Skip to main content

Regulated Membrane Trafficking and Proteolysis of GPCRs

  • Chapter
The G Protein-Coupled Receptors Handbook

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Multiple mechanisms contribute to the physiological regulation of G protein-coupled receptors (GPCRs) present in the plasma membrane, the main site where ligand-induced signaling events are initiated. Early studies delineated the existence of distinct functional processes of receptor regulation in natively expressing cells and tissues (1,2). More recent studies have led to an explosion of new information regarding cellular and molecular mechanisms of receptor regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clark RB. Receptor desensitization. Adv Cyclic Nuc Prot Phos Res 1986;20:151–209.

    CAS  Google Scholar 

  2. Perkins JP, Hausdorff WP, Lefkowitz RJ. Mechanisms of Ligand-Induced Desensitization of β-Adrenergic Receptors. In: Perkins JP, ed. The Beta-Adrenergic Receptor. Clifton, NJ: Humana Press, 1991, pp. 73–124.

    Google Scholar 

  3. Lefkowitz RJ, Pitcher J, Krueger K, Daaka Y. Mechanisms of β-adrenergic receptor desensitization and resensitization. Adv Pharmacol 1998;42:416–420.

    Article  PubMed  CAS  Google Scholar 

  4. McDowell JH, Kuhn H. Light-induced phosphorylation of rhodopsin in cattle photoreceptor membranes: substrate activation and inactivation. Biochemistry 1977;16:4054–4060.

    Article  PubMed  CAS  Google Scholar 

  5. Bennett N, Sitaramayya A. Inactivation of photoexcited rhodopsin in retinal rods: the roles of rhodopsin kinase and 48-kDa protein (arrestin). Biochemistry 1988;27:1710–1715.

    Article  PubMed  CAS  Google Scholar 

  6. Sibley DR, Strasser RH, Caron MG, Lefkowitz RJ. Homologous desensitization of adenylate cyclase is associated with phosphorylation of the β-adrenergic receptor. J Biol Chem 1985;260:3883–3886.

    PubMed  CAS  Google Scholar 

  7. Benovic JL, Strasser RH, Caron MG, Lefkowitz RJ. β-adrenergic receptor kinase: identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor. Proc Natl Acad Sci USA 1986; 83: 2797–2801.

    Article  PubMed  CAS  Google Scholar 

  8. Benovic JL, Kuhn H, Weyand I, Codina J, Caron MG, Lefkowitz RJ. Functional desensitization of the isolated β-adrenergic receptor by the beta-adrenergic receptor kinase: potential role of an analog of the retinal protein arrestin (48-kDa protein). Proc Natl Acad Sci USA 1987;84:8879–8882.

    Article  PubMed  CAS  Google Scholar 

  9. Carman CV, Benovic JL. G-protein-coupled receptors: turn-ons and turn-offs. Curr Opin Neurobiol 1998; 8:335–344.

    Article  PubMed  CAS  Google Scholar 

  10. Gurevich VV, Benovic JL. Mechanism of phosphorylation-recognition by visual arrestin and the transition of arrestin into a high affinity binding state. Mol Pharmacol 1997;51:161–169.

    PubMed  CAS  Google Scholar 

  11. Staehelin M, Simons P. Rapid and reversible disappearance of beta-adrenergic cell surface receptors. EMBO J 1982;1:187–190.

    PubMed  CAS  Google Scholar 

  12. Toews ML, Perkins JP. Agonist-induced changes in beta-adrenergic receptors on intact cells. J Biol Chem 1984;259:2227–2235.

    PubMed  CAS  Google Scholar 

  13. von Zastrow M, Kobilka BK. Ligand-regulated internalization and recycling of human beta 2-adrenergic receptors between the plasma membrane and endosomes containing transferrin receptors. J Biol Chem 1992;267: 3530–3538.

    Google Scholar 

  14. Kurz JB, Perkins JP. Isoproterenol-initiated β-adrenergic receptor diacytosis in cultured cells. Mol Pharmacol 1992;41:375–381.

    PubMed  CAS  Google Scholar 

  15. Keith DE, Anton B, Murray SR, et al. μ-Opioid receptor internalization: opiate drugs have differential effects on a conserved endocytic mechanism in vitro and in the mammalian brain. Mol Pharmacol 1998;53: 377–384.

    PubMed  CAS  Google Scholar 

  16. von Zastrow M, Kobilka BK. Antagonist-dependent and-independent steps in the mechanism of adrenergic receptor internalization. J Biol Chem 1994;269:1,8448–18,452.

    Google Scholar 

  17. van der Bliek AM, Redelmeier TE, Damke H, Tisdale EJ, Meyerowitz EM, Schmid SL. Mutations in human dynamin block an intermediate stage in coated vesicle formation. J Cell Biol 1993;122:553–563.

    Article  PubMed  Google Scholar 

  18. Herskovits JS, Burgess CC, Obar RA, Vallee RB. Effects of mutant rat dynamin on endocytosis. J Cell Biol 1993;122:565–578.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang J, Ferguson S, Barak LS, Menard L, Caron MG. Dynamin and β-arrestin reveal distinct mechanisms for G protein-coupled receptor internalization. J Biol Chem 1996;271:18,302–18,305.

    Article  PubMed  CAS  Google Scholar 

  20. Cao TC, Mays RW, von Zastrow M. Regulated endocytosis of G protein-coupled receptors by a biochemically and functionally distinct subpopulation of clathrin-coated pits. J Biol Chem 1998;273:24,592–24,602.

    Article  PubMed  CAS  Google Scholar 

  21. Goodman OB, Jr., Krupnick JG, Santini F, et al. Beta-arrestin acts as a clathrin adaptor in endocytosis of the β2-adrenergic receptor. Nature 1996;383:447–450.

    Article  PubMed  CAS  Google Scholar 

  22. Laporte SA, Oakley RH, Holt JA, Barak LS, Caron MG. The interaction of β-arrestin with the AP-2 adaptor is required for the clustering of β2-adrenergic receptor into clathrin-coated pits. J Biol Chem 2000; 275:23,120–23,126.

    Article  PubMed  CAS  Google Scholar 

  23. von Zastrow M, Link R, Daunt D, Barsh G, Kobilka B. Subtype-specific differences in the intracellular sorting of G protein-coupled receptors. J Biol Chem 1993;268:763–766.

    Google Scholar 

  24. Roettger BF, Rentsch RU, Pinon D, et al. Dual pathways of internalization of the cholecystokinin receptor. J Cell Biol 1995;128:1029–1041.

    Article  PubMed  CAS  Google Scholar 

  25. Lee KB, Pals RR, Benovic JL, Hosey MM. Arrestin-independent internalization of the m1, m3, and m4 subtypes of muscarinic cholinergic receptors. J Biol Chem 1998;273:12967–12972.

    Article  PubMed  CAS  Google Scholar 

  26. Pak Y, Kouvelas A, Scheideler MA, Rasmussen J, O’Dowd BF, George SR. Agonist-induced functional desensitization of the mu-opioid receptor is mediated by loss of membrane receptors rather than uncoupling from G protein. Mol Pharmacol 1996;50:1214–1222.

    PubMed  CAS  Google Scholar 

  27. Pippig S, Andexinger S, Lohse MJ. Sequestration and recycling of β2-adrenergic receptors permit receptor resensitization. Mol Pharmacol 1995;47:666–676.

    PubMed  CAS  Google Scholar 

  28. Pippig S, Andexinger S, Daniel K, et al. Overexpression of beta-arrestin and β-adrenergic receptor kinase augment desensitization of β2-adrenergic receptors. J Biol Chem 1993;268:3201–3208.

    PubMed  CAS  Google Scholar 

  29. Yu SS, Lefkowitz RJ, Hausdorff WP. β-adrenergic receptor sequestration. A potential mechanism of receptor resensitization. J Biol Chem 1993;268:337–341.

    PubMed  CAS  Google Scholar 

  30. Koch T, Schulz S, Schröder H, Wolf R, Raulf E, Hollt V. Carboxyl-terminal splicing of the rat μ opioid receptor modulates agonist-mediated internalization and receptor resensitization. J Biol Chem 1998; 273: 13,652–13,657.

    Article  PubMed  CAS  Google Scholar 

  31. Tsao P, von Zastrow M. Downregulation of G protein-coupled receptors. Curr Opin Neurobiol 2000; 10:365–369.

    Article  PubMed  CAS  Google Scholar 

  32. Koenig JA, Edwardson JM. Endocytosis and recycling of G protein-coupled receptors. Trends Pharmacol Sci 1997;18:276–287.

    PubMed  CAS  Google Scholar 

  33. Tsao PI, von Zastrow M. Diversity and specificity in the regulated endocytic membrane trafficking of G-protein-coupled receptors. Pharmacol Ther 2001;89:139–147.

    Article  PubMed  CAS  Google Scholar 

  34. Gagnon AW, Kallal L, Benovic JL. Role of clathrin-mediated endocytosis in agonist-induced down-regulation of the β2-adrenergic receptor. J Biol Chem 1998;273:6976–6981.

    Article  PubMed  CAS  Google Scholar 

  35. Tsao PI, von Zastrow M. Type-specific sorting of G protein-coupled receptors after endocytosis. J Biol Chem 2000;275:11,130–11,140.

