Skip to main content

Protein Modifications by Nitric Oxide and Reactive Nitrogen Species

  • Chapter
Cell Signaling in Vascular Inflammation

Abstract

Nitric oxide mediates a number of different physiological functions within every major organ system. Nitric oxide is a simple diatomic molecule that possesses a wide range of chemical reactivity and multiple potential reactive targets. Three basic biochemical pathways—interaction with metal centers, reaction with reduced thiols, and production of nitrogen oxides—will be considered and discussed in terms of modulating the biological function of proteins by nitric oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Furchgott, R. F. (1996) The discovery of EDRF and its importance in the identification of nitric oxide. JAMA 276, 1186–1188.

    Article  CAS  PubMed  Google Scholar 

  2. Molina y Vedia, L., McDonald, B., Reep, B., et al. (1992) Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. J. Biol. Chem. 267, 24,929–24,932.

    Google Scholar 

  3. Lander, H. M., Milbank, A. J., Tauras, J. M., et al. (1996) Redox regulation of cell signaling. Nature 381, 380–381.

    Article  CAS  PubMed  Google Scholar 

  4. Xu, L., Eu, J. P., Msissner, G., and Stamler, J. S. (1998) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279, 234–237.

    Article  CAS  PubMed  Google Scholar 

  5. Gow, A. and Stamler, J. (1998) Reactions between nitric oxide and haemoglobin under physiological conditions. Nature 391, 169–173.

    Article  CAS  PubMed  Google Scholar 

  6. Kim, Y. M., Talanian, R. V., and Billiar, T. R. (1997) Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J. Biol. Chem. 272, 31,138–31,148.

    Article  CAS  PubMed  Google Scholar 

  7. Mannick, J. B., Hausladen, A., Liu, L., et al. (1999) Fas-induced caspase denitrosylation. Science 284, 651–654.

    Article  CAS  PubMed  Google Scholar 

  8. Lipton, A. J., Johnson, M. A., Macdonald, T., Lieberman, M. W., Gozal, D., and Gaston, B. (2001) S-nitrosothiols signal the ventilatory response to hypoxia. Nature 413, 171–174.

    Article  CAS  PubMed  Google Scholar 

  9. Cooper, C. E. (2002) Nitric oxide and cytochrome oxidase: substrate, inhibitor or effector? Trends Biochem. Sci. 27, 33–39.

    Article  CAS  PubMed  Google Scholar 

  10. Stamler, J. S., Lamas, S., and Fang, F. C. (2001) Nitrosylation: the prototypic redox-based signaling mechanism. Cell 106, 675–683.

    Article  CAS  PubMed  Google Scholar 

  11. Simon, D. I., Mullins, M. E., Jia, L., Gaston, B., Singel, D. J., and Stamler, J. S. (1996) Polynitrosylated proteins: characterization, bioactivity, and functional consequences. Proc. Natl. Acad. Sci. USA 93, 4736–4741.

    Article  CAS  PubMed  Google Scholar 

  12. Stamler, J. S., Toone, E. J., Lipton, S. A., and Sucher, N. J. (1997) (S)NO signals: translocation, regulation and a consensus motif. Neuron 18, 691–696.

    Article  CAS  PubMed  Google Scholar 

  13. Liu, L., Hausladen, A., Zeng, M., Que, L., Heitman, J., and Stamler, J. S. (2001) A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410, 490–494.

    Article  CAS  PubMed  Google Scholar 

  14. Ischiropoulos, H. (1998) Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxy-gen species. Arch. Biochem. Biophys. 356, 1–11.

    Article  CAS  PubMed  Google Scholar 

  15. Ballou, D. P., Zhao, Y., Brandish, P. E., and Marletta, M. A. (2002) Revisiting the kinetics of nitric oxide (NO) binding to soluble guanylate cyclase: the simple NO-binding model is incorrect. Proc. Natl. Acad. Sci. USA 99, 12,097–12,101.

    Article  CAS  PubMed  Google Scholar 

  16. Bellamy, T. C., Wood, J., and Garthwaite, J. (2002) On the activation of soluble guanylyl cyclase by nitric oxide. Proc. Natl. Acad. Sci. USA 99, 507–510.

    Article  CAS  PubMed  Google Scholar 

  17. Greenacre, S. A. B. and Ischiropoulos, H. (2001) Tyrosine Nitration: Localization, quantification, consequences for protein function and signal transduction. Free Rad. Res. 34, 541–581.

    Article  CAS  Google Scholar 

  18. Turko, I. V. and Murad, F. (2002) Protein nitration in cardiovascular diseases. Pharmacol. Rev. 54, 619–634.

    Article  CAS  PubMed  Google Scholar 

  19. Brennan, M. L., Wu, W., Fu, X., et al. (2002) A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species. J. Biol. Chem. 277, 17,415–17,427.

    Article  CAS  PubMed  Google Scholar 

  20. Gow, A. J., Duran, D., Malcolm, S., and Ischiropoulos, H. (1996) Effects of peroxynitrite-induced protein modifica-tions on tyrosine phosphorylation and degradation. FEBS Lett. 385, 63–66.

    Article  CAS  PubMed  Google Scholar 

  21. Kamisaki, Y., Wada, K., Bian, K., et al. (1998) An activity in rat tissues that modifies nitrotyrosine-containing proteins. Proc. Natl. Acad. Sci. USA 95, 11,584–11,589.

    Article  CAS  PubMed  Google Scholar 

  22. Irie, Y., Saeki, M., Kamisaki, Y., Martin, E., and Murad, F. (2003) Histone H1.2 is a substrate for denitrase, an activity that reduces nitrotyrosine immunoreactivity in proteins. Proc. Natl. Acad. Sci. USA 100, 5634–5639.

    Article  CAS  PubMed  Google Scholar 

  23. Souza, J. M., Choi, I., Chen, Q., et al. (2000) Proteolytic degradation of tyrosine nitrated proteins. Arch. Biochem. Biophys. 380, 360–366.

    Article  CAS  PubMed  Google Scholar 

  24. MacMillan-Crow, L. A., Crow, J. P., Kerby, J. D., Beckman, J. S., and Thompson, J. A. (1996) Nitration and inactiva-tion of Mn superoxide dismutase in chronic rejection of human renal allografts. Proc Natl Acad Sci USA 93, 11,853–11,858.

    Article  CAS  PubMed  Google Scholar 

  25. Viner, R. I., Ferrington, D. A., Huhmer, A. F. R., Bigelow, D. J., and Schoneich, C. (1996) Accumulation of nitrotyrosine on the SERCA2a isoform of SR Ca-ATPase of rat skeletal muscle during aging: a peroxynitrite-mediated process? FEBS Lett. 379, 286–290.

    Article  CAS  PubMed  Google Scholar 

  26. Giasson, B. I., Duda, J. E., Murray, I. V., et al. (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290, 985–989.

    Article  CAS  PubMed  Google Scholar 

  27. Schmidt, P., Youhnovski, N., Daiber, A., et al. (2003) Specific nitration at tyrosine 430 revealed by high resolution mass spectrometry as basis for redox regulation of bovine prostacyclin synthase. J. Biol. Chem. 278, 12,813–12,819.

    Article  CAS  PubMed  Google Scholar 

  28. Gole, M. D., Souza, J. M., Choi, I., et al. (2000) Plasma proteins modified by tyrosine nitration in acute respiratory distress syndrome. Am. J. Physiol. 278, L961–967.

    CAS  Google Scholar 

  29. Aulak, K. S., Miyagi, M., Yan, L., et al. (2001) Proteomic method identifies proteins nitrated in vivo during inflamma-tory challenge. Proc. Natl. Acad. Sci. USA 98, 12,056–12,061.

    Article  CAS  PubMed  Google Scholar 

  30. Schopfer, F., Riobo, N., Carreras, M. C., et al. (2000) Oxidation of ubiquinol by peroxynitrite: implications for protec-tion of mitochondria against nitrosative damage. Biochem. J. 349, 35–42.

    Article  CAS  PubMed  Google Scholar 

  31. Baldus, S., Eiserich, J. P., Mani, A., et al. (2001) Endothelial transcytosis of myeloperoxidase confers specificity to vascular ECM proteins as targets of tyrosine nitration. J. Clin. Invest. 108, 1759–1770.

    Article  CAS  PubMed  Google Scholar 

  32. Souza, J. M., Daikhin, E., Yudkoff, M., Raman, C. S., and Ischiropoulos, H. (1999) Factors determining the selectivity of protein tyrosine nitration. Arch. Biochem. Biophys. 371, 169–178.

    Article  CAS  PubMed  Google Scholar 

  33. Alvarez, B., Ferrer-Sueta, G., Freeman, B. A., and Radi, R. (1998) Kinetics of peroxynitrite reaction with amino acids and human serum albumin. J. Biol. Chem. 274, 842–848.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ischiropoulos, H. (2005). Protein Modifications by Nitric Oxide and Reactive Nitrogen Species. In: Bhattacharya, J. (eds) Cell Signaling in Vascular Inflammation. Humana Press. https://doi.org/10.1007/978-1-59259-909-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-909-7_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-525-5

  • Online ISBN: 978-1-59259-909-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics