Skip to main content

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Malignant brain tumors are quickly become the leading cause of cancer-related deaths in children and young adults, and the incidence of the disease has increased many folds in the elderly over the last decade. Currently, the rapid development of molecular technology provides great promise for understanding the mechanisms of gliomagenesis. A number of genetic abnormalities have been implicated in this malignant process, which are involved in signal transduc-tion, cell cycle control, cell growth, proliferation, apoptosis, and differentiation. We discus here the genes and pathways believed to be critical in glioma formation and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kleihues P, Louis DN, Scheithauer BW, et al. The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 2002;61:215–225; discussion 226–219.

    PubMed  Google Scholar 

  2. Winger MJ, Macdonald DR, Cairncross JG. Supratentorial anaplastic gliomas in adults. The prognostic importance of extent of resection and prior low-grade glioma. J Neurosurg 1989;71:487–493.

    PubMed  CAS  Google Scholar 

  3. von Deimling A, von Ammon K, Schoenfeld D, Wiestler OD, Seizinger BR, Louis DN. Subsets of glioblastoma multiforme defined by molecular genetic analysis. Brain Pathol 1993;3:19–26.

    Google Scholar 

  4. Kapoor GS, O’Rourke DM. Receptor tyrosine kinase signaling in gliomagenesis: pathobiology and therapeutic approaches. Cancer Biol Ther 2003;2:330–342.

    PubMed  CAS  Google Scholar 

  5. Kolibaba KS, Druker BJ. Protein tyrosine kinases and cancer. Biochim Biophys Acta 1997;1333:F217–F248.

    PubMed  CAS  Google Scholar 

  6. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57–70.

    Article  PubMed  CAS  Google Scholar 

  7. Hunter T. Signaling—2000 and beyond. Cell 2000;100:113–127.

    Article  PubMed  CAS  Google Scholar 

  8. Betsholtz C, Karlsson L, Lindahl P. Developmental roles of platelet-derived growth factors. Bioessays 2001;23:494–507.

    Article  PubMed  CAS  Google Scholar 

  9. Bergsten E, Uutela M, Li X, et al. PDGF-D is a specific, protease-activated ligand for the PDGF beta-receptor. Nat Cell Biol 2001;3:512–516.

    Article  PubMed  CAS  Google Scholar 

  10. Gilbertson DG, Duff ME, West JW, et al. Platelet-derived growth factor C (PDGF-C), a novel growth factor that binds to PDGF alpha and beta receptor. J Biol Chem 2001;276:27,406–27,414.

    Article  PubMed  CAS  Google Scholar 

  11. LaRochelle WJ, Jeffers M, McDonald WF, et al. PDGF-D, a new protease-activated growth factor. Nat Cell Biol 2001;3:517–521.

    Article  PubMed  CAS  Google Scholar 

  12. Kazlauskas A, Cooper JA. Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins. Cell 1989;58:1121–1133.

    Article  PubMed  CAS  Google Scholar 

  13. Hermanson M, Funa K, Hartman M, et al. Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 1992;52:3213–3219.

    PubMed  CAS  Google Scholar 

  14. Guha A, Dashner K, Black PM, Wagner JA, Stiles CD. Expression of PDGF and PDGF receptors in human astrocytoma operation specimens supports the existence of an autocrine loop. Int J Cancer 1995;60:168–173.

    Article  PubMed  CAS  Google Scholar 

  15. Vassbotn FS, Ostman A, Langeland N, et al. Activated platelet-derived growth factor autocrine pathway drives the transformed phenotype of a human glioblastoma cell line. J Cell Physiol 1994;158:381–389.

    Article  PubMed  CAS  Google Scholar 

  16. Lokker NA, Sullivan CM, Hollenbach SJ, Israel MA, Giese NA. Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res 2002;62:3729–3735.

    PubMed  CAS  Google Scholar 

  17. Nister M, Libermann TA, Betsholtz C, et al. Expression of messenger RNAs for platelet-derived growth factor and transforming growth factor-alpha and their receptors in human malignant glioma cell lines. Cancer Res 1988;48:3910–3918.

    PubMed  CAS  Google Scholar 

  18. Black P, Carroll R, Glowacka D. Expression of platelet-derived growth factor transcripts in medul-loblastomas and ependymomas. Pediatr Neurosurg 1996;24:74–78.

    PubMed  CAS  Google Scholar 

  19. Andrae J, Molander C, Smits A, Funa K, Nister M. Platelet-derived growth factor-B and-C and active alpha-receptors in medulloblastoma cells. Biochem Biophys Res Commun 2002;296:604–611.

    Article  PubMed  CAS  Google Scholar 

  20. Shapiro JR. Genetics of nervous system tumors. Hematol Oncol Clin North Am 2001;15:961–977.

    Article  PubMed  CAS  Google Scholar 

  21. von Deimling A, Eibl RH, Ohgaki H, et al. p53 mutations are associated with 17p allelic loss in grade II and grade III astrocytoma. Cancer Res 1992;52:2987–2990.

    Google Scholar 

  22. Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 2001;15:1913–1925.

    Article  PubMed  CAS  Google Scholar 

  23. Uhrbom L, Hesselager G, Nister M, Westermark B. Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res 1998;58:5275–5279.

    PubMed  CAS  Google Scholar 

  24. Libermann TA, Nusbaum HR, Razon N, et al. Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 1985;313:144–147.

    Article  PubMed  CAS  Google Scholar 

  25. Zhu Y, Parada LF. The molecular and genetic basis of neurological tumours. Nat Rev Cancer 2002;2:616–626.

    Article  PubMed  CAS  Google Scholar 

  26. Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR, Vogelstein B. Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci USA 1987;84:6899–6903.

    Article  PubMed  CAS  Google Scholar 

  27. Holland EC, Hively WP, DePinho RA, Varmus HE. A constitutively active epidermal growth factor receptor cooperates with disruption of Gl cell cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 1998;12:3675–3685.

    PubMed  CAS  Google Scholar 

  28. Bachoo RM, Maher EA, Ligon KL, et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 2002;1:269–277.

    Article  PubMed  CAS  Google Scholar 

  29. Bos JL. ras oncogenes in human cancer: a review. Cancer Res 1989;49:4682–4689.

    PubMed  CAS  Google Scholar 

  30. Guha A, Feldkamp MM, Lau N, Boss G, Pawson A. Proliferation of human malignant astrocytomas is dependent on Ras activation. Oncogene 1997;15:2755–2765.

    Article  PubMed  CAS  Google Scholar 

  31. Ding H, Roncari L, Shannon P, et al. Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res 2001;61:3826–3836.

    PubMed  CAS  Google Scholar 

  32. Sonoda Y, Ozawa T, Hirose Y, et al. Formation of intracranial tumors by genetically modified human astrocytes defines four pathways critical in the development of human anaplastic astrocytoma. Cancer Res 2001;61:4956–4960.

    PubMed  CAS  Google Scholar 

  33. Simpson L, Parsons R. PTEN: life as a tumor suppressor. Exp Cell Res 2001;264:29–41.

    Article  PubMed  CAS  Google Scholar 

  34. Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2002;2:489–501.

    Article  PubMed  CAS  Google Scholar 

  35. Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 1998;273:13,375–13,378.

    Article  PubMed  CAS  Google Scholar 

  36. Haas-Kogan D, Shalev N, Wong M, Mills G, Yount G, Stokoe D. Protein kinase B (PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC. Curr Biol 1998;8:1195–1198.

    Article  PubMed  CAS  Google Scholar 

  37. Smith JS, Tachibana I, Passe SM, et al. PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J Natl Cancer Inst 2001;93:1246–1256.

    Article  PubMed  CAS  Google Scholar 

  38. Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004;304:554.

    Article  PubMed  CAS  Google Scholar 

  39. Holland EC. Gliomagenesis: genetic alterations and mouse models. Nat Rev Genet 2001;2:120–129.

    Article  PubMed  CAS  Google Scholar 

  40. Wang H, Zhang W, Huang HJ, Liao WS, Fuller GN. Analysis of the activation status of Akt, NFkappaB, and Stat3 in human diffuse gliomas. Lab Invest 2004;84:941–951.

    Article  PubMed  CAS  Google Scholar 

  41. Seoane J, Le HV, Shen L, Anderson SA, Massague J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 2004;117:211–223.

    Article  PubMed  CAS  Google Scholar 

  42. Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997;91:231–241.

    Article  PubMed  CAS  Google Scholar 

  43. Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998;282:1318–1321.

    Article  PubMed  CAS  Google Scholar 

  44. Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857–868.

    Article  PubMed  CAS  Google Scholar 

  45. Sherr CJ. Cancer cell cycles. Science 1996;274:1672–1677.

    Article  PubMed  CAS  Google Scholar 

  46. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999;13:1501–1512.

    PubMed  CAS  Google Scholar 

  47. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 81:323–330.

    Google Scholar 

  48. Hartwell LH, Kastan MB. Cell cycle control and cancer. Science 1994;266:1821–1828.

    Article  PubMed  CAS  Google Scholar 

  49. Elledge SJ. Cell cycle checkpoints: preventing an identity crisis. Science 274:1664–1672.

    Google Scholar 

  50. Yu JT, Foster RG, Dean DC. Transcriptional repression by RB-E2F and regulation of anchorage-independent survival. Mol Cell Biol 2001;21:3325–3335.

    Article  PubMed  CAS  Google Scholar 

  51. Nishikawa R, Furnari FB, Lin H, et al. Loss of P16INK4 expression is frequent in high grade gliomas. Cancer Res 1995;55:1941–1945.

    PubMed  CAS  Google Scholar 

  52. Xiao A, Wu H, Pandolfi PP, Louis DN, Van Dyke T. Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell 2002;1:157–168.

    Article  PubMed  CAS  Google Scholar 

  53. Holland EC, Hively WP, Gallo V, Varmus HE. Modeling mutations in the G1 arrest pathway in human gliomas: overexpression of CDK4 but not loss of INK4a-ARF induces hyperploidy in cultured mouse astrocytes. Genes Dev 1998;12:3644–3649.

    PubMed  CAS  Google Scholar 

  54. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000;408:307–310.

    Article  PubMed  CAS  Google Scholar 

  55. Jung JM, Bruner JM, Ruan S, et al. Increased levels of p21WAF1/Cip1 in human brain tumors. Oncogene 1995;11:2021–2028.

    PubMed  CAS  Google Scholar 

  56. Ohgaki H, Dessen P, Jourde B, et al. Genetic pathways to glioblastoma: a population-based study. Cancer Res 2004;64:6892–6899.

    Article  PubMed  CAS  Google Scholar 

  57. Ichimura K, Schmidt EE, Goike HM, Collins VP. Human glioblastomas with no alterations of the CDKN2A (p16INK4A, MTS1) and CDK4 genes have frequent mutations of the retinoblastoma gene. Oncogene 1996;13:1065–1072.

    PubMed  CAS  Google Scholar 

  58. Costello JF, Plass C, Arap W, et al. Cyclin-dependent kinase 6 (CDK6) amplification in human gliomas identified using two-dimensional separation of genomic DNA. Cancer Res 1997;57:1250–1254.

    PubMed  CAS  Google Scholar 

  59. He J, Reifenberger G, Liu L, Collins VP, James CD. Analysis of glioma cell lines for amplification and overexpression of MDM2. Genes Chromosomes Cancer 1994;11:91–96.

    Article  PubMed  CAS  Google Scholar 

  60. Kleihues P, Ohgaki H. Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro-Oncology 1999;1:44–51.

    Article  PubMed  CAS  Google Scholar 

  61. Oliver TG, Wechsler-Reya RJ. Getting at the root and stem of brain tumors. Neuron 2004;42:885–888.

    Article  PubMed  CAS  Google Scholar 

  62. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992;255:1707–1710.

    Article  PubMed  CAS  Google Scholar 

  63. McKinnon RD, Matsui T, Dubois-Dalcq M, Aaronson SA. FGF modulates the PDGF-driven pathway of oligodendrocyte development. Neuron 1990;5:603–614.

    Article  PubMed  CAS  Google Scholar 

  64. Bogler O, Wren D, Barnett SC, Land H, Noble M. Cooperation between two growth factors promotes extended self-renewal and inhibits differentiation of oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells. Proc Natl Acad Sci USA 1990;87:6368–6372.

    Article  PubMed  CAS  Google Scholar 

  65. Rajan P, McKay RD. Multiple routes to astrocytic differentiation in the CNS. J Neurosci 1998;18:3620–3629.

    PubMed  CAS  Google Scholar 

  66. Groszer M, Erickson R, Scripture-Adams DD, et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 2001;294:2186–2189.

    Article  PubMed  CAS  Google Scholar 

  67. Gage FH. Mammalian neural stem cells. Science 2000;287:1433–1438.

    Article  PubMed  CAS  Google Scholar 

  68. Temple S. The development of neural stem cells. Nature 2001;414:112–117.

    Article  PubMed  CAS  Google Scholar 

  69. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 1999;97:703–716.

    Article  PubMed  CAS  Google Scholar 

  70. Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR. Neurons derived from radial glial cells establish radial units in neocortex. Nature 2001;409:714–720.

    Article  PubMed  CAS  Google Scholar 

  71. Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD. A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2001;2:287–293.

    Article  PubMed  CAS  Google Scholar 

  72. Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 2000;25:55–57.

    Article  PubMed  CAS  Google Scholar 

  73. Hunter KE, Hatten ME. Radial glial cell transformation to astrocytes is bidirectional: regulation by a diffusible factor in embryonic forebrain. Proc Natl Acad Sci USA 1995;92:2061–2065.

    Article  PubMed  CAS  Google Scholar 

  74. Kondo T, Raff M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 2000;289:1754–1757.

    Article  PubMed  CAS  Google Scholar 

  75. Ichimura K, Bolin MB, Goike HM, Schmidt EE, Moshref A, Collins VP. Deregulation of the pl4ARP/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G1-S transition control gene abnormalities. Cancer Res 2000;60:417–424.

    PubMed  CAS  Google Scholar 

  76. Walker DG, Duan W, Popovic EA, Kaye AH, Tomlinson FH, Lavin M. Homozygous deletions of the multiple tumor suppressor gene 1 in the progression of human astrocytomas. Cancer Res 1995;55:20–23.

    PubMed  CAS  Google Scholar 

  77. Schmidt EE, Ichimura K, Reifenberger G, Collins VP. CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. Cancer Res 1994;54:6321–6324.

    PubMed  CAS  Google Scholar 

  78. Sauvageot CM, Stiles CD. Molecular mechanisms controlling cortical gliogenesis. Curr Opin Neurobiol 2002;12:244–249.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Zhang, W., Fine, H.A. (2006). Mechanisms of Gliomagenesis. In: Janigro, D. (eds) The Cell Cycle in the Central Nervous System. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59745-021-8_31

Download citation

Publish with us

Policies and ethics