    Article  PubMed  CAS  Google Scholar 

  36. Dunn KW, McGraw TE, Maxfield FR. Iterative fractionation of recycling receptors from lysosomally destined ligands in an early sorting endosome. J Cell Biol 1989;109:3303–3314.

    Article  PubMed  CAS  Google Scholar 

  37. Gruenberg J. The endocytic pathway: a mosaic of domains. Nat Rev Mol Cell Biol 2001;2:721–730.

    Article  PubMed  CAS  Google Scholar 

  38. Cao TT, Deacon HW, Reczek D, Bretscher A, von Zastrow M. A kinase-regulated PDZ-domain interaction controls endocytic sorting of the β2-adrenergic receptor. Nature 1999;401:286–290.

    Article  PubMed  CAS  Google Scholar 

  39. Cong M, Perry SJ, Hu LA, Hanson PI, Claing A, Lefkowitz RJ. Binding of the β2 adrenergic receptor to N-ethylmaleimide-sensitive factor regulates receptor recycling. J Biol Chem 2001;276:45,145–45,152.

    Article  PubMed  CAS  Google Scholar 

  40. Tanowitz M, von Zastrow M. A novel endocytic recycling signal that distinguishes the membrane trafficking of naturally occurring opioid receptors. J Biol Chem 2003;278:45,978–45,986.

    Article  PubMed  CAS  Google Scholar 

  41. Oakley RH, Laporte SA, Holt JA, Barak LS, Caron MG. Association of β-arrestin with G protein-coupled receptors during clathrin-mediated endocytosis dictates the profile of receptor resensitization. J Biol Chem 1999; 274:32,248–32,257.

    Article  PubMed  CAS  Google Scholar 

  42. Klein U, Muller C, Chu P, Birnbaumer M, von Zastrow M. Heterologous inhibition of G protein-coupled receptor endocytosis mediated by receptor-specific trafficking of β-arrestins. J Biol Chem 2001;276: 17,442–17,447.

    Article  PubMed  CAS  Google Scholar 

  43. Hicke L. Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2001;2:195–201.

    Article  PubMed  CAS  Google Scholar 

  44. Marchese A, Benovic JL. Agonist-promoted ubiquitination of the G protein-coupled receptor CXCR4 mediates lysosomal sorting. J Biol Chem 2001;276:45,509–45,512.

    Article  PubMed  CAS  Google Scholar 

  45. Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ. Regulation of receptor fate by ubiquitination of activated β2-adrenergic receptor and β-arrestin. Science 2001;294:1307–1313.

    Article  PubMed  CAS  Google Scholar 

  46. Katzmann DJ, Babst M, Emr SD. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 2001;106:145–155.

    Article  PubMed  CAS  Google Scholar 

  47. Tanowitz M, von Zastrow M. Ubiquitination-independent trafficking of G protein-coupled receptors to lysosomes. J Biol Chem 2002;277:50,219–50,222.

    Article  PubMed  CAS  Google Scholar 

  48. Whistler JL, Enquist J, Marley A, et al. Modulation of post-endocytic sorting of G protein-coupled receptors. Science 2002;297:615–620.

    Article  PubMed  CAS  Google Scholar 

  49. Petaja-Repo UE, Hogue M, Laperriere A, Bhalla S, Walker P, Bouvier M. Newly synthesized human δ opioid receptors retained in the endoplasmic reticulum are retrotranslocated to the cytosol, deglycosylated, ubiquitinated, and degraded by the proteasome. J Biol Chem 2000;276:4416–4423.

    Article  PubMed  Google Scholar 

  50. Petaja-Repo UE, Hogue M, Laperriere A, Walker P, Bouvier M. Export from the endoplasmic reticulum represents the limiting step in the maturation and cell surface expression of the human δ opioid receptor. J Biol Chem 2000;275:13,727–13,736.

    Article  PubMed  CAS  Google Scholar 

  51. Kim KA, von Zastrow M. Neurotrophin-regulated sorting of opioid receptors in the biosynthetic pathway of neurosecretory cells. J Neurosci 2003;23:2075–2085.

    PubMed  CAS  Google Scholar 

  52. Cahill CM, Morinville A, Lee MC, Vincent JP, Collier B, Beaudet A. Prolonged morphine treatment targets δ opioid receptors to neuronal plasma membranes and enhances δ-mediated antinociception. J Neurosci 2001;21:7598–7607.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Hislop, J.N., von Zastrow, M. (2005). Regulated Membrane Trafficking and Proteolysis of GPCRs. In: Devi, L.A. (eds) The G Protein-Coupled Receptors Handbook. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59259-919-6_4

Download citation

Publish with us

Policies and ethics