Skip to main content

Cellular, Molecular, and Pharmacologic Mechanisms Underlying Drug-Induced Cardiac Arrhythmogenesis

  • Chapter
Cardiac Safety of Noncardiac Drugs

Abstract

Pharmacologic agents can contribute to cardiac arrhythmogenesis by altering conduction, repolarization, or automaticity, and by inducing triggered activity in the form of early or delayed afterdepolarizations. Modulation of ion channel activity by drugs contributes to the development of both passive and active cardiac arrhythmias. The mechanisms responsible for active cardiac arrhythmias are generally divided into two major categories: (1) enhanced or abnormal impulse formation, and (2) re-entry (Fig. 1). Re-entry occurs when a propagating impulse fails to die out after normal activation of the heart and persists to re-excite the heart after expiration of the refractory period. Evidence implicating re-entry as a mechanism of cardiac arrhythmias stems back to the turn of the twentieth century (116). The mechanisms responsible for abnormal impulse formation include enhanced automaticity and triggered activity. Automaticity can be further subdivided into normal and abnormal and triggered activity, consisting of early afterdepolarizations (EADs) and delayed afterdepolarizations (DADs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mayer AG. Rhythmical pulsations is scyphomedusae. Publication 47 of the Carnegie Institute 1906; 1–62.

    Google Scholar 

  2. Mayer AG. Rhythmical pulsations in scyphomedusae. II. Publication 102 of the Carnegie Institute 1908; 115–131.

    Google Scholar 

  3. Mines GR. On dynamic equilibrium in the heart. J Physiol 1913; 46:349–382.

    PubMed  CAS  Google Scholar 

  4. Mines GR. On circulating excitations in heart muscles and their possible relation to tachycardia and fibrillation. Trans R Soc Can 1914; 8:43–52.

    Google Scholar 

  5. Lewis T. The broad features and time-relations of the normal electrocardiogram. Principles of interpretation. The mechanism and graphic registration of the heart beat. London: Shaw & sons, Ltd., 1925:44–77.

    Google Scholar 

  6. Moe GK. Evidence for reentry as a mechanism for cardiac arrhythmias. Rev Physiol Biochem Pharmacol 1975; 72:55–81.

    PubMed  CAS  Google Scholar 

  7. Kulbertus HE. In Reentrant Arrhythmias, Mechanisms and Treatment. Kulbertus HE, ed. Baltimore: University Park Press, 1977.

    Google Scholar 

  8. Wit AL, Cranefield PF. Re-entrant excitation as a cause of cardiac arrhythmias. Am J Physiol 1978; 235:H1–H17.

    PubMed  CAS  Google Scholar 

  9. Wit AL, Allessie MA, Fenoglic JJ, Jr., Bonke FIM, Lammers W, Smeets J. Significance of the endocardial and epicardial border zones in the genesis of myocardial infarction arrhythmias. In Cardiac Arrhythmias: A Decade of Progress. Harrison D, ed. Boston: GK Hall, 1982: 39–68.

    Google Scholar 

  10. Spear JF, Moore EN. Mechanisms of cardiac arrhythmias. Annu Rev Physiol 1982; 44:485–497.

    PubMed  CAS  Google Scholar 

  11. Janse MJ. Reentry rhythms. In The Heart and Cardiovascular System. Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE, eds. New York: Raven Press, 1986: 1203–1238.

    Google Scholar 

  12. Hoffman BF, Dangman KH. Mechanisms for cardiac arrhythmias. Experientia 1987; 43:1049–1056.

    PubMed  CAS  Google Scholar 

  13. Antzelevitch C. Reflection as a mechanism of reentrant cardiac arrhythmias. Prog Cardiol 1988; 1:3–16.

    Google Scholar 

  14. El-Sherif N. Reentry revisited. PACE 1988; 11:1358–1368.

    PubMed  CAS  Google Scholar 

  15. Lazzara R, Scherlag BJ. Generation of arrhythmias in myocardial ischemia and infarction. Am J Cardiol 1988; 61:20A–26A.

    PubMed  CAS  Google Scholar 

  16. Rosen MR. The links between basic and clinical cardiac electrophysiology. Circulation 1988; 77:251–263.

    PubMed  CAS  Google Scholar 

  17. Antzelevitch C, Brugada P, Brugada J, Brugada R, Towbin JA, Nademanee K. Brugada syndrome: 1992–2002. A historical perspective. J Am Coll Cardiol 2003; 41(10):1665–1671.

    PubMed  Google Scholar 

  18. Antzelevitch C, Brugada P, Brugada J, Brugada R, Shimizu W, Gussak I et al. Brugada Syndrome. A Decade of Progress. Circ Res 2002; 91(12):1114–1119.

    PubMed  CAS  Google Scholar 

  19. Antzelevitch C, Shimizu W. Cellular mechanisms underlying the Long QT syndrome. Curr Opin Cardiol 2002; 17(1):43–51.

    PubMed  Google Scholar 

  20. Bednar MM, Harrigan EP, Anziano RJ, Camm AJ, Ruskin JN. The QT interval. Prog Cardiovasc Dis 2001; 43(5 Pt 2):1–45.

    PubMed  CAS  Google Scholar 

  21. Gwathmey JK, Slawsky MT, Briggs GM, Morgan JP. Role of intracellular sodium in the regulation of intracellular calcium and contractility. Effects of DPI 201-106 on excitation-contraction coupling in human ventricular myocardium. J Clin Invest 1988; 82:1592–1605.

    PubMed  CAS  Google Scholar 

  22. Li CZ, Wang HW, Liu JL, Liu K, Yang ZF, Liu YM. [Effect of ATXII on opening modes of myocyte sodium channel, action potential and QT intervals of ECG]. Sheng Li Xue Bao 2001; 53(2):111–116.

    PubMed  CAS  Google Scholar 

  23. Hanck DA, Sheets MF. Modification of inactivation in cardiac sodium channels: Ionic current studies with anthopleurin-A toxin. J Gen Physiol 1995; 106:601–616.

    PubMed  CAS  Google Scholar 

  24. Roden DM. Drug-induced prolongation of the QT interval. N Engl J Med 2004; 350(10):1013–1022.

    PubMed  CAS  Google Scholar 

  25. Fenichel RR, Malik M, Antzelevitch C, Sanguinetti MC, Roden DM, Priori SG et al. Drug-induced Torsade de Pointes and implications for drug development. J Cardiovasc Electrophysiol 2004; 15:1–21.

    Google Scholar 

  26. Belardinelli L, Antzelevitch C, Vos MA. Assessing Predictors of drug-induced Torsade de Pointes. Trends Pharmacol Sci 2003; 24:619–625.

    PubMed  CAS  Google Scholar 

  27. Antzelevitch C, el Sherif N, Rosenbaum D, Vos M. Cellular mechanisms underlying the long QT syndrome. J Cardiovasc Electrophysiol 2003; 14(1):114–115.

    PubMed  Google Scholar 

  28. Haverkamp W, Breithardt G, Camm AJ, Janse MJ, Rosen MR, Antzelevitch C et al. The potential for QT prolongation and pro-arrhythmia by non-anti-arrhythmic drugs: Clinical and regulatory implications. Report on a Policy Conference of the European Society of Cardiology. Cardiovasc Res 2000; 47(2):219–233.

    PubMed  CAS  Google Scholar 

  29. Selzer A, Wray HW. Quinidine syncope. Paroxysmal ventricular fibrillation occurring during treatment of chronic atrial arrhythmias. Circulation 1964; 30:17–26.

    PubMed  CAS  Google Scholar 

  30. Roden DM, Woosley RL, Primm RK. Incidence and clinical features of the quinidine-associated long-QT syndrome: Implications for patient care. Am Heart J 1986; 111:1088–1093.

    PubMed  CAS  Google Scholar 

  31. Kay GN, Plumb VJ, Arciniegas JG, Henthorn RW, Waldo AL. Torsade de Pointes: The long-short initiating sequence and other clinical features: observations in 32 patients. J Am Coll Cardiol 1983; 2:806–817.

    PubMed  CAS  Google Scholar 

  32. Haverkamp W, Martinez-Rubio A, Hief C, Lammers A, Mühlenkamp S, Wichter T et al. Efficacy and safety of d,l-sotalol in patients with ventricular tachycardia and in survivors of cardiac arrest. J Am Coll Cardiol 1997; 30:487–495.

    PubMed  CAS  Google Scholar 

  33. Lehmann MH, Hardy S, Archibald D, Quart B, Macneil DJ. Sex difference in risk of torsade de pointes with d, l-sotalol. Circulation 1996; 94:2535–2541.

    PubMed  CAS  Google Scholar 

  34. Hohnloser SH. Proarrhythmia with class III antiarrhythmic drugs: types, risks, and management. Am J Cardiol 1997; 80(8A):82G–89G.

    PubMed  CAS  Google Scholar 

  35. Kober L, Bloch Thomsen PE, Moller M, Torp-Pedersen C, Carlsen J, Sandoe E et al. Effect of dofetilide in patients with recent myocardial infarction and left-ventricular dysfunction: a randomised trial. Lancet 2000; 356(9247):2052–2058.

    PubMed  CAS  Google Scholar 

  36. Stambler BS, Wood MA, Ellenbogen KA, Perry KT, Wakefield LK, VanderLugt JT. Efficacy and safety of repeated intravenous doses of ibutilide for rapid conversion of atrial flutter or fibrillation. Ibutilide Repeat Dose Study Investigators. Circulation 1996; 94(7):1613–1621.

    PubMed  CAS  Google Scholar 

  37. Antzelevitch C. Heterogeneity of cellular repolarization in LQTS: the role of M cells. Eur Heart J 2001; Supplements 3:K-2–K-16.

    CAS  Google Scholar 

  38. Antzelevitch C, Nesterenko VV, Muzikant AL, Rice JJ, Chen G, Colatsky TJ. Influence of transmural repolarization gradients on the electrophysiology and pharmacology of ventricular myocardium. Cellular basis for the Brugada and long-QT syndromes. Philos Trans R Soc Lond [Biol] 2001; 359:1201–1216.

    CAS  Google Scholar 

  39. Antzelevitch C, Dumaine R. Electrical heterogeneity in the heart: Physiological, pharmacological and clinical implications. In: Handbook of Physiology. Section 2 The Cardiovascular System. Page E, Fozzard HA, Solaro RJ, eds. New York: Oxford University Press, 2001: 654–692.

    Google Scholar 

  40. Weissenburger J, Nesterenko VV, Antzelevitch C. Transmural heterogeneity of ventricular repolarization under baseline and long QT conditions in the canine heart in vivo: Torsades de Pointes develops with halothane but not pentobarbital anesthesia. J Cardiovasc Electrophysiol 2000; 11:290–304.

    PubMed  CAS  Google Scholar 

  41. Antzelevitch C, Shimizu W, Yan GX, Sicouri S, Weissenburger J, Nesterenko VV et al. The M cell: Its contribution to the ECG and to normal and abnormal electrical function of the heart. J Cardiovasc Electrophysiol 1999; 10(8):1124–1152.

    PubMed  CAS  Google Scholar 

  42. Kozhevnikov DO, Yamamoto K, Robotis D, Restivo M, El-Sherif N. Electrophysiological mechanism of enhanced susceptibility of hypertrophied heart to acquired torsade de pointes arrhythmias: tridimensional mapping of activation and recovery patterns. Circulation 2002; 105(9):1128–1134.

    PubMed  Google Scholar 

  43. Vos MA, van Opstal JM, Leunissen JD, Verduyn SC. Electrophysiologic parameters and predisposing factors in the generation of drug-induced Torsade de Pointes arrhythmias. Pharmacol Ther 2001; 92(2–3):109–122.

    PubMed  CAS  Google Scholar 

  44. Akar FG, Yan GX, Antzelevitch C, Rosenbaum DS. Unique topographical distribution of M cells underlies reentrant mechanism of torsade de pointes in the long-QT syndrome. Circulation 2002; 105(10):1247–1253.

    PubMed  Google Scholar 

  45. Sicouri S, Antzelevitch C. A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle. The M cell. Circ Res 1991; 68:1729–1741.

    PubMed  CAS  Google Scholar 

  46. Zygmunt AC, Eddlestone GT, Thomas GP, Nesterenko VV, Antzelevitch C. Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle. Am J Physiol 2001; 281:H689–H697.

    CAS  Google Scholar 

  47. Liu DW, Antzelevitch C. Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. Circ Res 1995; 76:351–365.

    PubMed  CAS  Google Scholar 

  48. Zygmunt AC, Goodrow RJ, Antzelevitch C. INa-Ca contributes to electrical heterogeneity within the canine ventricle. Am J Physiol 2000; 278:H1671–H1678.

    CAS  Google Scholar 

  49. Antzelevitch C, Zygmunt AC, Dumaine R. Electrophysiology and pharmacology of ventricular repolarization. In Cardiac Repolarization. Bridging Basic and Clinical Sciences. Gussak I, Antzelevitch C, eds. Totowa: Humana Press, NJ, 2003: 63–90.

    Google Scholar 

  50. Yan GX, Antzelevitch C. Cellular basis for the normal T wave and the electrocardiographic manifestations of the long QT syndrome. Circulation 1998; 98:1928–1936.

    PubMed  CAS  Google Scholar 

  51. Cohen IS, Giles WR, Noble D. Cellular basis for the T wave of the electrocardiogram. Nature 1976; 262:657–661.

    PubMed  CAS  Google Scholar 

  52. Einthoven W. Uber die Deutung des Electrokardiogramms. Pflugers Arch 1912; 149:65–86.

    Google Scholar 

  53. Zuckerman R, Cabrera-Cosio E. La ondu U. Arch Inst Cardiol Mex 1947; 17:521–532.

    Google Scholar 

  54. Furbetta D, Bufalari A, Santucci F, Solinas P. Abnormality of the U wave and the T-U segment of the electrocardiogram: The syndrome of the papillary muscles. Circulation 1956; 14:1129–1137.

    PubMed  Google Scholar 

  55. Nahum LH, Hoff HE. The interpretation of the U wave of the electrocardiogram. Am Heart J 1939; 17:585–598.

    Google Scholar 

  56. Lepeschkin E. Genesis of the U wave. Circulation 1957; 15:77–81.

    PubMed  CAS  Google Scholar 

  57. Hoffman BF, Cranefield PF. Electrophysiology of the heart. New York: McGraw-Hill, 1960.

    Google Scholar 

  58. Watanabe Y. Purkinje repolarization as a possible cause of the U wave in the electrocardiogram. Circulation 1975; 51:1030–1037.

    PubMed  CAS  Google Scholar 

  59. Lab MJ. Contraction-excitation feedback in myocardium: Physiologic basis and clinical revelance. Circ Res 1982; 50:757–766.

    PubMed  CAS  Google Scholar 

  60. Choo MH, Gibson DG. U waves in ventricular hypertrophy: possible demonstration of mechano-electrical feedback. Br Heart J 1986; 55:428–433.

    PubMed  CAS  Google Scholar 

  61. Antzelevitch C, Nesterenko VV, Yan GX. Role of M cells in acquired long QT syndrome, U waves, and torsade de pointes. J Electrocardiol 1996; 28(suppl.):131–138.

    Google Scholar 

  62. Shimizu W, Antzelevitch C. Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing Torsade de Pointes in LQT2 and LQT3 models of the long-QT syndrome. Circulation 1997; 96:2038–2047.

    PubMed  CAS  Google Scholar 

  63. Lehmann MH, Suzuki F, Fromm BS, Frankovich D, Elko P, Steinman RT et al. T-wave “humps” as a potential electrocardiographic marker of the long QT syndrome. J Am Coll Cardiol 1994; 24:746–754.

    PubMed  CAS  Google Scholar 

  64. Surawicz B. U wave: facts, hypotheses, misconceptions, and misnomers. J Cardiovasc Electrophysiol 1998; 9(10):1117–1128.

    PubMed  CAS  Google Scholar 

  65. Shimizu W, Antzelevitch C. Cellular basis for the ECG features of the LQT1 form of the long QT syndrome: Effects of b-adrenergic agonists and antagonists and sodium channel blockers on transmural dispersion of repolarization and Torsade de Pointes. Circulation 1998; 98:2314–2322.

    PubMed  CAS  Google Scholar 

  66. Schwartz PJ, Priori SG, Spazzolini C, Moss AJ, Vincent GM, Napolitano C et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 2001; 103(1):89–95.

    PubMed  CAS  Google Scholar 

  67. Li GR, Feng J, Yue L, Carrier M. Transmural heterogeneity of action potentials and Ito1 in myocytes isolated from the human right ventricle. Am J Physiol 1998; 275:H369–H377.

    PubMed  CAS  Google Scholar 

  68. Shimizu W, Antzelevitch C. Differential effects of beta-adrenergic agonists and antagonists in LQT1, LQT2 and LQT3 models of the long QT syndrome. J Am Coll Cardiol 2000; 35:778–786.

    PubMed  CAS  Google Scholar 

  69. Balser JR, Bennett PB, Hondeghem LM, Roden DM. Suppression of time-dependent outward current in guinea-pig ventricular myocytes. Actions of quinidine and amiodarone. Circ Res 1991; 69:519–529.

    PubMed  CAS  Google Scholar 

  70. Anyukhovsky EP, Sosunov EA, Feinmark SJ, Rosen MR. Effects of quinidine on repolarization in canine epicardium, midmyocardium, and endocardium. II. In vivo study. Circulation 1997; 96:4019–4026.

    PubMed  CAS  Google Scholar 

  71. Shimizu W, McMahon B, Antzelevitch C. Sodium pentobarbital reduces transmural dispersion of repolarization and prevents torsade de pointes in models of acquired and congenital long QT syndrome. J Cardiovasc Electrophysiol 1999; 10:156–164.

    Google Scholar 

  72. Sun ZQ, Eddlestone GT, Antzelevitch C. Ionic mechanisms underlying the effects of sodium pentobarbital to diminish transmural dispersion of repolarization. Pacing and Clinical Electrophysiology 20, 11–1116. 1997. Abstract

    Google Scholar 

  73. Sicouri S, Moro S, Litovsky SH, Elizari MV, Antzelevitch C. Chronic amiodarone reduces transmural dispersion of repolarization in the canine heart. J Cardiovasc Electrophysiol 1997; 8:1269–1279.

    PubMed  CAS  Google Scholar 

  74. van Opstal JM, Schoenmakers M, Verduyn SC, De Groot SH, Leunissen JD, Der Hulst FF et al. Chronic Amiodarone evokes no Torsade de Pointes arrhythmias despite QT lengthening in an animal model of acquired Long-QT Syndrome. Circulation 2001; 104(22):2722–2727.

    PubMed  Google Scholar 

  75. Zygmunt AC, Thomas GP, Belardinelli L, Blackburn B, Antzelevitch C. Ranolazine produces ion channel effects similar to those observed with chronic amiodarone in canine cardiac ventricular myocytes. Pacing Clin.Electrophysiol 25, II-626. 2002. Abstract

    Google Scholar 

  76. Antzelevitch C, Belardinelli L, Wu L, Fraser H, Zygmunt AC, Burashnikov A et al. Electrophysiologic Properties of Ranolazine: A Novel Anti-Anginal Agent. J Cardiovasc Pharmacol Therapeut. In press.

    Google Scholar 

  77. Yang T, Snyders D, Roden DM. Drug block of I(kr): model systems and relevance to human arrhythmias. J Cardiovasc Pharmacol 2001; 38(5):737–744.

    PubMed  CAS  Google Scholar 

  78. Carlsson L, Almgren O, Duker GD. Qtu-Prolongation and Torsades-de-Pointes Induced by Putative Class-III Antiarrhythmic Agents in the Rabbit-Etiology and Interventions. J Cardiovasc Pharmacol 1990; 16:276–285.

    PubMed  CAS  Google Scholar 

  79. Lu HR, Remeysen P, De Clerck F. Nonselective I(Kr)-blockers do not induce torsades de pointes in the anesthetized rabbit during alpha1-adrenoceptor stimulation. J Cardiovasc Pharmacol 2000; 36(6):728–736.

    PubMed  Google Scholar 

  80. Vos MA, De Groot SH, Verduyn SC, van der ZJ, Leunissen HD, Cleutjens JP et al. Enhanced susceptibility for acquired torsade de pointes arrhythmias in the dog with chronic, complete AV block is related to cardiac hypertrophy and electrical remodeling. Circulation 1998; 98(11):1125–1135.

    PubMed  CAS  Google Scholar 

  81. Sugiyama A, Satoh Y, Shiina H, Takeda S, Hashimoto K. Torsadegenic action of the antipsychotic drug sulpiride assessed using in vivo canine models. J Cardiovasc Pharmacol 2002; 40(2):235–245.

    PubMed  CAS  Google Scholar 

  82. Weissenburger J, Chezalviel F, Davy JM, Lainee P, Guhennec C, Penin E et al. Methods and limitations of an experimental model of long QT syndrome. J Pharm Methods 1991; 26:23–42.

    CAS  Google Scholar 

  83. Weissenburger J, Davy JM, Chezalviel F, Ertzbischoff O, Poirier JM, Engel F et al. Arrhythmogenic activities of antiarrhythmic drugs in conscious hypokalemic dogs with atrioventricular block: comparison between quinidine, lidocaine, flecainide, propranolol and sotalol. J Pharmacol Exp Ther 1991; 259:871–883.

    PubMed  CAS  Google Scholar 

  84. Emori T, Antzelevitch C. Cellular basis for complex T waves and arrhythmic activity following combined I(Kr) and I(Ks) block. J Cardiovasc Electrophysiol 2001; 12(12):1369–1378.

    PubMed  CAS  Google Scholar 

  85. Lubinski A, Lewicka-Nowak E, Kempa M, Baczynska AM, Romanowska I, Swiatecka G. New insight into repolarization abnormalities in patients with congenital long QT syndrome: the increased transmural dispersion of repolarization. PACE 1998; 21:172–175.

    PubMed  CAS  Google Scholar 

  86. Wolk R, Stec S, Kulakowski P. Extrasystolic beats affect transmural electrical dispersion during programmed electrical stimulation. Eur J Clinical Invest 2001;31:293–301.

    CAS  Google Scholar 

  87. Tanabe Y, Inagaki M, Kurita T, Nagaya N, Taguchi A, Suyama K et al. Sympathetic stimulation produces a greater increase in both transmural and spatial dispersion of repolarization in LQT1 than LQT2 forms of congenital long QT syndrome. J Am Coll Cardiol 2001; 37:911–919.

    PubMed  CAS  Google Scholar 

  88. Frederiks J, Swenne CA, Kors JA, van Herpen G, Maan AC, Levert JV et al. Within-subject electrocardiographic differences at equal heart rates: role of the autonomic nervous system. Pflugers Arch 2001; 441(5):717–724.

    PubMed  CAS  Google Scholar 

  89. Yamaguchi M, Shimizu M, Ino H, Terai H, Uchiyama K, Oe K et al. T wave peak-to-end interval and QT dispersion in acquired long QT syndrome: a new index for arrhythmogenicity. Clin Sci (Lond) 2003; 105:671–676.

    Google Scholar 

  90. van Opstal JM, Verduyn SC, Winckels SK, Leerssen HM, Leunissen JD, Wellens HJ et al. The JT-area indicates dispersion of repolarization in dogs with atrioventricular block. J Interv Card Electrophysiol 2002; 6(2):113–120.

    PubMed  Google Scholar 

  91. Donger C, Denjoy I, Berthet M, Neyroud N, Cruaud C, Bennaceur M et al. KVLQT1 C-terminal missense mutation causes a forme fruste long-QT syndrome. Circulation 1997; 96(9):2778–2781.

    PubMed  CAS  Google Scholar 

  92. Napolitano C, Schwartz PJ, Brown AM, Ronchetti E, Bianchi L, Pinnavaia A et al. Evidence for a cardiac ion channel mutation underlying drug-induced QT prolongation and life-threatening arrhythmias [In Process Citation]. J Cardiovasc Electrophysiol 2000; 11(6):691–696.

    PubMed  CAS  Google Scholar 

  93. Yang P, Kanki H, Drolet B, Yang T, Wei J, Viswanathan PC et al. Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation 2002; 105(16):1943–1948.

    PubMed  CAS  Google Scholar 

  94. Abbott GW, Sesti F, Splawski I, Buck ME, Lehmann MH, Timothy KW et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 1999; 97:175–187.

    PubMed  CAS  Google Scholar 

  95. Splawski I, Timothy KW, Tateyama M, Clancy CE, Malhotra A, Beggs AH et al. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 2002; 297(5585):1333–1336.

    PubMed  CAS  Google Scholar 

  96. Ford GA, Wood SM, Daly AK. CYP2D6 and CYP2C19 genotypes of patients with terodiline cardiotoxicity identified through the yellow card system. Br J Clin Pharmacol 2000; 50(1):77–80.

    PubMed  CAS  Google Scholar 

  97. Roden DM. Pharmacogenetics and drug-induced arrhythmias. Cardiovasc Res 2001; 50(2):224–231.

    PubMed  CAS  Google Scholar 

  98. Carmeliet E. Use-dependent block and use-dependent unblock of the delayed rectifier K+ current by almokalant in rabbit ventricular myocytes. Circ Res 1993; 73:857–868.

    PubMed  CAS  Google Scholar 

  99. Houltz B, Darpo B, Edvardsson N, Blomstrom P, Brachmann J, Crijns HJ et al. Electrocardiographic and clinical predictors of torsades de pointes induced by almokalant infusion in patients with chronic atrial fibrillation or flutter: a prospective study. PACE 1998; 21(5):1044–1057.

    PubMed  CAS  Google Scholar 

  100. Carlsson L, Drews L, Duker GD, Schiller-Linhardt G. Attenuation of proarrhythmias related to delayed repolarization by low-dose lidocaine in the anesthetized rabbit. J Pharmacol Exp Ther 1993; 267:1076–1080.

    PubMed  CAS  Google Scholar 

  101. Wiesfeld AC, Crijns HJ, Bergstrand RH, Almgren O, Hillege HL, Lie KI. Torsades de pointes with Almokalant, a new class III antiarrhythmic drug. Am Heart J 1993; 126(4):1008–1011.

    PubMed  CAS  Google Scholar 

  102. Abrahamsson C, Carlsson L, Duker G. Lidocaine and nisoldipine attenuate almokalant-induced dispersion of repolarization and early afterdepolarizations in vitro. J Cardiovasc Electrophysiol 1996; 7(11):1074–1081.

    PubMed  CAS  Google Scholar 

  103. Verduyn SC, Vos MA, Van der Zande J, Kulcsar A, Wellens HJ. Further observations to elucidate the role of interventricular dispersion of repolarization and early afterdepolarizations in the genesis of acquired torsade de pointes arrhythmias: a comparison between almokalant and d-sotalol using the dog as its own control. J Am Coll Cardiol 1997; 30:1575–1584.

    PubMed  CAS  Google Scholar 

  104. Kiehn J, Thomas D, Karle CA, Schols W, Kubler W. Inhibitory effects of the class III antiarrhythmic drug amiodarone on cloned HERG potassium channels. Naunyn Schmiedebergs Arch Pharmacol 1999; 359(3):212–219.

    PubMed  CAS  Google Scholar 

  105. Kodama I, Kamiya K, Toyama J. Amiodarone: ionic and cellular mechanisms of action of the most promising class III agent. Am J Cardiol 1999; 84(9A):20R–28R.

    PubMed  CAS  Google Scholar 

  106. Hii JT, Wyse DG, Gillis AM, Duff HJ, Solylo MA, Mitchell LB. Precordial QT interval dispersion as a marker of torsade de pointes. Disparate effects of class Ia antiarrhythmic drugs and amiodarone. Circulation 1992; 86(5):1376–1382.

    PubMed  CAS  Google Scholar 

  107. Hohnloser SH, Klingenheben T, Singh BN. Amiodarone-associated proarrhythmic effects. A review with special reference to torsade de pointes tachycardia. Ann Intern Med 1994; 121:529–535.

    PubMed  CAS  Google Scholar 

  108. Merot J, Charpentier F, Poirier JM, Coutris G, Weissenburger J. Effects of chronic treatment by amiodarone on transmural heterogeneity of canine ventricular repolarization in vivo: interactions with acute sotalol. Cardiovasc Res 1999; 44(2):303–314.

    PubMed  CAS  Google Scholar 

  109. Drouin E, Lande G, Charpentier F. Amiodarone reduces transmural heterogeneity of repolarization in the human heart. J Am Coll Cardiol 1998; 32(4):1063–1067.

    PubMed  CAS  Google Scholar 

  110. Fermini B, Jurkiewicz NK, Jow B, Guinosso PJ, Jr., Baskin EP, Lynch JJ, Jr. et al. Use-dependent effects of the class III antiarrhythmic agent NE-10064 (azimilide) on cardiac repolarization: block of delayed rectifier potassium and L-type calcium currents. J Cardiovasc Pharmacol 1995; 26(2):259–271.

    PubMed  CAS  Google Scholar 

  111. Busch AE, Eigenberger B, Jurkiewicz NK, Salata JJ, Pica A, Suessbrich H et al. Blockade of HERG channels by the class III antiarrhythmic azimilide: mode of action. Br J Pharmacol 1998; 123(1):23–30.

    PubMed  CAS  Google Scholar 

  112. Yan GX, Wu Y, Liu T, Wang J, Marinchak RA, Kowey PR. Phase 2 early afterdepolarization as a trigger of polymorphic ventricular tachycardia in acquired long-qt syndrome: direct evidence from intracellular recordings in the intact left ventricular wall. Circulation 2001; 103(23):2851–2856.

    PubMed  CAS  Google Scholar 

  113. van Opstal JM, Leunissen JD, Wellens HJ, Vos MA. Azimilide and dofetilide produce similar electrophysiological and proarrhythmic effects in a canine model of Torsade de Pointes arrhythmias. Eur J Pharmacol 2001; 412(1):67–76.

    PubMed  Google Scholar 

  114. Connolly SJ, Schnell DJ, Page RL, Wilkinson WE, Marcello SR, Pritchett EL. Dose-response relations of azimilide in the management of symptomatic, recurrent, atrial fibrillation. Am J Cardiol 2001; 88(9):974–979.

    PubMed  CAS  Google Scholar 

  115. Kiehn J, Lacerda AE, Wible BA, Brown AM. Molecular physiology and pharmacology of HERG single-channel currents and block by dofetilide. Circulation 1996; 94:2572–2579.

    PubMed  CAS  Google Scholar 

  116. Yang T, Roden DM. Extracellular potassium modulation of drug block of IKr. Implications for torsade de pointes and reverse use-dependence. Circulation 1996; 93:407–411.

    PubMed  CAS  Google Scholar 

  117. Buchanan LV, Kabell GG, Brunden MN, Gibson JK. Comparative assessment of ibutilide, D-sotalol, clofilium, E-4031, and UK-68,798 in a rabbit model of proarrhythmia. J Cardiovasc Pharmacol 1993; 22:540–549.

    PubMed  CAS  Google Scholar 

  118. Torp-Pedersen C, Moller M, Bloch-Thomsen PE, Kober L, Sandoe E, Egstrup K et al. Dofetilide in patients with congestive heart failure and left ventricular dysfunction. Danish Investigations of Arrhythmia and Mortality on Dofetilide Study Group. N Engl J Med 1999; 341(12):857–865.

    PubMed  CAS  Google Scholar 

  119. Yang T, Snyders DJ, Roden DM. Ibutilide, a methanesulfonanilide antiarrhythmic, is a potent blocker of the rapidly activating delayed rectifier K+ current (IKr) in AT-1 cells. Concentration-, time-, voltage-,and use-dependent effects. Circulation 1995; 91:1799–1806.

    PubMed  CAS  Google Scholar 

  120. Ellenbogen KA, Stambler BS, Wood MA, Sager PT, Wesley RC, Jr., Meissner MC et al. Efficacy of intravenous ibutilide for rapid termination of atrial fibrillation and atrial flutter: a dose-response study. J Am Coll Cardiol 1996; 28(1):130–136.

    PubMed  CAS  Google Scholar 

  121. Glatter K, Yang Y, Chatterjee K, Modin G, Cheng J, Kayser S etal. Chemical Cardioversion of Atrial Fibrillation or Flutter With Ibutilide in Patients Receiving Amiodarone Therapy. Circulation 2001; 103(2):253–257.

    PubMed  CAS  Google Scholar 

  122. Po SS, Wang DW, Yang IC, Johnson JP, Jr., Nie L, Bennett PB. Modulation of HERG potassium channels by extracellular magnesium and quinidine. J Cardiovasc Pharmacol 1999; 33(2):181–185.

    PubMed  CAS  Google Scholar 

  123. Bauman JL, Bauernfeind RA, Hoff JV, Strasberg B, Swiryn S, Rosen KM. Torsade de pointes due to quinidine: Observations in 31 patients. Am Heart J 1984; 107:425–430.

    PubMed  CAS  Google Scholar 

  124. Roden DM, Hoffman BF. Action potential prolongation and induction of abnormal automaticity by low quinidine concentrations in canine Purkinje fibers. Relationship to potassium and cycle length. Circ Res 1985; 56(6):857–867.

    PubMed  CAS  Google Scholar 

  125. Sicouri S, Antzelevitch C. Drug-induced afterdepolarizations and triggered activity occur in a discrete subpopulation of ventricular muscle cell (M cells) in the canine heart: Quinidine and Digitalis. J Cardiovasc Electrophysiol 1993; 4:48–58.

    PubMed  CAS  Google Scholar 

  126. Carmeliet E. Electrophysiologic and voltage clamp analysis of the effects of sotalol on isolated cardiac muscle and Purkinje fibers. J Pharmacol Exp Ther 1985; 232:817–825.

    PubMed  CAS  Google Scholar 

  127. Varro A, Balati B, Iost N, Takacs J, Virag L, Lathrop DA et al. The role of the delayed rectifier component IKs in dog ventricular muscle and Purkinje fibre repolarization. J Physiol (Lond) 2000; 523Pt 1:67–81.

    CAS  Google Scholar 

  128. Eckardt L, Breithardt G, Haverkamp W. Electrophysiologic characterization of the antipsychotic drug sertindole in a rabbit heart model of torsade de pointes: low torsadogenic potential despite QT prolongation. J Pharmacol Exp Ther 2002; 300(1):64–71.

    PubMed  CAS  Google Scholar 

  129. McKibbin JK, Pocock WA, Barlow JB, Millar RN, Obel IW. Sotalol, hypokalaemia, syncope, and torsade de pointes. Br Heart J 1984; 51(2):157–162.

    PubMed  CAS  Google Scholar 

  130. Patterson E, Scherlag BJ, Lazzara R. Early afterdepolarizations produced by d,l-sotalol and clofilium. J Cardiovasc Electrophysiol 1997; 8:667–678.

    PubMed  CAS  Google Scholar 

  131. Sicouri S, Moro S, Elizari MV. d-Sotalol induces marked action potential prolongation and early afterdepolarizations in M but not epicardial or endocardial cells of the canine ventricle. J Cardiovasc Pharmacol Ther 1997; 2:27–38.

    PubMed  CAS  Google Scholar 

  132. Suessbrich H, Waldegger S, Lang F, Bush AE. Blockade of HERG channels expressed in Xenopus oocytes by the histamine receptor antagonists terfenadine and astemizoles. FEBS Lett 1996; 385:77–80.

    PubMed  CAS  Google Scholar 

  133. Delpon E, Valenzuela C, Tamargo J. Blockade of cardiac potassium and other channels by antihistamines. Drug Saf 1999; 21Suppl 1:11–18.

    PubMed  CAS  Google Scholar 

  134. Salata JJ, Jurkiewicz NK, Wallace AA, Stupienski RF, Guinosso PJ, Lynch JJ. Cardiac electrophysiological actions of the histamine H1-receptor antagonists astemizole and terfenadine compared with chlorpheniramine and pyrilamine. Circ Res 1995; 76:110–119.

    PubMed  CAS  Google Scholar 

  135. Sakemi H, VanNatta B. Torsade de pointes induced by astemizole in a patient with prolongation of the QT interval. Am Heart J 1993; 125(5):1436–1438.

    PubMed  CAS  Google Scholar 

  136. Tsai WC, Tsai LM, Chen JH. Combined use of astemizole and ketoconazole resulting in torsade de pointes. J Formos Med Assoc 1997; 96(2):144–146.

    PubMed  CAS  Google Scholar 

  137. Weissenburger J, Noyer M, Cheymol G, Jaillon P. Electrophysiological effects of cetirizine, astemizole and D-sotalol in a canine model of long QT syndrome. Clin Exp Allergy 1999; 29 Suppl 3:190–196.

    PubMed  CAS  Google Scholar 

  138. Pratt CM, Hertz RP, Ellis BE, Crowell SP, Louv W, Moye L. Risk of developing Life-Threatening ventricular arrhythmia associated with terfenadine in comparison with over-the-Counter antihistamines, ibuprofen and clemastine. Am J Cardiol 1994; 73:346–352.

    PubMed  CAS  Google Scholar 

  139. Pratt CM, Ruberg S, Morganroth J, Mc Nutt B, Woodward J, Harris S et al. Dose-response relation between terfenadine (Seldane) and the QTc interval on the scalar electrocardiogram: Distinguishing a drug effect from spontaneous variability. Am Heart J 1996; 131:472–480.

    PubMed  CAS  Google Scholar 

  140. Monahan BP, Ferguson CL, Killeavy ES, Lloyd BK. Torsades de pointes occurring in association with terfenadine use. JAMA 1990; 264(21):2788–2790.

    PubMed  CAS  Google Scholar 

  141. Zimmermann M, Duruz H, Guinand O, Broccard O. Torsades de pointes after treatment with terfenadine and ketoconazole. Eur Heart J 1992; 13(7):1002–1003.

    PubMed  CAS  Google Scholar 

  142. Daleau P, Lessard E, Groleau MF, Turgeon J. Erythromycin blocks the rapid component of the delayed rectifier potassium current and lengthens repolarization of guinea pig ventricular myocytes. Circulation 1995; 91:3010–3016.

    PubMed  CAS  Google Scholar 

  143. Rampe D, Murawsky MK. Blockade of the human cardiac K+ channel Kv1.5 by the antibiotic erythromycin. Naunyn Schmiedebergs Arch Pharmacol 1997; 355(6):743–750.

    PubMed  CAS  Google Scholar 

  144. Antzelevitch C, Sun ZQ, Zhang ZQ, Yan GX. Cellular and ionic mechanisms underlying erythromycin-induced long QT intervals and torsade de pointes. J Am Coll Cardiol 1996; 28:1836–1848.

    PubMed  CAS  Google Scholar 

  145. Oberg KC, Bauman JL. QT interval prolongation and torsades de pointes due to erythromycin lactobionate. Pharmacotherapy 1995; 15(6):687–692.

    PubMed  CAS  Google Scholar 

  146. Gitler B, Berger LS, Buffa SD. Torsades de pointes induced by erythromycin. Chest 1994; 105:368–372.

    PubMed  CAS  Google Scholar 

  147. Fazekas T, Krassoi I, Lengyel C, Varro A, Papp JG. Suppression of erythromycin-induced early afterdepolarizations and torsade de pointes ventricular tachycardia by mexiletine. PACE 1998; 21:147–150.

    PubMed  CAS  Google Scholar 

  148. Nattel S, Talajic M, Lemery R, Roy D. Erythromycin induced long QT syndrome: concordance with quinidine and underlying cellular electrophysiologic mechanism. Am J Med 1990; 89:235–238.

    PubMed  CAS  Google Scholar 

  149. Zhang S, Zhou Z, Gong Q, Makielski JC, January CT. Mechanism of block and identification of the verapamil binding domain to HERG potassium channels. Circ Res 1999; 84(9):989–998.

    PubMed  CAS  Google Scholar 

  150. Hollifield JW, Heusner JJ, DesChamps M, Gray J, Spyker DA, Peace KE et al. Comparison of equalweight oral dosages of verapamil hydrochloride and diltiazem hydrochloride in patients with mild to moderate hypertension. Clin Pharm 1988; 7(2):129–134.

    PubMed  CAS  Google Scholar 

  151. Funck-Brentano C, Coudray P, Planellas J, Motte G, Jaillon P. Effects of Bepridil and Diltiazem on Ventricular Repolarization in Angina Pectoris. Am J Cardiol 1990; 66:812–817.

    PubMed  CAS  Google Scholar 

  152. Singh BN. Comparative efficacy and safety of bepridil and diltiazem in chronic stable angina pectoris refractory to diltiazem. The Bepridil Collaborative Study Group. Am J Cardiol 1991; 68(4):306–312.

    PubMed  CAS  Google Scholar 

  153. Chouabe C, Drici MD, Romey G, Barhanin J. Effects of calcium channel blockers on cloned cardiac K+ channels IKr and IKs. Therapie 2000; 55(1):195–202.

    PubMed  CAS  Google Scholar 

  154. De Cicco M, Macor F, Robieux I, Zanette G, Fantin D, Fabiani F et al. Pharmacokinetic and pharmacodynamic effects of high-dose continuous intravenous verapamil infusion: clinical experience in the intensive care unit. Crit Care Med 1999; 27(2):332–339.

    PubMed  Google Scholar 

  155. Gonzalez-Gomez A, Cires PM, Gamio CF, Rodriguez dl, V, Garcia-Barreto D. Relationships between verapamil plasma concentrations and its antihypertensive action. Int J Clin Pharmacol Ther Toxicol 1988; 26(9):453–460.

    PubMed  CAS  Google Scholar 

  156. Boutarin J, Maarek-Charbit M, Aupetit JF, Galey-Arcangioli C, Ritz B. [Efficacy and tolerability of isoptine LP in mild to moderate hypertension. A multicenter study with 50 patients]. Ann Cardiol Angeiol (Paris) 1992; 41(10):587–593.

    CAS  Google Scholar 

  157. Bril A, Gout B, Bonhomme M, Landais L, Faivre JF, Linee P et al. Combined potassium and calcium channel blocking activities as a basis for antiarrhythmic efficacy with low proarrhythmic risk: experimental profile of BRL-32872. J Pharmacol Exp Ther 1996; 276:637–646.

    PubMed  CAS  Google Scholar 

  158. Benardeau A, Weissenburger J, Hondeghem L, Ertel EA. Effects of the T-type Ca(2+) channel blocker mibefradil on repolarization of guinea pig, rabbit, dog, monkey, and human cardiac tissue. J Pharmacol Exp Ther 2000; 292(2):561–575.

    PubMed  CAS  Google Scholar 

  159. Glaser S, Steinbach M, Opitz C, Wruck U, Kleber FX. Torsades de pointes caused by Mibefradil. Eur J Heart Fail 2001; 3(5):627–630.

    PubMed  CAS  Google Scholar 

  160. Pinto JM, Sosunov EA, Gainullin RZ, Rosen MR, Boyden PA. Effects of mibefradil, a T-type calcium current antagonist, on electrophysiology of Purkinje fibers that survived in the infarcted canine heart. J Cardiovasc Electrophysiol 1999; 10(9):1224–1235.

    PubMed  CAS  Google Scholar 

  161. Rowland E, McKenna WJ, Krikler DM. Electrophysiologic and antiarrhythmic actions of bepridil. Comparison with verapamil and ajmaline for atrioventricular reentrant tachycardia. Am J Cardiol 1985; 55(13 Pt 1):1513–1519.

    PubMed  CAS  Google Scholar 

  162. Manouvrier J, Sagot M, Caron C, Vaskmann G, Leroy R, Reade R et al. Nine cases of torsade de pointes with bepridil administration. Am Heart J 1986; 111(5):1005–1007.

    PubMed  CAS  Google Scholar 

  163. Osaka T, Kodama I, Toyama J, Yamada K. Effects of bepridil on ventricular depolarization and repolarization of rabbit isolated hearts with particular reference to its possible proarrhythmic properties. Br J Pharmacol 1988; 93(4):775–780.

    PubMed  CAS  Google Scholar 

  164. Prystowsky EN. Electrophysiologic and antiarrhythmic properties of bepridil. Am J Cardiol 1985; 55(7):59C–62C.

    PubMed  CAS  Google Scholar 

  165. Campbell RM, Woosley RL, Iansmith DH, Roden DM. Lack of triggered automaticity despite repolarization abnormalities due to bepridil and lidoflazine. PACE 1990; 13:30–36.

    PubMed  CAS  Google Scholar 

  166. Rampe D, Murawsky MK, Grau J, Lewis EW. The antipsychotic agent sertindole is a high affinity antagonist of the human cardiac potassium channel HERG. J Pharmacol Exp Ther 1998; 286(2):788–793.

    PubMed  CAS  Google Scholar 

  167. van Kammen DP, McEvoy JP, Targum SD, Kardatzke D, Sebree TB. A randomized, controlled, doseranging trial of sertindole in patients with schizophrenia. Psychopharmacology (Berl) 1996; 124(1-2):168–175.

    Google Scholar 

  168. Zimbroff DL, Kane JM, Tamminga CA, Daniel DG, Mack RJ, Wozniak PJ et al. Controlled, doseresponse study of sertindole and haloperidol in the treatment of schizophrenia. Sertindole Study Group. Am J Psychiatry 1997; 154(6):782–791.

    PubMed  CAS  Google Scholar 

  169. Fritze J, Bandelow B. The QT interval and the atypical antipsychotic sertindole. Int J Psych Clinc Pract 1998; 2:265–273.

    CAS  Google Scholar 

  170. Drolet B, Zhang S, Deschenes D, Rail J, Nadeau S, Zhou Z et al. Droperidol lengthens cardiac repolarization due to block of the rapid component of the delayed rectifier potassium current. J Cardiovasc Electrophysiol 1999; 10(12):1597–1604.

    PubMed  CAS  Google Scholar 

  171. Lischke V, Behne M, Doelken P, Schledt U, Probst S, Vettermann J. Droperidol causes a dosedependent prolongation of the QT interval. Anesth Analg 1994; 79(5):983–986.

    PubMed  CAS  Google Scholar 

  172. Guy JM, Andre-Fouet X, Porte J, Bertrand M, Lamaud M, Verneyre H. [Torsades de pointes and prolongation of the duration of QT interval after injection of droperidol]. Ann Cardiol Angeiol (Paris) 1991; 40(9):541–545.

    CAS  Google Scholar 

  173. Michalets EL, Smith LK, Van Tassel ED. Torsade de pointes resulting from the addition of droperidol to an existing cytochrome P450 drug interaction. Ann Pharmacother 1998; 32(7-8):761–765.

    PubMed  CAS  Google Scholar 

  174. Adamantidis MM, Kerram P, Caron JF, Dupuis BA. Droperidol exerts dual effects on repolarization and induces early afterdepolarizations and triggered activity in rabbit purkinje fibers. J Pharmacol Exp Ther 1993; 266:884–893.

    PubMed  CAS  Google Scholar 

  175. Mohammad S, Zhou Z, Gong Q, January CT. Blockage of the HERG human cardiac K+ channel by the gastrointestinal prokinetic agent cisapride. Am J Physiol 1997; 273(5 Pt 2):H2534–H2538.

    PubMed  CAS  Google Scholar 

  176. Drolet B, Khalifa M, Daleau P, Hamelin BA, Turgeon J. Block of the rapid component of the delayed rectifier potassium current by the prokinetic agent cisapride underlies drug-related lengthening of the QT interval. Circulation 1998; 97(2):204–210.

    PubMed  CAS  Google Scholar 

  177. Wysowski DK, Bacsanyi J. Cisapride and fatal arrhythmia [letter]. N Engl J Med 1996; 335:290–291.

    PubMed  CAS  Google Scholar 

  178. Di Diego JM, Belardinelli L, Antzelevitch C. Cisapride-induced Transmural ispersion of Repolarization and Torsade de Pointes in the Canine Left Ventricular Wedge Preparation During Epicardial Stimulation. Circulation 2003; 108:1027–1033.

    PubMed  Google Scholar 

  179. Chen YJ, Lee SH, Hsieh MH, Hsiao CJ, Yu WC, Chiou CW et al. Effects of 17beta-estradiol on tachycardia-induced changes of atrial refractoriness and cisapride-induced ventricular arrhythmia. J Cardiovasc Electrophysiol 1999; 10(4):587–598.

    PubMed  CAS  Google Scholar 

  180. Puisieux FL, Adamantidis MM, Dumotier BM, Dupuis BA. Cisapride-induced prolongation of cardiac action potential and early afterdepolarizations in rabbit Purkinje fibres. Br J Pharmacol 1996; 117:1377–1379.

    PubMed  CAS  Google Scholar 

  181. Le Grand B, Talmant JM, Rieu JP, Patoiseau JF, Colpaert FC, John GW. Investigation of the mechanism by which ketanserin prolongs the duration of the cardiac action potential. J Cardiovasc Pharmacol 1995; 26(5):803–809.

    PubMed  Google Scholar 

  182. Aldariz AE, Romero H, Baroni M, Baglivo H, Esper RJ. QT prolongation and torsade de pointes ventricular tachycardia produced by Ketanserin. PACE 1986; 9(6 Pt 1):836–841.

    PubMed  CAS  Google Scholar 

  183. Zaza A, Malfatto G, Rosen MR. Electrophysiologic effects of ketanserin on canine Purkinje fibers, ventricular myocardium and the intact heart. J Pharmacol Exp Ther 1989; 250:397–405.

    PubMed  CAS  Google Scholar 

  184. Antzelevitch C, Belardinelli L, Zygmunt AC, Burashnikov A, Di Diego JM, Fish JM et al. Electrophysiologic effects of ranolazine: A novel anti-anginal agent with antiarrhythmic properties. Circulation 2004; in press.

    Google Scholar 

  185. Burashnikov A, Antzelevitch C. A combination of Ikr, Iks, and Ica or Ina block produces a relatively homogeneous prolongation of repolarization of cells spanning the canine left ventricular wall. Pacing and Clinical Electrophysiology 20, II-1216. 1997. Abstract

    Google Scholar 

  186. Antzelevitch C, Shimizu W, Yan GX, Sicouri S, Weissenburger J, Nesterenko VV et al. The M cell: its contribution to the ECG and to normal and abnormal electrical function of the heart. J Cardiovasc Electrophysiol 1999; 10(8):1124–1152.

    PubMed  CAS  Google Scholar 

  187. Shimizu W, Antzelevitch C. Effects of a K(+) Channel Opener to Reduce Transmural Dispersion of Repolarization and Prevent Torsade de Pointes in LQT1, LQT2, and LQT3 Models of the Long-QT Syndrome. Circulation 2000; 102(6):706–712.

    PubMed  CAS  Google Scholar 

  188. Verduyn SC, Vos MA, Van der Zande J, Van der Hulst FF, Wellens HJ. Role of interventricular dispersion of repolarization in acquired torsade-de-pointes arrhythmias: reversal by magnesium. Cardiovasc Res 1997; 34:453–463.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Antzelevitch, C. (2005). Cellular, Molecular, and Pharmacologic Mechanisms Underlying Drug-Induced Cardiac Arrhythmogenesis. In: Morganroth, J., Gussak, I. (eds) Cardiac Safety of Noncardiac Drugs. Humana Press. https://doi.org/10.1007/978-1-59259-884-7_3

Download citation

Publish with us

Policies and ethics