Skip to main content

Infancy and Childhood

  • Chapter
Calcium in Human Health

Part of the book series: Nutrition and Health ((NH))

Abstract

When considering patterns of lifetime calcium intake, most attention has been paid to ensuring adequate intakes during puberty and thereafter. This is rational because the greatest total amount of calcium is accreted to the skeleton during puberty, and optimizing peak bone mass and osteoporosis prevention are crucial in enhancing the bone health of a large portion of the population. From a pediatric perspective, however, infancy and early childhood can be a time at which calcium issues are also important, primarily to ensure that overt deficiency and rickets do not occur, but also to develop good dietary habits for later adolescence and adulthood. In this chapter, we will consider three time periods in infancy and early childhood and what is known regarding calcium nutrition during these periods. These three are (1) early life in premature infants, (2) the first 6 mo of life in full-term infants, and (3) 6 mo to 8 yr of age. Each of these poses unique challenges to our understanding of calcium needs. Although there is not a sudden change in needs at the boundaries between these life periods, they nevertheless are useful when considering calcium requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams SA. Using stable isotopes to assess mineral absorption and utilization by children. Am J Clin Nutr 1999;70:955–964.

    CAS  Google Scholar 

  2. Heaney RP. Factors influencing the measurement of bioavailability, taking calcium as a model. J Nutr 2001;131:1344S–1348S.

    CAS  Google Scholar 

  3. Caksen H, Ozturk A, Kurtoglu S, Tuncel M. Reports of osteopenia/rickets of prematurity are on the increase because of improved survival rates of low birthweight infants. J Emerg Med 2002;23:305–306.

    Article  Google Scholar 

  4. Toomey F, Hoag R, Batton D, Vain N. Rickets associated with cholestatis and parenteral nutrition in premature infants. Radiology 1982;142:85–88.

    CAS  Google Scholar 

  5. Salle BL, Senterre J, Putet G. Calcium, phosphorus, magnesium, and vitamin D requirements in premature infants. Nutrition of the low birthweight infant. Nestle Nutrition Workshop Series 1992, Vol. 32:125–135.

    Google Scholar 

  6. Abrams SA. Enteral feeding of the preterm infant: an update of recent findings. Bailliere’s Clin Paediatr 1997;5:305–316.

    Google Scholar 

  7. Abrams SA, Schanler RJ, Yergey AL, Vieira NE, Bronner F. Compartmental analysis of calcium metabolism in very low birth weight infants. Pediatr Res 1994;36:424–428.

    Article  CAS  Google Scholar 

  8. Atkinson SA, Radde IC, Anderson GH. Macromineral balances in premature infants fed their own mothers’ milk or formula. J Pediatr 1983;102:99–106.

    Article  CAS  Google Scholar 

  9. Butte NF, Garza C, Johnson CA, Smith EO, Nichols BL. Longitudinal changes in milk composition of mothers delivering preterm and term infants. Early Hum Dev 1986;9:153–164.

    Article  Google Scholar 

  10. Koo WWK, Sherman R, Succop P, et al. Sequential bone mineral content in small preterm infants with and without fractures and rickets. J Bone Miner Res 1988;3:193–197.

    Article  CAS  Google Scholar 

  11. Schanler RJ, Abrams SA, Garza C. Bioavailability of calcium and phosphorus in human milk fortifiers and formula for very low birth weight infants. J Pediatr 1988;113:95–100.

    Article  CAS  Google Scholar 

  12. Schanler RJ. Human milk fortification for premature infants. Am J Clin Nutr 1996;64:249–250.

    CAS  Google Scholar 

  13. Life Sciences Research Office (LSRO) report. Assessment of nutrient requirements for infant formulas. J Nutr 1998;128:2059S–2293S.

    Google Scholar 

  14. Trotter A, Pohlandt F. Calcium and phosphorus retention in extremely preterm infants supplemented individually. Acta Paediatr 2002;91:680–683.

    Article  CAS  Google Scholar 

  15. Schanler RJ. The use of human milk for premature infants. Pediatr Clin North Am 2001;48:207–219.

    Article  CAS  Google Scholar 

  16. Porcelli P, Schanler R, Greer F, et al. Growth in human milk-fed very low birth weight infants receiving a new human milk fortifier. Ann Nutr Metab 2000;44:2–10.

    Article  CAS  Google Scholar 

  17. Kashyap S, Forsyth M, Zucker C, Ramakrishnan R, Dell RB, Heird WC. Effects of varying protein and energy intakes on growth and metabolic response in low birth weight infants. J Pediatr 1986;108:955–963.

    Article  CAS  Google Scholar 

  18. Charles P. Calcium absorption and calcium bioavailability. J Intern Med 1992;231:161–168.

    Article  CAS  Google Scholar 

  19. Faerk J, Petersen S, Peitersen B, Fleischer Michaelsen K. Diet and bone mineral content at term in premature infants. Pediatr Res 2000;47:148–156.

    Article  CAS  Google Scholar 

  20. Institute of Medicine Food and Nutrition Board’s Standing Committee on the Scientific Evaluation of Dietary Intervals: Calcium. Dietary Reference Intervals for Calcium, Phosphorus, Magnesium, Vitamin D and Fluoride. National Academy Press, Washington, DC: 1997; pp. 71–146.

    Google Scholar 

  21. Fomon SJ, Nelson SE. Calcium, phosphorus, magnesium, and sulfur. In: Fomon SJ. Nutrition of normal infants. Mosby-Year Book, St. Louis: 1993;192–218.

    Google Scholar 

  22. Abrams SA, Wen J, Stuff JE. Absorption of calcium, zinc and iron from breast milk by 5-to 7-monthold infants. Pediatr Res 1997;41:384–390.

    Article  CAS  Google Scholar 

  23. Loui A, Raab A, Obladen M, Bratter P. Calcium, phosphorus and magnesium balance: FM 85 fortification of human milk does not meet mineral needs of extremely low birthweight infants. Euro J Clin Nutr 2002;56:228–235.

    Article  CAS  Google Scholar 

  24. DeCurtis M, Candusso M, Pieltain C, Rigo J. Effect of fortification on the osmolality of human milk. Arch Dis Child Fetal Neonatol Ed 1999;81:F141–F143.

    CAS  Google Scholar 

  25. Hallstrom M, Koivisto AM, Janas M, Tammela O. Frequency of and risk factors for necrotizing enterocolitis in infants born before 33 weeks of gestation. Acta Paediatr 2003;92:111–113.

    Article  CAS  Google Scholar 

  26. De Laet MH, Dassonville M, Johanasson A, et al. Small-bowel perforation in very low birth weight neonates treated with high-dose dexamethasone. Eur J Pediatr Surg 2000;10:323–327.

    Google Scholar 

  27. Gordon P, Rutledge J, Sawin R, Thomas S, Woodrum D. Early postnatal dexamethasone increases the risk of focal small bowel perforation in extremely low birth weight infants. J Perinatol 1999;19:573–577.

    Article  CAS  Google Scholar 

  28. Stark AR, Carlo WA, Tyson JE, et al. Adverse effects of early dexamethasone in extremely-low-birthweight infants: National Institute of Child Health and Human Development Neonatal Research Network. N Engl J Med 2001;344:95–101.

    Article  CAS  Google Scholar 

  29. Lucas A, Fewtrell MS, Morley R, et al. Randomized outcome trial of human milk fortification and developmental outcome in preterm infants. Am J Clin Nutr 1996;64:142–151.

    CAS  Google Scholar 

  30. Hylander MA, Strobino DM, Dhanireddy R. Human milk feedings and infection among very low birth weight infants. Pediatrics 1998;102:e38.

    Article  CAS  Google Scholar 

  31. Lucas A, Cole TJ. Breast milk and neonatal necrotizing enterocolitis. Lancet 1990;336:1519–1523.

    Article  CAS  Google Scholar 

  32. Reis BB, Hall RT, Schanler RJ, et al. Enhanced growth of preterm infants fed a new powdered human milk fortifier: a randomized, controlled trial. Pediatrics 2000;106:581–588.

    Article  CAS  Google Scholar 

  33. Kamitsuka MD, Horton MK, Williams MA. The incidence of necrotizing enterocolitis after introducing standardized feeding schedules for infants between 1250 and 2500 grams and less than 35 weeks of gestation. Pediatrics 2000;105:379–384.

    Article  CAS  Google Scholar 

  34. Schanler RJ, Shulman RJ, Lau C. Feeding strategies for premature infants: beneficial outcomes of feeding fortified human milk versus preterm formula. Pediatrics 1999;103:1150–1157.

    Article  CAS  Google Scholar 

  35. American Academy of Pediatrics Task Force on Breastfeeding. Breastfeeding and the use of milk. Pediatrics 1997;100:1035–1039.

    Article  Google Scholar 

  36. Worrell LA, Thorp JW, Tucker R, et al. The effects of the introduction of a high-nutrient transitional formula on growth and development of very-low-birth-weight infants. J Perinatol 2002;22:112–119.

    Article  Google Scholar 

  37. Carver JD, Wu PY, Hall RT, et al. Growth of preterm infants fed nutrient-enriched or term formula after hospital discharge. Pediatrics 2001;107:683–689.

    Article  CAS  Google Scholar 

  38. Bishop NJ, King FJ, Lucas A. Increased bone mineral content of preterm infants fed with a nutrient enriched formula after discharge from hospital. Arch Dis Child 1993;68:573–578.

    Article  CAS  Google Scholar 

  39. Griffin IJ. Postdischarge nutrition for high risk neonates. Clin Perinatol 2001;29:327–344.

    Article  Google Scholar 

  40. Lucas A, Fewtrell MS, Morley R, et al. Randomized trial of nutrient-enriched formula versus standard formula for postdischarge preterm infants. Pediatrics 2001;108:703–711.

    Article  CAS  Google Scholar 

  41. Committee on Nutrition, American Academy of Pediatrics. Calcium requirements of infants, children, and adolescents. Pediatrics 1999;104:1152–1157.

    Article  Google Scholar 

  42. Specker, BL, Beck A, Kalfwarf H, Ho M. Randomized trial of varying mineral intake on total body bone mineral accretion during the first year of life. Pediatrics 1997;99:E12.

    Google Scholar 

  43. Abrams SA, Griffin IJ, Davila PM. Calcium and zinc absorption from lactose-containing and lactosefree infant formulas. Am J Clin Nutr 2002;76:442–446.

    CAS  Google Scholar 

  44. Lifschitz CL, Abrams SA. Addition of rice cereal to formula does not impair mineral bioavailability. J Pediatr Gastroenterol Nutr 1998;26:175–178.

    Article  CAS  Google Scholar 

  45. Jones G, Riley M, Dwyer T. Breastfeeding in early life and bone mass in prepubertal children: A longitudinal study. Osteoporosis Int 2000;11:146–152.

    Article  CAS  Google Scholar 

  46. Gafni RI, McCarthy EF, Hatcher T, et al. Recovery from osteoporosis through skeletal growth: Early bone mass acquisition has little effect on adult bone density. FASEB J 2002;16:736–738.

    CAS  Google Scholar 

  47. Abrams SA, Wen J, Stuff JE. Absorption of calcium, zinc, and iron from breast milk by five-to sevenmonth-old infants. Pediatr Res 1997;41:384–390.

    Article  CAS  Google Scholar 

  48. Kooh SW, Graser D, Reilly BJ, Hamilton JR, Gall DG, Bell L. Rickets due to calcium deficiency. N Eng J Med. 1977;297:1264–1266.

    Article  CAS  Google Scholar 

  49. Legius E, Proesmans W, Eggermont E, Vandamme-Lombaerts R, Bouillon R, Smet M. Rickets due to dietary calcium deficiency. Eur J Pediatr 1989;148:784–785.

    Article  CAS  Google Scholar 

  50. Pettifor JM, Ross P, Moodley G, Shuenyane E. Calcium deficiency in rural black children in South Africa—a comparison between rural and urban communities. Am J Clin Nutr 1979;32:2477–2483.

    CAS  Google Scholar 

  51. Thatcher TD, Fischer PR, Pettifor JM, Lawson JO, Isichei CO, Chan GM. Case-control study of factors associated with nutritional rickets in Nigerian children. J Pediatr 2000;137:367–373.

    Article  Google Scholar 

  52. Okonofua F, Gill DS, Alabi ZO, Thomas M, Bell JL, Dandona P. Rickets in Nigerian children: a consequence of calcium malnutrition. Metabolism 1991;40:209–213

    Article  CAS  Google Scholar 

  53. Pfitzner MA, Thacher TD, Pettifor JM, et al. Absence of vitamin D deficiency in young Nigerian children. J Pediatr 1998;133:740–744

    Article  CAS  Google Scholar 

  54. Thatcher TD, Fischer PR, Pettifor JM, et al. A comparison of calcium, vitamin D, or both for nutritional rickets in Nigerian children. N Engl J Med 1999;341:563–568

    Article  Google Scholar 

  55. Lawson DE, Cole TJ, Salem S, et al. Etiology of rickets in Egyptian children. Hum Nutr Clin Nutr. 1987;41:199–208

    CAS  Google Scholar 

  56. Oginni LM, Worsfold M, Oyelami OA, Sharp CA, Powell DE, Davie MWJ. Etiology of rickets in Nigerian children. J Pediatr 1996;128:692–694.

    Article  CAS  Google Scholar 

  57. Ames SK, Gorham BM, Abrams SA. Effects of high vs low calcium intake on calcium absorption and red blood cell iron incorporation by small children. Am J Clin Nutr 1999;70:44–48.

    CAS  Google Scholar 

  58. Johnston CC. Miller JZ, Slemenda CW, et al. Calcium supplementation and increases in bone mineral density in children. N Engl J Med. 1992, 327:82–87.

    Article  Google Scholar 

  59. Abrams SA, Griffin IJ, Davila P, Liang L. Calcium fortification of breakfast cereal enhances calcium absorption in children without affecting iron absorption. J Pediatr 2001;139:522–526.

    Article  CAS  Google Scholar 

  60. Bonjour JP, Chevalley T, Ammann P, Slosman D, Rizzoli R. Gain in bone mineral mass in prepubertal girls 3.5 years after discontinuation of calcium supplementation: a follow-up study. Lancet 2001;358:1208–1212.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Abrams, S.A., Hawthorne, K.M. (2006). Infancy and Childhood. In: Weaver, C.M., Heaney, R.P. (eds) Calcium in Human Health. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-59259-961-5_16

Download citation

Publish with us

Policies and ethics