Skip to main content

192 IgG-Saporin-Induced Partial Cortical Cholinergic Deafferentation as a Model for Determining the Interactions Between Brain Aging and Neurodevelopmental Defects in the Cortical Cholinergic Input System

  • Chapter
Molecular Neurosurgery With Targeted Toxins
  • 489 Accesses

Abstract

The anti-p75-immunotoxin 192 immunoglobulin G-saporin (192 IgG-sap) has been instrumental in testing the hypothesis that the integrity of the cortical cholinergic input system is necessary for the mediation of a wide range of attentional functions and capacities (110). As discussed elsewhere (11), attentional functions represent a crucial set of cognitive variables that contribute to the efficacy of learning and recalling of declarative information. Thus, impairments in attentional abilities rapidly yield escalating impairments in learning and memory. Different types of dysregulation of cortical cholinergic transmission have been hypothesized to mediate the diverse attentional impairments that are characteristic of major neuropsychiatric disorders and that contribute to the manifestation of the main cognitive symptoms of these disorders (1216).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McGaughy J, Dalley JW, Morrison CH, Everitt BJ, Robbins TW. Selective behavioral and neurochemical effects of cholinergic lesions produced by intrabasalis infusions of 192 IgG-saporin on attentional performance in a five-choice serial reaction time task. J Neurosci 2002;22:1905–1913.

    PubMed  CAS  Google Scholar 

  2. McGaughy J, Kaiser T, Sarter M. Behavioral vigilance following infusions of 192 IgG-saporin into the basal forebrain: selectivity of the behavioral impairment and relation to cortical AChE-positive fiber density. Behav Neurosci 1996;110:247–265.

    Article  PubMed  CAS  Google Scholar 

  3. McGaughy J, Sarter M. Sustained attention performance in rats with intracortical infusions of 192 IgG-saporin-induced cortical cholinergic deafferentation: effects of physostigmine and FG 7142. Behav Neurosci 1998;112:1519–1525.

    Article  PubMed  CAS  Google Scholar 

  4. McGaughy J, Everitt BJ, Robbins TW, Sarter M. The role of cortical cholinergic afferent projections in cognition: impact of new selective immunotoxins. Behav Brain Res 2000;115:251–263.

    Article  PubMed  CAS  Google Scholar 

  5. Baxter MG, Bucci DJ, Holland PC, Gallagher M. Impairments in conditioned stimulus processing and conditioned responding after combined selective removal of hippocampal and neocortical cholinergic input. Behav Neurosci 1999;113:486–495.

    Article  PubMed  CAS  Google Scholar 

  6. Bucci DJ, Holland PC, Gallagher M. Removal of cholinergic input to rat posterior parietal cortex disrupts incremental processing of conditioned stimuli. J Neurosci 1998;18:8038–8046.

    PubMed  CAS  Google Scholar 

  7. Everitt BJ, Robbins TW. Central cholinergic systems and cognition. Annu Rev Psychol 1997;48:649–684.

    Article  PubMed  CAS  Google Scholar 

  8. Sarter M, Givens B, Bruno JP. The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res Rev 2001;35:146–160.

    Article  PubMed  CAS  Google Scholar 

  9. Sarter M, Bruno JP. Cortical cholinergic inputs mediating arousal, attentional processing and dreaming: differential afferent regulation of the basal forebrain by telencephalic and brainstem afferents. Neuroscience 2000;95:933–952.

    Article  PubMed  CAS  Google Scholar 

  10. Turchi J, Sarter M. Cortical acetylcholine and processing capacity: effects of cortical cholinergic deafferentation on crossmodal divided attention in rats. Cogn Brain Res 1997;6:147–158.

    Article  CAS  Google Scholar 

  11. Sarter M, Bruno JP, Givens B. Attentional functions of cortical cholinergic inputs: what does it mean for memory? Neurobiol Learn Mem 2003;80:245–256.

    Article  PubMed  CAS  Google Scholar 

  12. Sarter M, Turchi J. Age-and dementia-associated impairments in divided attention: psychological constructs, animal models, and underlying neuronal mechanisms. Dement Geriatr Cogn Disord 2002;13:46–58.

    Article  PubMed  CAS  Google Scholar 

  13. Sarter M, Bruno JP. Abnormal regulation of corticopetal cholinergic neurons and impaired information processing in neuropsychiatric disorders. Trends Neurosci 1999;22:67–74.

    Article  PubMed  CAS  Google Scholar 

  14. Sarter M, Bruno JP, Turchi J. Basal forebrain afferent projections modulating cortical acetylcholine, attention, and implications for neuropsychiatric disorders. Ann NY Acad Sci 1999;877:368–382.

    Article  PubMed  CAS  Google Scholar 

  15. Sarter M, Bruno JP. Cortical acetylcholine, reality distortion, schizophrenia, and Lewy body dementia: too much or too little cortical acetylcholine? Brain Cogn 1998;38:297–316.

    Article  PubMed  CAS  Google Scholar 

  16. Sarter M. Neuronal mechanisms of the attentional dysfunctions in senile dementia and schizophrenia: two sides of the same coin? Psychopharmacol (Berl) 1994;114:539–550.

    Article  CAS  Google Scholar 

  17. Pappas BA, Bayley PJ, Bui BK, Hansen LA, Thal LJ. Choline acetyltransferase activity and cognitive domain scores of Alzheimer’s patients. Neurobiol Aging 2000;21:11–17.

    Article  PubMed  CAS  Google Scholar 

  18. Procter AW. Neurochemical correlates of dementia. Neurodegeneration 1996;5:403–407.

    Article  PubMed  CAS  Google Scholar 

  19. Palmer AM. Neurochemical studies of Alzheimer’s disease. Neurodegeneration 1996;5:381–391.

    Article  PubMed  CAS  Google Scholar 

  20. Baskin DS, Browning JL, Pirozzolo FJ, Korporaal S, Baskin JA, Appel SH. Brain choline acetyltransferase and mental function in Alzheimer disease. Arch Neurol 1999;56:1121–1123.

    Article  PubMed  CAS  Google Scholar 

  21. Lehericy S, Hirsch EC, Cervera-Pierot P, et al. Heterogeneity and selectivity of the degeneration of cholinergic neurons in the basal forebrain of patients with Alzheimer’s disease. J Comp Neurol 1993;330:15–31.

    Article  PubMed  CAS  Google Scholar 

  22. Giannakopoulos P, Hof PR, Michel JP, Guimon J, Bouras C. Cerebral cortex pathology in aging and Alzheimer’s disease: a quantitative survey of large hospital-based geriatric and psychiatric cohorts. Brain Res Rev 1997;25:217–245.

    Article  PubMed  CAS  Google Scholar 

  23. Sims NR, Bowen DM, Allen SJ, et al. Presynaptic cholinergic dysfunction in patients with dementia. J Neurochem 1983;40:503–509.

    Article  PubMed  CAS  Google Scholar 

  24. Hanyu H, Asano T, Sakurai H, Tanaka Y, Takasaki M, Abe K. MR analysis of the substantia innominata in normal aging, Alzheimer disease, and other types of dementia. AJNR Am J Neuroradiol 2002;23:27–32.

    PubMed  Google Scholar 

  25. Beatty WW, Butters N, Janowsky DS. Patterns of memory failure after scopolamine treatment: implications for cholinergic hypotheses of dementia. Behav Neural Biol 1986;45:196–211.

    Article  PubMed  CAS  Google Scholar 

  26. Kopelman MD, Corn TH. Cholinergic “blockade” as a model for cholinergic depletion. A comparison of the memory deficits with those of Alzheimer-type dementia and the alcoholic Korsakoff syndrome. Brain 1988;111:1079–1110.

    Article  PubMed  Google Scholar 

  27. Molchan SE, Martinez RA, Hill JL, et al. Increased cognitive sensitivity to scopolamine with age and a perspective on the scopolamine model. Brain Res Rev 1992;17:215–226.

    Article  PubMed  CAS  Google Scholar 

  28. Sarter M, Bruno JP. Mild cognitive impairment and the cholinergic hypothesis: a very different take on recent data. Ann Neurol 2002;52:384–385.

    Article  PubMed  Google Scholar 

  29. Greenwood AF, Powers RE, Jope RS. Phosphoinositide hydrolysis, G alpha q, phospholipase C, and protein kinase C in post mortem human brain: effects of post mortem interval, subject age, and Alzheimer’s disease. Neuroscience 1995;69:125–138.

    Article  PubMed  CAS  Google Scholar 

  30. Jope RS, Song L, Powers RE. Cholinergic activation of phosphoinositide signaling is impaired in Alzheimer’s disease brain. Neurobiol Aging 1997;18:111–120.

    Article  PubMed  CAS  Google Scholar 

  31. Fowler CJ, Garlind A, O’Neill C, Cowburn RF. Receptor-effector coupling dysfunctions in Alzheimer’s disease. Ann NY Acad Sci 1996;786:294–304.

    Article  PubMed  CAS  Google Scholar 

  32. Minger SL, Esiri MM, McDonald B, et al. Cholinergic deficits contribute to behavioral disturbance in patients with dementia. Neurology 2000;55:1460–1467.

    PubMed  CAS  Google Scholar 

  33. Chu Y, Cochran EJ, Bennett DA, Mufson EJ, Kordower JH. Down-regulation of trkA mRNA within nucleus basalis neurons in individuals with mild cognitive impairment and Alzheimer’s disease. J Comp Neurol 2001;437:296–307.

    Article  PubMed  CAS  Google Scholar 

  34. Mufson EJ, Lavine N, Jaffar S, Kordower JH, Quirion R, Saragovi HU. Reduction in p140-TrkA receptor protein within the nucleus basalis and cortex in Alzheimer’s disease. Exp Neurol 1997;146:91–103.

    Article  PubMed  CAS  Google Scholar 

  35. Mufson EJ, Ma SY, Cochran EJ, et al. Loss of nucleus basalis neurons containing trkA immunoreactivity in individuals with mild cognitive impairment and early Alzheimer’s disease. J Comp Neurol 2000;427:19–30.

    Article  PubMed  CAS  Google Scholar 

  36. Auld DS, Kar S, Quirion R. Beta-amyloid peptides as direct cholinergic neuromodulators: a missing link? Trends Neurosci 1998;21:43–49.

    Article  PubMed  CAS  Google Scholar 

  37. Chen KS, Nishimura MC, Armanini MP, Crowley C, Spencer SD, Phillips HS. Disruption of a single allele of the nerve growth factor gene results in atrophy of basal forebrain cholinergic neurons and memory deficits. J Neurosci 1997;17:7288–7296.

    PubMed  CAS  Google Scholar 

  38. de la Torre JC, Stefano GB. Evidence that Alzheimer’s disease is a microvascular disorder: the role of constitutive nitric oxide. Brain Res Rev 2000;34:119–136.

    Article  PubMed  Google Scholar 

  39. Holtzman DM, Lee S, Li Y, et al. Expression of neuronal-NOS in developing basal forebrain cholinergic neurons: regulation by NGF. Neurochem Res 1996;21:861–868.

    Article  PubMed  CAS  Google Scholar 

  40. Isacson O, Seo H, Lin L, Albeck D, Granholm AC. Alzheimer’s disease and Down’s syndrome: roles of APP, trophic factors and ACh. Trends Neurosci 2002;25:79–84.

    Article  PubMed  CAS  Google Scholar 

  41. Kalaria RN. Small vessel disease and Alzheimer’s dementia: pathological considerations. Cerebrovasc Dis 2002;13(suppl 2):48–52.

    Article  PubMed  CAS  Google Scholar 

  42. Mufson EJ, Counts SE, Ginsberg SD. Gene expression profiles of cholinergic nucleus basalis neurons in Alzheimer’s disease. Neurochem Res 2002;27:1035–1048.

    Article  PubMed  CAS  Google Scholar 

  43. Mufson EJ, Kroin JS, Sendera TJ, Sobreviela T. Distribution and retrograde transport of trophic factors in the central nervous system: functional implications for the treatment of neurodegenerative diseases. Prog Neurobiol 1999;57:451–484.

    Article  PubMed  CAS  Google Scholar 

  44. Roßner S. Cholinergic immunolesions by 192 IgG-saporin—a useful tool to stimulate pathogenic aspects of Alzheimer’s disease. Int J Dev Neurosci 1997;15:835–850.

    Article  PubMed  Google Scholar 

  45. Rossner S, Ueberham U, Schliebs R, Perez-Polo JR, Bigl V. The regulation of amyloid precursor protein metabolism by cholinergic mechanisms and neurotrophin receptor signaling. Prog Neurobiol 1998;56:541–569.

    Article  PubMed  CAS  Google Scholar 

  46. Snowdon DA. Aging and Alzheimer’s disease: lessons from the Nun Study. Gerontologist 1997;37:150–156.

    PubMed  CAS  Google Scholar 

  47. Sofroniew MV, Howe CL, Mobley WC. Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 2001;24:1217–1281.

    Article  PubMed  CAS  Google Scholar 

  48. Sarter M, Bruno JP. Developmental origins of the age-related decline in cortical cholinergic function and in associated cognitive abilities. Neurobiol Aging 2004;25:1127–1139.

    Article  PubMed  CAS  Google Scholar 

  49. Holley LA, Wiley RG, Lappi DA, Sarter M. Cortical cholinergic deafferentation following the intracortical infusion of 192 IgG-saporin: a quantitative histochemical study. Brain Res 1994;663:277–286.

    Article  PubMed  CAS  Google Scholar 

  50. Sarter M, Bruno JP. Age-related changes in rodent cortical acetylcholine and cognition: main effects of age vs age as an intervening variable. Brain Res Rev 1998;27:143–156.

    Article  PubMed  CAS  Google Scholar 

  51. Efange SM, Garland EM, Staley JK, Khare AB, Mash DC. Vesicular acetylcholine transporter density and Alzheimer’s disease. Neurobiol Aging 1997;18:407–413.

    Article  PubMed  CAS  Google Scholar 

  52. Pascual J, Fontan A, Zarranz JJ, Berciano J, Florez J, Pazos A. High-affinity choline uptake carrier in Alzheimer’s disease: implications for the cholinergic hypothesis of dementia. Brain Res 1991;552:170–174.

    Article  PubMed  CAS  Google Scholar 

  53. Bowen DM, Allen SJ, Benton JS, et al. Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease. J Neurochem 1983;41:266–272.

    Article  PubMed  CAS  Google Scholar 

  54. Bissette G, Seidler FJ, Nemeroff CB, Slotkin TA. High affinity choline transporter status in Alzheimer’s disease tissue from rapid autopsy. Ann NY Acad Sci 1996;777:197–204.

    Article  PubMed  CAS  Google Scholar 

  55. Sihver W, Gillberg PG, Svensson AL, Nordberg A. Autoradiographic comparison of [ 3H](−)nicotine, [3H]cytisine and [3H]epibatidine binding in relation to vesicular acetylcholine transport sites in the temporal cortex in Alzheimer’s disease. Neuroscience 1999;94:685–696.

    Article  PubMed  CAS  Google Scholar 

  56. Fishman EB, Siek GC, MacCallum RD, Bird ED, Volicer L, Marquis JK. Distribution of the molecular forms of acetylcholinesterase in human brain: alterations in dementia of the Alzheimer type. Ann Neurol 1986;19:246–252.

    Article  PubMed  CAS  Google Scholar 

  57. Atack JR, Perry EK, Bonham JR, Perry RH. Molecular forms of acetylcholinesterase and butyrylcholinesterase in human plasma and cerebrospinal fluid. J Neurochem 1987;48:1845–1850.

    Article  PubMed  CAS  Google Scholar 

  58. Salehi A, Lucassen PJ, Pool CW, Gonatas NK, Ravid R, Swaab DF. Decreased neuronal activity in the nucleus basalis of Meynert in Alzheimer’s disease as suggested by the size of the Golgi apparatus. Neuroscience 1994;59:871–880.

    Article  PubMed  CAS  Google Scholar 

  59. Fadel J, Moore H, Sarter M, Bruno JP. Trans-synaptic stimulation of cortical acetylcholine release after partial 192 IgG-saporin-induced loss of cortical cholinergic afferents. J Neurosci 1996;16:6592–6600.

    PubMed  CAS  Google Scholar 

  60. Fadel J, Sarter M, Bruno JP. Age-related attenuation of stimulated cortical acetylcholine release in basal forebrain-lesioned rats. Neuroscience 1999;90:793–802.

    Article  PubMed  CAS  Google Scholar 

  61. Moore H, Sarter M, Bruno JP. Bidirectional modulation of cortical acetylcholine efflux by infusion of benzodiazepine receptor ligands into the basal forebrain. Neurosci Lett 1995;189:31–34.

    Article  PubMed  CAS  Google Scholar 

  62. Moore H, Sarter M, Bruno JP. Bidirectional modulation of stimulated cortical acetylcholine release by benzodiazepine receptor ligands. Brain Res 1993;627:267–274.

    Article  PubMed  CAS  Google Scholar 

  63. Raulli RE, Arendash G, Crews FT. Effects of nBM lesions on muscarinic-stimulation of phosphoinositide hydrolysis. Neurobiol Aging 1989;10:191–197.

    Article  PubMed  CAS  Google Scholar 

  64. Holley LA, Miller JA, Chmielewski PA, Dudchenko P, Sarter M. Interactions between the effects of basal forebrain lesions and chronic treatment with MDL 26,479 on learning and markers of cholinergic transmission. Brain Res 1993;610:181–193.

    Article  PubMed  CAS  Google Scholar 

  65. Wenk GL, Mobley SL. Choline acetyltransferase activity and vesamicol binding in Rett syndrome and in rats with nucleus basalis lesions. Neuroscience 1996;73:79–84.

    Article  PubMed  CAS  Google Scholar 

  66. Abdulla FA, Calaminici MR, Raevsky VV, Sinden JD, Gray JA, Stephenson JD. An iontophoretic study of the effects of alpha-amino-hydroxy-5-methyl-4-isoxazole propionic acid lesions of the nucleus basalis magnocellularis on cholinergic and GABAergic influences on frontal cortex neurones of rats. Exp Brain Res 1994;98:441–456.

    Article  PubMed  CAS  Google Scholar 

  67. Griffith WH, Murchison DA. Enhancement of GABA-activated membrane currents in aged Fischer 344 rat basal forebrain neurons. J Neurosci 1995;15:2407–2416.

    PubMed  CAS  Google Scholar 

  68. Bruno JP, Herzog CD, Nowak KA, Sarter M. Age-related alterations in potassium-stimulated cortical acetylcholine efflux: potential role of GABA-ergic transmission. Soc Neurosci Abstr 2002;28:238–239.

    Google Scholar 

  69. Del Arco A, Segovia G, Fuxe K, Mora F. Changes in dialysate concentrations of glutamate and GABA in the brain: an index of volume transmission mediated actions? J Neurochem 2003;85:23–33.

    Article  PubMed  Google Scholar 

  70. Moore H, Stuckman S, Sarter M, Bruno JP. Potassium, but not atropine-stimulated cortical acetylcholine efflux, is reduced in aged rats. Neurobiol Aging 1996;17:565–571.

    Article  PubMed  CAS  Google Scholar 

  71. Herzog CD, Nowak KA, Sarter M, Bruno JP. Microdialysis without acetylcholinesterase inhibition reveals an age-related attenuation in stimulated cortical acetylcholine release. Neurobiol Aging 2003;24:861–863.

    Article  PubMed  CAS  Google Scholar 

  72. Takei N, Nihonmatsu I, Kawamura H. Age-related decline of acetylcholine release evoked by depolarizing stimulation. Neurosci Lett 1989;101:182–186.

    Article  PubMed  CAS  Google Scholar 

  73. Meyer EM, Crews FT, Otero DH, Larsen K. Aging decreases the sensitivity of rat cortical synaptosomes to calcium ionophore-induced acetylcholine release. J Neurochem 1986;47:1244–1246.

    Article  PubMed  CAS  Google Scholar 

  74. Griffith WH, Jasek MC, Bain SH, Murchison D. Modification of ion channels and calcium homeostasis of basal forebrain neurons during aging. Behav Brain Res 2000;115:219–233.

    Article  PubMed  CAS  Google Scholar 

  75. Narang N, Joseph JA, Ayyagari PV, Gerber M, Crews FT. Age-related loss of cholinergic-muscarinic coupling to PLC: comparison with changes in brain regional PLC subtypes mRNA distribution. Brain Res 1996;708:143–152.

    Article  PubMed  CAS  Google Scholar 

  76. Wellman CL, Pelleymounter MA. Differential effects of nucleus basalis lesions in young adult and aging rats. Neurobiol Aging 1999;20:381–393.

    Article  PubMed  CAS  Google Scholar 

  77. Rylett RJ, Ball MJ, Colhoun EH. Evidence for high affinity choline transport in synaptosomes prepared from hippocampus and neocortex of patients with Alzheimer’s disease. Brain Res 1983;289:169–175.

    Article  PubMed  CAS  Google Scholar 

  78. McGaughy J, Sarter M. Effects of ovariectomy, 192 IgG-saporin-induced cortical cholinergic deafferentation, and administration of estradiol on sustained attention performance in rats. Behav Neurosci 1999;113:1216–1232.

    Article  PubMed  CAS  Google Scholar 

  79. McGaughy J, Decker MW, Sarter M. Enhancement of sustained attention performance by the nicotinic acetylcholine receptor agonist ABT-418 in intact but not basal forebrain-lesioned rats. Psychopharmacology (Berl) 1999;144:175–182.

    Article  CAS  Google Scholar 

  80. Arnold HM, Burk JA, Hodgson EM, Sarter M, Bruno JP. Differential cortical acetylcholine release in rats performing a sustained attention task vs behavioral control tasks that do not explicitly tax attention. Neuroscience 2002;114:451–460.

    Article  PubMed  CAS  Google Scholar 

  81. Himmelheber AM, Sarter M, Bruno JP. Increases in cortical acetylcholine release during sustained attention performance in rats. Cogn Brain Res 2000;9:313–325.

    Article  CAS  Google Scholar 

  82. Himmelheber AM, Sarter M, Bruno JP. Operant performance and cortical acetylcholine release: role of response rate, reward density, and non-contingent stimuli. Cogn Brain Res 1997;6:23–36.

    Article  CAS  Google Scholar 

  83. Burk JA, Herzog CD, Porter MC, Sarter M. Interactions between aging and cortical cholinergic deafferentation on attention. Neurobiol Aging 2002;23:467–477.

    Article  PubMed  CAS  Google Scholar 

  84. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999;56:303–308.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Sarter, M., Bruno, J.P. (2005). 192 IgG-Saporin-Induced Partial Cortical Cholinergic Deafferentation as a Model for Determining the Interactions Between Brain Aging and Neurodevelopmental Defects in the Cortical Cholinergic Input System. In: Wiley, R.G., Lappi, D.A. (eds) Molecular Neurosurgery With Targeted Toxins. Humana Press. https://doi.org/10.1007/978-1-59259-896-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-896-0_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-199-8

  • Online ISBN: 978-1-59259-896-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics