Skip to main content

Pathophysiology of Heart Failure

  • Chapter
Essential Cardiology

Abstract

Heart failure is a clinical syndrome initiated by abnormal function of the heart. Until recently our understanding of this condition has centered on various pathological insults to the heart that lead to abnormal function, usually in the form of contractile dysfunction. One of the earliest terms used to describe heart failure syndrome was “hydrops,” which has its origins in the observation that salt and water retention was a common feature of the condition. Despite this obvious systemic manifestation, heart failure was still considered primarily a disease of the heart. In recent years advances have been made in our understanding of the pathophysiology of heart failure; key to these has been the realization that heart failure is a multisystem disorder in which abnormalities of the heart, vasculature, skeletal muscle, and kidneys all combine with various neurohormonal derangements to produce the heart failure syndrome. Of particular importance has been the emerging concept that many of the compensatory mechanisms designed to overcome the initial insult to the heart are the very same processes that paradoxically set in motion a variety of detrimental consequences for cardiac function, gradually worsening the heart failure syndrome further. Our increasing understanding of these concepts has resulted in a rapid advancement in drug development and many new therapeutic targets continue to emerge. In this chapter we summarize the pathophysiology of heart failure, beginning with the specific insults that initiate heart failure and continuing with a discussion of the body’s responses to such insults, and how compensatory mechanisms ultimately cause further deterioration in cardiac function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Poole-Wilson PA. Heart failure. Med Int 1985;2:866–871.

    Google Scholar 

  2. Task Force for the Diagnosis and Treatment of Chronic Heart Failure of the European Society of Cardiology. Guidelines for the diagnosis and treatment of chronic heart failure. Eur Heart J 2001;22:1527–1560.

    Article  Google Scholar 

  3. Jessup M, Brozena S. Heart failure. N Engl J Med 2003;348:2007–2018.

    Article  PubMed  Google Scholar 

  4. Angeja BG, Grossman W. Evaluation and management of diastolic heart failure. Circulation 2003;107:659–663.

    Article  PubMed  Google Scholar 

  5. Krum H, Gilbert RE. Demographics and concomitant disorders in heart failure. Lancet 2003;362:147–158.

    Article  PubMed  Google Scholar 

  6. Bonne G, Carrier L, Richard P, et al. Familial hypertrophic cardiomyopathy: from mutations to functional defects. Circ Res 1998;83:580–593.

    PubMed  CAS  Google Scholar 

  7. Gaballa MA, Goldman S. Ventricular remodelling in heart failure. J Card Fail 2002;8(Suppl):S476–S486.

    Article  PubMed  Google Scholar 

  8. Leri A, Kajstura J, Anversa P. Myocyte proliferation and ventricular remodelling. J Card Fail 2002;8(Suppl):S518–S525.

    Article  PubMed  Google Scholar 

  9. Nadal-Ginard B, Kajstura J, Leri A, et al. Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res 2003;92:139–150.

    Article  PubMed  CAS  Google Scholar 

  10. Severs NJ. Gap junction remodelling in heart failure. J Card Fail 2002;8(Suppl):S293–S299.

    Article  PubMed  Google Scholar 

  11. Haider N, Narula N, Narula J. Apoptosis in heart failure represents programmed cell survival, not death, of cardiomyocytes and likelihood of reverse remodelling. J Card Fail 2002;8 (Suppl):S512–S517.

    Article  PubMed  Google Scholar 

  12. Narula J, Arbustini E, Chandrashekhar Y, et al. Apoptosis and the systolic dysfunction in congestive heart failure, story of apoptosis interruptus and zombie myocytes. Cardiol Clin 2001;19:113–126.

    Article  PubMed  CAS  Google Scholar 

  13. Spinale FG. Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res 2002;90:520–530.

    Article  PubMed  CAS  Google Scholar 

  14. Marx S, Gaburjakova J, Gaburjakova M, et al. Coupled gating between cardiac calcium release channels (ryanodine receptors). Circ Res 2001;88:1151–1158.

    Article  PubMed  CAS  Google Scholar 

  15. Marx SO, Reiken S, Hisamatsu Y, et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 2000;101:365–376.

    Article  PubMed  CAS  Google Scholar 

  16. Reiken S, Wehrens XHT, Vest JA, et al. P-Blockers restore cardiac calcium release channel function and improve cardiac muscle performance in human heart failure. Circulation 2003;107:2459–2466.

    Article  PubMed  CAS  Google Scholar 

  17. Hasenfuss G. Alterations of calcium regulatory proteins in heart failure. Cardiovas Res 1998;37:279–289.

    Article  CAS  Google Scholar 

  18. Brette F, Orchard CT. Tubule function in mammalian cardiac myocytes. Circ Res 2003;92:1182–1192.

    Article  PubMed  CAS  Google Scholar 

  19. Carvajal K, Moreno-Sanchez R. Heart metabolic disturbances in cardiovascular diseases. Arch Med Res 200334:89–99.

    Article  PubMed  CAS  Google Scholar 

  20. Ingwall JS, Kramer MF, Fifer MA, et al. The creatine kinase system in normal and diseased human myocardium. N Engl J Med 1985;313:1050–1054.

    Article  PubMed  CAS  Google Scholar 

  21. Givertz MM, Colucci WS. New targets for heart failure: endothelin, inflammatory cytokines and oxidative stress. Lancet 1998;352(Suppl I):34–38.

    Google Scholar 

  22. Lebovitz RM, Zhang H, Vogel H, et al. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci USA 1996;93:9782–9787.

    Article  PubMed  CAS  Google Scholar 

  23. Bristow MR. Why does the myocardium fail? Insights from basic science. Lancet 1998;352(Suppl I):8–14.

    CAS  Google Scholar 

  24. Rocha R, Rudolph AE, Frierdich GE, et al. Aldosterone induces a vascular inflammatory phenotype in the rat heart. Am J Physiol Heart Circ Physiol 2002;283:H1802–H1810.

    PubMed  CAS  Google Scholar 

  25. Rocha R, Martin-Berger CL, Yang P, et al. Selective aldosterone blockade prevents angiotensin II/salt-induced vascular inflammation in the rat heart. Endocrinology 2002;143:4828–4836.

    Article  PubMed  CAS  Google Scholar 

  26. Sun Y, Zhang J, Lu L, et al. Aldosterone induced inflammation in the rat heart: role of oxidative stress. Am J Pathol 2002;161:1773–1781.

    PubMed  CAS  Google Scholar 

  27. Qin W, Rudolph AE, Bond BR, et al. Transgenic model of aldosterone driven cardiac hypertrophy and heart failure. Circ Res 2003;93:69–76.

    Article  PubMed  CAS  Google Scholar 

  28. Suzuki G, Morita H, Mishima T, et al. Effects of long term monotherapy with eplerenone, a novel aldosterone blocker, on progression of left ventricular dysfunction and remodelling in dogs with heart failure. Circulation 2002;106:2967–2972.

    Article  PubMed  CAS  Google Scholar 

  29. Fraccarollo D, Galuppo P, Bauersachs J, et al. Collagen accumulation after myocardial infarction: effects of endothelin a receptor blockade and implications for early remodelling. Cardiovasc Res 2002;54:559–567.

    Article  PubMed  CAS  Google Scholar 

  30. Vasan RS, Sullivan LM, Roubenoff R, et al. Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction. Circulation 2003;107:1486–1491.

    Article  PubMed  CAS  Google Scholar 

  31. Mann DL. Inflammatory mediators and the failing heart. Circ Res 2002;91:988–998.

    Article  PubMed  CAS  Google Scholar 

  32. Paulus WJ. Cytokines and heart failure. Heart Fail Monit 2000;1:50–56.

    PubMed  CAS  Google Scholar 

  33. Anker SD, Sharma R. The syndrome of cardiac cachexia. Int J Card 2002;85:51–66.

    Article  Google Scholar 

  34. Tamura N, Ogawa Y, Chusho H, et al. Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci USA 2000;97:4239–4444.

    Article  PubMed  CAS  Google Scholar 

  35. Goetze JP, Kastrup J, Rehfeld JF. The paradox of increased natriuretic hormones in congestive heart failure patients: does the endocrine heart also fail in heart failure. Eur Heart J 2003;24:1471–1472.

    Article  PubMed  Google Scholar 

  36. Mann DL, Reid MB. Exercise training and skeletal muscle inflammation in chronic heart failure: feeling better about fatigue. J Am Coll Cardiol 2003;42:869–872.

    Article  PubMed  Google Scholar 

  37. Reiken S, Lacampagne A, Zhou H, et al. PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure. J Cell Biol 2003;160:919–928.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Scoote, M., Purcell, I.F., Poole-Wilson, P.A. (2005). Pathophysiology of Heart Failure. In: Rosendorff, C. (eds) Essential Cardiology. Humana Press. https://doi.org/10.1007/978-1-59259-918-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-918-9_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-370-1

  • Online ISBN: 978-1-59259-918-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics