mice. Int J Oncol 1996;8:575–581.

    PubMed  CAS  Google Scholar 

  64. Rose DP, Connolly JM, Coleman M. Effect of omega-3 fatty acids on the progression of metastases after the surgical excision of human breast cancer cell solid tumors growing in nude mice. Clin Cancer Res 1996;2:1751–1756.

    PubMed  CAS  Google Scholar 

  65. Rose DP, Connolly JM, Rayburn J, Coleman M. Influence of diets containing eicosapentaenoic or docosahexaenoic acid on growth and metastasis of breast cancer cells in nude mice. J Natl Cancer Inst 1995;87:587–592.

    PubMed  CAS  Google Scholar 

  66. Fay MP, Freedman LS, Clifford CK, Midthune DN. Effect of different types and amounts of fat on the development of mammary tumors in rodents: a review. Cancer Res 1997;57:3979–3988.

    PubMed  CAS  Google Scholar 

  67. Moore NG, Wang-Johanning F, Chang PL, Johanning GL. Omega-3 fatty acids decrease protein kinase expression in human breast cancer cells. Breast Cancer Res Treat 2001;67:279–283.

    PubMed  CAS  Google Scholar 

  68. Cowing BE, Saker KE. Polyunsaturated fatty acids and epidermal growth factor receptor mitogen-activated protein kinase signaling in mammary cancer. J Nutr 2001;131:1125–1128.

    PubMed  CAS  Google Scholar 

  69. Wang MS, Liu YLE, Ni J, et al. Induction of mammary differentiation by mammary-derived growth inhibitorrelated gene that interacts with an omega-3 fatty acid on growth inhibition of breast cancer cells. Cancer Res 2000;60:6482–6487.

    PubMed  CAS  Google Scholar 

  70. El-Sohemy A, Archer MC. Regulation of mevalonate synthesis in rat mammary glands by dietary n-3 and n-6 polyunsaturated fatty acids. Cancer Res 1997;57:3685–3687.

    PubMed  CAS  Google Scholar 

  71. Thoennes SR, Tate PL, Price TM, Kilgore MW. Differential transcriptional activation of peroxisome proliferator-activat-ed receptor gamma by omega-3 and omega-6 fatty acids in MCF-7 cells. Mol Cell Endocrinol 2000;160:67–73.

    PubMed  CAS  Google Scholar 

  72. Palakurthi SS, Fluckiger R, Aktas H, et al. Inhibition of translation initiation mediates the anticancer effect of the n-3 polyunsaturated fatty acid eicosapentaenoic acid. Cancer Res. 2000;60:2919–2925.

    PubMed  CAS  Google Scholar 

  73. Noguchi M, Rose DP, Earashi M, Miyazaki I. The role of fatty acids and eicosanoid synthesis inhibitors in breast carcinoma. Oncology 1995;52:265–271.

    PubMed  CAS  Google Scholar 

  74. Abou-El-Ela SH, Prasse KW, Carroll R, et al. Eicosanoid synthesis in 7,12-dimethyl-benz(a)anthracene-induced mammary carcinomas in Sprague-Dawley rats fed primrose oil, menhaden oil or corn oil. Lipids 1988;23:948–954.

    PubMed  CAS  Google Scholar 

  75. Kitagawa H, Noguchi M. Comparative effects of piroxicam and esculetin on incidence, proliferation, and cell kinetics of mammary carcinomas induced by 7,12-dimethylbenz[a]anthracene in rats on high-and-low-fat diets. Oncology 1994;51:401–410.

    PubMed  CAS  Google Scholar 

  76. Rose DP, Connolly JM. Effects of fatty acids and inhibitors of eicosanoid synthesis on the growth of a human breast cancer cell line in culture. Cancer Res 1990;50:7139–7144.

    PubMed  CAS  Google Scholar 

  77. Buckman DK, Hubbard NE, Erickson KL. Eicosanoids and linoleate-enhanced growth of mouse mammary tumor cells. Prostaglandins Leukot. Essent Fatty Acids 1991;44:177–184.

    PubMed  CAS  Google Scholar 

  78. Tang DG, Chen YQ, Honn KV. Arachidonate lipoxygenases as essential regulators of cell survival and apoptosis. Proc Natl Acad Sci USA 1996;93:5241–5246.

    PubMed  CAS  Google Scholar 

  79. Sauer LA, Dauchy RT, Blask DE. Polyunsaturated fatty acids, melatonin, and cancer prevention. Biochem Pharmacol 2001;61:1455–1462.

    PubMed  CAS  Google Scholar 

  80. Karmali RA. Eicosanoids in neoplasia. Prey Med 1987;16:493–502.

    CAS  Google Scholar 

  81. Karmali RA. Eicosanoids in cancer, in Dietary Fat and Cancer. Ip C, Birt DF, Rogers AE, Mettlin C, eds. Alan R. Liss, Inc., New York, NY, 1986:pp.687–697.

    Google Scholar 

  82. Colombo DT, Tran LK, Speck JJ, Reitz RC. Comparison of hexadecylphosphocholine with fish oil as an antitumor agent. J Lipid Mediat Cell Signal 1997;17:47–63.

    PubMed  CAS  Google Scholar 

  83. Carter CA, Milholland RJ, Shea W, Ip MM. Effect of the prostaglandin synthetase inhibitor indomethacin on 7,12-dimethylbenz(a)anthracene-induced mammary tumorigenesis in rats fed different levels of fat. Cancer Res 1983;43:3559–3562.

    PubMed  CAS  Google Scholar 

  84. Kollmorgen GM, King MM, Kosanke SD, Do C. Influence of dietary fat and indomethacin on the growth of transplantable mammary tumors in rats. Cancer Res 1983;43:4714–4719.

    PubMed  CAS  Google Scholar 

  85. Connolly JM, Rose DP. Enhanced angiogenesis and growth of 12-lipoxygenase gene-transfected MCF-7 human breast cancer cells in athymic nude mice. Cancer Lett 1998;132:107–112.

    PubMed  CAS  Google Scholar 

  86. Rose DP, Connolly JM. Dietary fat and breast cancer metastasis by human tumor xenografts. Breast Cancer Res Treat 1997; 46:225–237.

    PubMed  CAS  Google Scholar 

  87. Grammatikos SI, Subbaiah PV, Victor TA, Miller WM. n-3 and n-6 fatty acid processing and growth effects in neoplastic and non-cancerous human mammary epithelial cell lines. Br J Cancer 1994;70:219–227.

    PubMed  CAS  Google Scholar 

  88. Begin ME, Ells G, Horrobin DF. Polyunsaturated fatty acid-induced cytotoxicity against tumor cells and its relationship to lipid peroxidation. J Nall Cancer Inst 1988;80:188–194.

    CAS  Google Scholar 

  89. Istfan NW, Wan JM, Bistrian BR, Chen ZY. DNA replication time accounts for tumor growth variation induced by dietary fat in a breast carcinoma model. Cancer Lett 1994;86:177–186.

    PubMed  CAS  Google Scholar 

  90. Rose DP, Connolly JM. Antiangiogenicity of docosahexaenoic acid and its role in the suppression of breast cancer cell growth in nude mice. Int J Oncol 1999;15:1011–1015.

    PubMed  CAS  Google Scholar 

  91. Gonzalez MJ. Fish oil, lipid peroxidation and mammary tumor growth. J Am Coll Nutr 1995;14:325–335.

    PubMed  CAS  Google Scholar 

  92. Gonzalez MJ, Schemmel RA, Gray JI, et al. Effect of dietary fat on growth of MCF-7 and MDAA-MB231 human breast carcinomas in athymic nude mice: relationship between carcinoma growth and lipid peroxidation product levels. Carcinogenesis 1991;12:1231–1235.

    PubMed  CAS  Google Scholar 

  93. Gonzalez MJ, Schemmel RA, Dugan J Jr, et al. Dietary fish oil inhibits human breast carcinoma growth: a function of increased lipid peroxidation. Lipids 1993;28:827–832.

    PubMed  CAS  Google Scholar 

  94. Welsch CW. Review of the effects of dietary fat on experimental mammary gland tumorigenesis: role of lipid peroxidation. Free Radic Biol Med 1995;18:757–773.

    PubMed  CAS  Google Scholar 

  95. Osborne MP, Karmali RA, Herschcopf RJ, et al. Omega-3 fatty acids: modulation of estrogen metabolism and potential for breast cancer prevention. Cancer Invest 1988;6:629–632.

    Google Scholar 

  96. Telang NT, Katdare M, Bradlow HL, Osborne MP. Estradiol metabolism: an endocrine biomarker for modulation of human mammary carcinogenesis. Environ Health Perspect 1997;105 (Suppl 3):559–564.

    PubMed  CAS  Google Scholar 

  97. Form DM, Auerbach R. PGE2 and angiogenesis. Proc Soc Exp Biol Med 1983;172:214–218.

    PubMed  CAS  Google Scholar 

  98. Tang DG, Renaud C, Stojakovic S, et al. 12-(S)-HETE is a mitogenic factor for microvascular endothelial cells: its potential role in angiogenesis. Biochem Biophys Res Commun 1995;211:462–468.

    PubMed  CAS  Google Scholar 

  99. Connolly JM, Liu X-H, Rose DP. Effects of dietary menhaden oil, soy, and a cyclooxygenase inhibitor on human breast cancer cell growth and metastasis in nude mice. Nutr Cancer 1997;29:48–54.

    PubMed  CAS  Google Scholar 

  100. Blot WJ, Lanier A, Fraumeni JF, Bender TR. Cancer mortality among Alaska natives, 1960–69. J Natl Cancer Inst 1975;55:547–554.

    PubMed  CAS  Google Scholar 

  101. Schloss I, Kidd MSG, Tichelaar HY, et al. Dietary factors associated with a low risk of colon cancer in coloured west coast fishermen. S Afr Med J 1997;87:152–158.

    PubMed  CAS  Google Scholar 

  102. Fernandez-Banares F, Esteve M, Navarro E, et al. Changes of the mucosal n-3 and n-6 fatty acid status occur early in the colorectal adenoma-carcinoma sequence. Gut 1996;38:254–259.

    PubMed  CAS  Google Scholar 

  103. Almallah YZ. Distal procto-colitis, natural cytotoxicity, and essential fatty acids. Am J Gastroenterol 1998;93:804–809.

    PubMed  CAS  Google Scholar 

  104. Anti M, Marra G, Armelao F, et al. Effect of n-3 fatty acids on rectal mucosal cell proliferation in subjects at risk of colon cancer. Gastroenterology 1992;103:883–891.

    PubMed  CAS  Google Scholar 

  105. Anti M, Armelao F, Marra G, et al. Effects of different doses of fish oil on rectal cell proliferation in patients with sporadic colonic adenomas. Gastroenterology 1994;107:1709–1718.

    PubMed  CAS  Google Scholar 

  106. Bartram HP, Gostner A, Kelber E, et al. Effects of fish oil on fecal bacterial enzymes and steroid excretion in healthy volunteers-implications for colon cancer prevention. Nutr Cancer 1996;25:71–78.

    PubMed  CAS  Google Scholar 

  107. Bartram HP, Gostner A, Scheppach W, et al. Effects of fish oil on rectal cell proliferation, mucosal fatty acids, and prostaglandin E2 release in healthy subjects. Gastroenterology 1993;105:1317–1322.

    PubMed  CAS  Google Scholar 

  108. Bartram HP, Gostner A, Reddy BS, et al. Missing antiproliferative effect of fish oil on rectal epithelium in healthy volunteers consuming a high-fat diet: potential role of the n-3:n-6 fatty acid ratio. Eur J Cancer Prey 1995: 4:231–237.

    CAS  Google Scholar 

  109. Bartoli GM, Palozza P, Marra G, et al. n-3 PUFA and a-tocopherol control of tumor cell proliferation. Mol Aspects Med 1993;14:247–252.

    PubMed  CAS  Google Scholar 

  110. Deschner EE, Lytle JS, Wong G, et al. The effect of dietary omega-3 fatty acids (fish oil) on azoxymethanol-induced focal areas of dysplasia and colon tumor incidence. Cancer 1990;66:2350–2356.

    PubMed  CAS  Google Scholar 

  111. Reddy BS, Burill C, Rigotty J. Effect of diets high in ω-3 and co-6 fatty acids on initiation and postinitiation stages of colon carcinogenesis. Cancer Res 1991;51:487–491.

    PubMed  CAS  Google Scholar 

  112. Chang W-CL, Chapkin RS, Lupton JR. Fish oil blocks azoxymethane-induced rat colon tumorigenesis by increasing cell differentiation and apoptosis rather than decreasing cell proliferation. J Nutr 1998;128:491–497.

    PubMed  CAS  Google Scholar 

  113. Reddy BS. Chemoprevention of colon cancer by dietary fatty acids. Cancer Metastasis Rev 1994;13:285–302.

    PubMed  CAS  Google Scholar 

  114. Takahashi M, Fukutake M, Isoi T, et al. Suppression of azoxymethane-induced rat colon carcinoma development by a fish oil component, docosahexaenoic acid (DHA). Carcinogenesis 1997;18:1337–1342.

    PubMed  CAS  Google Scholar 

  115. Reddy BS, Maruyama H. Effect of dietary fish oil on azoxymethane-induced colon carcinogenesis in male F344 rats. Cancer Res 1986;55:3785–3789.

    Google Scholar 

  116. Nelson RL, Tanure JC, Andrianopoulos G, et al. A comparison of dietary fish oil and corn oil in experimental colorectal carcinogenesis. Nutr Cancer 1988;11:215–220.

    PubMed  CAS  Google Scholar 

  117. Reddy BS, Sugie S. Effect of different levels of co-3 and cu6 fatty acids on azoxymethane-induced colon carcinogenesis in F344 rats. Cancer Res 1988;48:6642–6647.

    PubMed  CAS  Google Scholar 

  118. Hong MY, Lupton JR, Morris JS, et al. Dietary fish oil reduces O6-methylguanine DNA adduct levels in rat colon in part by increasing apoptosis during tumor initiation. Cancer Epidemiol Biomark Prey 2000;9:819–826.

    CAS  Google Scholar 

  119. Takahashi M, Minamoto T, Yamashita N, et al. Reduction in the formation and growth of 1,2-dimethylhydrazine-induced aberrant crypt foci in rat colon by docosahexaenoic acid. Cancer Res 1993;53:2786–2789.

    PubMed  CAS  Google Scholar 

  120. Calder PC, Davis J, Yagoob P, et al. Dietary fish oil suppresses human colon tumour growth in athymic mice. Clin Sci 1998;94:303–311.

    PubMed  CAS  Google Scholar 

  121. Chang W-CL, Chapkin RS, Lupton JR. Predictive value of proliferation, differentiation and apoptosis as intermediate markers for colon tumorigenesis. Carcinogenesis 1997;18:721–730.

    PubMed  CAS  Google Scholar 

  122. Chapkin RS, Hong MY, Fan Y- Y, et al. Dietary n-3 PUFA alter colonocyte mitochondrial membrane composition and function. Lipids 2002;37:193–199.

    PubMed  CAS  Google Scholar 

  123. Jenski LJ. Omega-3 fatty acids and the expression of membrane proteins: emphasis on molecules of immunologic importance. Curr Org Chem 2000;4:1185–1200.

    CAS  Google Scholar 

  124. Chapkin RS, McMurray DN, Jolly CA. Dietary n-3 polyunsaturated fatty acids modulate T lymphocyte activation: clinical relevance in treating diseases of chronic inflammation, in Nutrition and Immunology: Principles and Practice. Gershwin ME, German B, Keen C, eds. Plenum Publishing, New York, NY, 1999:pp.121–134.

    Google Scholar 

  125. McMurray DN, Jolly CA, Chapkin RS. Effect of dietary n-3 fatty acids on T cell activation and T cell receptor mediated signalling in a murine model. J Infect Dis 2000;182(Suppl 1):S103-S107.

    PubMed  CAS  Google Scholar 

  126. Lowy DR, Willumsen BM. Function and regulation of ras. Annu Rev Biochem 1993;62:851–891.

    CAS  Google Scholar 

  127. White MA, Nicollete C, Minden A, et al. Multiple ras functions can contribute to mammalian cell transformation. Cell 1995;80:553–541.

    Google Scholar 

  128. Singh J, Hamid R, Reddy BS. Dietary fat and colon cancermodulating effect of types and amount of dietary fat on rasp21 function during promotion and progression stages of colon cancer. Cancer Res 1997;57:253–258.

    PubMed  CAS  Google Scholar 

  129. Davidson LA, Lupton JR, Jiang Y- H, Chapkin RS. Carcinogen and dietary lipid regulate ras expression and localization in rat colon without affecting farnesylation kinetics. Carcinogenesis 1999;20:785–791.

    PubMed  CAS  Google Scholar 

  130. Maher J, Colonna F, Baker D, et al. Retroviral-mediated gene transfer of a mutant H-ras gene into normal human bone marrow alters myeloid cell proliferation and differentiation. Exp Hematol 1994;22:8–12.

    PubMed  CAS  Google Scholar 

  131. Chen CY, Faller DV. Direction of p2 lras-generated signals towards cell growth or apoptosis is determined by protein kinase C and Bcl-2. Oncogene 1995;11:1487–1498.

    PubMed  CAS  Google Scholar 

  132. Chapkin RS, Gao J, Lee DYK, Lupton JR. Dietary fibers and fats alter rat colon protein kinase C activity: correlation to cell proliferation. J Nutr 1993;123:649–655.

    PubMed  CAS  Google Scholar 

  133. Davidson LA, Jiang Y- H, Derr JN, et al. Protein kinase C isoforms in human and rat colonic mucosa. Arch Biochem Biophys 1994;312:547–553.

    PubMed  CAS  Google Scholar 

  134. Jiang Y- H, Lupton JR, Chapkin RS. Dietary fish oil blocks carcinogen-induced down-regulation of colonic protein kinase C isoenzymes. Carcinogenesis 1997;18:351–357.

    PubMed  CAS  Google Scholar 

  135. Murray NR, Davidson LA, Chapkin RS, et al. Protein kinase C (3II and TGFαRII in cu-3 fatty acid-mediated inhibition of colon carcinogenesis. J Cell Biol 2002;157:915–920.

    PubMed  CAS  Google Scholar 

  136. Murray NR, Davidson LA, Chapkin RS, et al. Overexpression of protein kinase C bIl in the colonic epithelium causes hyperproliferation and increased sensitivity to colon carcinogenesis. J Cell Biol 1999;145:699–711.

    PubMed  CAS  Google Scholar 

  137. Hixson LJ, Garewal HS, McGee DL, et al. Ornithine decarboxylase and polyamines in colorectal neoplasia mucosa. Cancer Epidemiol Biomark Prey 1993;2:369–374.

    CAS  Google Scholar 

  138. Craven PA, DeRubertis FR. Role of activation of protein kinase C in the stimulation of colonic epithelial proliferation by unsaturated fatty acids. Gastroenterology 1988;95:676–685.

    PubMed  CAS  Google Scholar 

  139. Rao CV, Reddy BS. Modulating effect of amount and types of dietary fat on omithine decarboxylase, tyrosine protein kinase and prostaglandins production during colon carcinogenesis in male F344 rats. Carcinogenesis 1993;14:1327–1333.

    PubMed  CAS  Google Scholar 

  140. Eberhart CE, Coffey RJ, Radhika A, et al. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994;107:1183–1188.

    PubMed  CAS  Google Scholar 

  141. Rigas B, Goldman IS, Levine L. Altered eicosanoid levels in human colon cancer. J Lab Clin Med 1993;122:518–523.

    PubMed  CAS  Google Scholar 

  142. Kulkarni N, Zang E, Kelloff G, Reddy BS. Effect of chemopreventive agents piroxicam and D,L-α-difluoromethylornithine on intermediate biomarkers of colon carcinogenesis. Carcinogenesis 1992;13:995–1000.

    PubMed  CAS  Google Scholar 

  143. Sakaguchi M, Hiramatsu Y, Takada H, et al. Effect of dietary unsaturated and saturated fats on azoxymethane-induced colon carcinogenesis in rats. Cancer Res 1984;44:1472–1477.

    PubMed  CAS  Google Scholar 

  144. Lee DY, Lupton JR, Aukema HM, Chapkin RS. Dietary fat and fiber alter rat colonic mucosal lipid mediators and cell proliferation. J Nutr 1993;123:1808–1817.

    PubMed  CAS  Google Scholar 

  145. Minoura T, Takata T, Sakaguchi M, et al. Effect of dietary eicosapentaenoic acid on azoxymethane-induced colon carcinogenesis in rats. Cancer Res 1988;48:4790–4794.

    PubMed  CAS  Google Scholar 

  146. Singh J, Hamid R, Reddy BS. Dietary fat and colon cancer: modulation of cyclooxygenase-2 by types and amount of dietary fat during the postinitiation stage of colon carcinogenesis. Cancer Res 1997;57:3465–3470.

    PubMed  CAS  Google Scholar 

  147. Corey EJ, Chuan S, Cashman JR. Docosahexaenoic acid is a strong inhibitor of prostaglandin but not leukotriene biosynthesis. Proc Natl Acad Sci USA 1983;80:3581–3584.

    PubMed  CAS  Google Scholar 

  148. Hussey HJ, Tisdale MJ. Effect of polyunsaturated fatty acids on the growth of murine colon adenocarcinomas in vitro and in vivo. Br J Cancer 1994;74:6–10.

    Google Scholar 

  149. Hussey HJ, Tisdale MJ. Inhibition of tumour growth by lipoxygenase inhibitors. Br J Cancer 1996;74:683–687.

    PubMed  CAS  Google Scholar 

  150. Giardiello FM, Offerhaus GJA, DuBois RN. The role of nonsteroidal anti-inflammatory drugs in colorectal cancer prevention. Eur J Cancer 1995;31A:1071–1076.

    PubMed  CAS  Google Scholar 

  151. Potter JD, Slattery ML, Bostick RM, Gapstur SM. Colon cancer: a review of the epidemiology. Epidemiol Rev 1993;15:499–545

    PubMed  CAS  Google Scholar 

  152. Schreinemachers DM, Everson RB. Aspirin use and lung, colon, and breast cancer incidence in a prospective study. Epidemiology 1994;5:138–146.

    PubMed  CAS  Google Scholar 

  153. Reddy BS, Rao CV, Seibert K. Evaluation of cyclooxygenase-2 inhibitor for potential chemopreventive properties in colon carcinogenesis. Cancer Res 1996;56:4566–4569.

    PubMed  CAS  Google Scholar 

  154. Yoshimi N, Kawabata K, Hara A, et al. Inhibitory effect of NS-398, a selective cyclooxygenase-2 inhibitor, on azoxymethane-induced aberrant crypt foci in colon carcinogenesis of F344 rats. Jpn J Cancer Res 1997;88:1044–1051.

    PubMed  CAS  Google Scholar 

  155. Ringbom T, Huss U, Stenholm A, et al. COX-2 inhibitory effects of naturally occurring and modified fatty acids. J Nat Prod 2001;64:745–749.

    PubMed  CAS  Google Scholar 

  156. Rao CV, Simi B, Wynn TT, et al. Modulating effect of amount and types of dietary fat on colonic mucosal phospholipase, phosphatidylinositol-specific phospholipase C activities, and cyclooxygenase metabolite formation during different stages of colon tumor promotion in male F344 rats. Cancer Res 1996;56:532–537.

    PubMed  CAS  Google Scholar 

  157. Tsujii M, DuBois RN. Alterations in cellular adhesions and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 1995;83:493–501.

    PubMed  CAS  Google Scholar 

  158. Shiff SJ, Qiao L, Tsai L-L, Rigas B. Sulindac sulfide, an aspirin-like compound, inhibits proliferation, causes cell cycle quiescence, and induces apoptosis in HT-29 colon adenocarcinoma cells. J Clin Investig 1995;96:491–503.

    PubMed  CAS  Google Scholar 

  159. Bedi A, Pasricha PJ, Akhtar AJ, et al. Inhibition of apoptosis during development of colorectal cancer. Cancer Res 1995;55:1811–1816.

    PubMed  CAS  Google Scholar 

  160. Sheng H, Shao J, Morrow JD, et al. Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res 1998;58:362–366.

    PubMed  CAS  Google Scholar 

  161. Narayanan BA, Narayanan NK, Reddy BS. Docosahexaenoic acid regulated genes and transcription factors inducing apoptosis in human colon cancer cells. Int J Oncol 2001;19:1255–1262.

    PubMed  CAS  Google Scholar 

  162. Takebayashi Y, Aklyama S, Yamada K, et al. Angiogenesis is an unfavorable prognostic factor in human colorectal carcinoma. Cancer 1996;78:226–231.

    PubMed  CAS  Google Scholar 

  163. Saeki T, Tanada M, Takashima S, et al. Correlation between expression of platelet-derived endothelial cell growth factor (thymidine phosphorylase) and microvessel density in earlystage human colon carcinomas. Jpn J Clin Oncol 1997;27:227–230.

    PubMed  CAS  Google Scholar 

  164. Salvemini D, Misko TP, Masferrer JL, et al. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci USA 1993;90:7240–7244.

    PubMed  CAS  Google Scholar 

  165. Maciorowski KG, Turner ND, Lupton JR, et al. Diet and carcinogen alter the fecal microbial populations of rats. J Nutr 1997;127:449–457.

    PubMed  CAS  Google Scholar 

  166. Reddy BS, Simi B, Patel N, et al. Effect of amount and types of dietary fat on intestinal bacterial 7 a-dehydroxylase and phosphatidylinositol-specific phospholipase C and colonic mucosal diacylglycerol kinase and PKC activities during different stages of colon tumor promotion. Cancer Res 1996;56:2314–2320.

    PubMed  CAS  Google Scholar 

  167. Reddy BS, Watanabe K, Weisburger JH, Wynder EL. Promoting effect of bile acids in colon carcinogenesis in germ-free and conventional F344 rats. Cancer Res 1977;37:3238–3242.

    PubMed  CAS  Google Scholar 

  168. Bartram HP, Gostner A, Scheppach W, et al. Modification of fecal bile acid excretion by fish oil in healthy probands. Z Ernahrungswiss 1995;34:231–235.

    PubMed  CAS  Google Scholar 

  169. Demark-Wahnefried W, Price DT, Polascik TJ, et al. Pilot study of dietary fat restriction and flaxseed supplementation in men with prostate cancer before surgery: exploring the effects on hormonal levels, prostate-specific antigen, and histopathologic features. Urology 2001;58:47–52.

    PubMed  CAS  Google Scholar 

  170. Godley PA, Campbell MK, Gallagher P, et al. Biomarkers of essential fatty acid consumption and risk of prostatic carcinoma. Cancer Epidemiol Biomark Prey 1996;5:889–895.

    CAS  Google Scholar 

  171. Connolly JM, Coleman M, Rose DP. Effects of dietary fatty acids on DU 145 human prostate cancer cell growth in athymic nude mice. Nutr Cancer 1997;29:114–119.

    PubMed  CAS  Google Scholar 

  172. Chung BH, Mitchell SH, Zhang JS, Young CYF. Effects of docosahexaenoic acid and eicosapentaenoic acid on androgen-mediated cell growth and gene expression in LNCaP prostate cancer cells. Carcinogenesis 2001;22:1201–1206.

    PubMed  CAS  Google Scholar 

  173. Pandalai PK, Pilat MJ, Yamazaki K, et al. The effects of omega-3 and omega-6 fatty acids on in vitro prostate cancer growth. Anticancer Res 1996;16:815–820.

    PubMed  CAS  Google Scholar 

  174. Zhang JJ, Temme EHM, Kesteloot H. Fish consumption is inversely associated with male lung cancer mortality in countries with high levels of cigarette smoking or animal fat consumption. Int J Epidemiol 2000;29:615–621.

    PubMed  CAS  Google Scholar 

  175. Veierod MB, Laake P, Thelle DS. Dietary fat intake and risk of lung cancer-a prospective study of 51,452 Norwegian men and women. Eur J Cancer Prey 1997;6:540–549.

    CAS  Google Scholar 

  176. Chen DZ, Auborn K. Fish oil constituent docosahexaenoic acid selectively inhibits growth of human papillomavirus immortalized keratinocytes. Carcinogenesis 1999;20:249–254.

    PubMed  CAS  Google Scholar 

  177. Falconer JS, Ross JA, Fearon KC, et al. Effect of eicosapentaenoic acid and other fatty acids on the growth in vitro of human pancreatic cancer cell lines. Br J Cancer 1994:69:826–832.

    PubMed  CAS  Google Scholar 

  178. Lai PB, Ross JA, Fearon KC, et al. Cell cycle arrest and induction of apoptosis in pancreatic cancer cells exposed to eicosapentaenoic acid in vitro. Br J Cancer 1996;74:1.375–1383.

    Google Scholar 

  179. Calviello G, Palozza P, Piccioni E, et al. Dietary supplementation with eicosapentaenoic and docosahexaenoic acid inhibits growth of morris hepatocarcinoma 3924A in ratseffects on proliferation and apoptosis. Int J Cancer 1998;75:699–705.

    PubMed  CAS  Google Scholar 

  180. Jenski LJ, Zerouga M, Stillwell W. Omega-3 fatty acidcontaining liposomes in cancer therapy. Proc Soc Exp Biol Med 1995;210:227–233.

    PubMed  CAS  Google Scholar 

  181. Pascale AW, Ehringer WD, Stillwell W, et al. Omega-3 fatty acid modification of membrane structure and function. II. Alteration by docosahexaenoic acid of tumor cell sensitivity to immune cytolysis. Nutr Cancer 1993;19:147–157.

    PubMed  CAS  Google Scholar 

  182. Jenski LJ, Sturdevant LK, Ehringer WD, Stillwell W. Omega-3 fatty acid modification of membrane structure and function. I. Dietary manipulation of tumor cell susceptibility to cell- and complement-mediated lysis. Nutr Cancer 1993;19:135–146.

    PubMed  CAS  Google Scholar 

  183. Kontogiannea M, Gupta A, Ntanios F, et al. Omega-3 fatty acids decrease endothelial adhesion of human colorectal carcinoma cells. J Surg Res 2000;92:201–205.

    PubMed  CAS  Google Scholar 

  184. Connolly JM, Rose DP. Effects of fatty acids on invasion through reconstituted basement membrane (matrigel) by a human breast cancer cell line. Cancer Lett 1993;75:137–142.

    PubMed  CAS  Google Scholar 

  185. McCarty MF. Fish oil may impede tumour angiogenesis and invasiveness by down-regulating protein kinase C and modulating eicosanoid production. Med Hypotheses 1996;46:107–115.

    PubMed  CAS  Google Scholar 

  186. Cianchi F, Cortesini C, Bechi P, et al. Up-regulation of cyclooxygnase 2 gene expression correlates with tumor angiogenesis in human colorectal cancer. Gastroenterology 2001;121:1339–1347.

    PubMed  CAS  Google Scholar 

  187. Di Carlo V, Gianotti L, Balzano G, et al. Complications of pancreatic surgery and the role of perioperative nutrition. Dig Surg 1999; 16:320–326.

    PubMed  Google Scholar 

  188. Wu GH, Zhang YW, Wu ZH. Modulation of postoperative immune and inflammatory response by immune-enhancing enteral diet in gastrointestinal cancer patients. World J Gastroenterol 2001;7:357–362.

    PubMed  CAS  Google Scholar 

  189. Almallah YZ, Ewen SW, El-Tahir A, et al. Distal proctocolitis and n-3 polyunsaturated fatty acids (n-3 PUFAs): the mucosal effect in situ. J Clin Immun 2000;20:68–76.

    PubMed  CAS  Google Scholar 

  190. Belluzzi A, Brignola C, Campieri M, et al. Effect of an enteric-coated fish oil preparation on relapses in Crohn’s disease. N Engl J Med 1996;334:1557–1560.

    PubMed  CAS  Google Scholar 

  191. Braga M, Gianotti L, Radaelli G, et al. Perioperative immunonutrition in patients undergoing cancer surgery— Results of a randomized double-blind phase 3 trial. Arch Surg 1999;134:428–433.

    PubMed  CAS  Google Scholar 

  192. Wigmore SJ, Barber MD, Ross JA, et al. Effect of oral eicosapentaenoic acid on weight loss in patients with pancreatic cancer. Nutr Cancer 2000;36:177–184.

    PubMed  CAS  Google Scholar 

  193. Heyland DK, Novak F, Drover JW, et al. Should immunonutrition become routine in critically ill patients. A systematic review of the evidence. JAMA 2001;286:944–953.

    PubMed  CAS  Google Scholar 

  194. Heys SD, Walker LG, Smith I, Eremin O. Enteral nutritional supplementation with key nutrients in patients with critical illness and cancer—A meta-analysis of randomized controlled clinical trials. Ann Surg 1999; 229:467–477.

    PubMed  CAS  Google Scholar 

  195. Gogos CA, Ginopoulos P, Zoumbos NC, et al. The effect of dietary omega-3 polyunsaturated fatty acids on T-lymphocyte subsets of patients with solid tumors. Cancer Detect Prey 1995;19:415–417.

    CAS  Google Scholar 

  196. Das UN, Madhavi N, Sravan Kumar G, et al. Can tumour cell drug resistance be reversed by essential fatty acids and their metabolites? Prostaglandins Leukot Essent Fatty Acids 1998;58:39–54.

    PubMed  CAS  Google Scholar 

  197. Kinsella JE, Black JM. Effects of polyunsaturated fatty acids on the efficacy of antineoplastic agents toward L5178Y lymphoma cells. Biochem Pharmacol 1993;45:1881–1887.

    PubMed  CAS  Google Scholar 

  198. Bougnoux P, Germain E, Chajes V, et al. Cytotoxic drugs efficacy correlates with adipose tissue docosahexaenoic acid level in locally advanced breast carcinoma. Br J Cancer 1999;79:1765–1769.

    PubMed  CAS  Google Scholar 

  199. Ogilvie GK, Fettman MJ, Mallinckrodt CH, et al. Effect of fish oil, arginine, and doxorubicin chemotherapy on remission and survival time for dogs with lymphoma. Cancer 2000;88:1916–1928.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lupton, J.R., Chapkin, R.S. (2004). Chemopreventive Effects of Omega-3 Fatty Acids. In: Kelloff, G.J., Hawk, E.T., Sigman, C.C. (eds) Cancer Chemoprevention. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-767-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-767-3_39

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-342-8

  • Online ISBN: 978-1-59259-767-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics