Skip to main content

5-HT Receptor Signal Transduction Pathways

  • Chapter
The Serotonin Receptors

Abstract

The purpose of this chapter is to summarize the main features of various signal transduction pathways utilized by the G protein-coupled 5-hydroxytryptamine (5-HT) receptors. Herein, we discuss major and secondary signals emanating from the major subtypes of 5-HT receptors (5-HT1, 5-HT2,5-HT4,5-HT5,5-HT6, and 5-HT7), as well as unique aspects of signaling for some of the subtypes. The 5-HT3 receptors, which are 5-HT gated ion channels, will not be discussed in this chapter. This chapter highlights the complexity of signaling from the diverse G protein-coupled 5-HT receptors and underscores the fundamental importance of understanding the nuances of the determinants of signaling specificity for these receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pedigo NW, Yamamura HI, Nelson DL. Discrimination of multiple [3H]5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J Neurochem 1981;36:220–226.

    Article  PubMed  CAS  Google Scholar 

  2. Middlemiss DN, Fozard JR. 8-Hydroxy-2-(di-n-propylamino)-tetralin discriminates between subtypes of the 5-HT1 recognition site. Eur J Pharmacol 1983;90:151–153.

    Google Scholar 

  3. Kobilka BK, Frielle T, Collins S, et al. An intronless gene encoding a potentialmember of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature 1987;329:75–79.

    Article  PubMed  CAS  Google Scholar 

  4. Fargin A, Raymond JR, Lohse MJ, et al. The genomic clone G-21 which resembles a beta-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature 1988;335:358–360.

    Article  PubMed  CAS  Google Scholar 

  5. Parks CL, Robinson PS, Sibille E, Shenk T, Toth M. Increased anxiety of mice lacking the serotonin1A receptor. Proc Natl Acad Sci USA 1998;95:10,734–10,739.

    Article  PubMed  CAS  Google Scholar 

  6. Gilbert F, Brazell C, Tricklebank MD, Stahl SM. Activation of the 5-HT1A receptor subtype increases rat plasma ACTH concentration. Eur J Pharmacol 1988;147:431–439.

    Article  PubMed  CAS  Google Scholar 

  7. Seletti B, Benkelfat C, Blier P, Annable L, Gilbert F, de Montigny C. Serotonin1A receptor activation by flesinoxan in humans. Body temperature and neuroendo-crine responses. Neuropsychopharmacology 1995;13:93–104.

    Article  PubMed  CAS  Google Scholar 

  8. Leone M, Attanasio A, Croci D, et al. 5-HT1A receptor hypersensitivity in migraine is suggested by the m-chlorophenylpiperazine test. Neuroreport 1998;9:2605–2608.

    Article  PubMed  CAS  Google Scholar 

  9. Maswood N, Caldarola-Pastuszka M, Uphouse L. Functional integration among 5-hydroxytryptamine receptor families in the control of female rat sexual behavior. Brain Res 1998;802:98–103.

    Article  PubMed  CAS  Google Scholar 

  10. Yamada J, Sugimoto Y, Yoshikawa T. Effects of adrenalectomy on hyperphagiainduced by the 5-HT1A receptor agonist 8-OH-DPAT and 2-deoxy-D-glucose in rats. Neuroreport 1998;9:1831–1833.

    Article  PubMed  CAS  Google Scholar 

  11. Edagawa Y, Saito H, Abe K. 5-HT1A receptor-mediated inhibition of long-termpotentiation in rat visual cortex. Eur J Pharmacol 1998;349:221–224.

    Article  PubMed  CAS  Google Scholar 

  12. Miczek KA, Hussain S, Faccidomo S. Alcohol-heightened aggression in mice:attenuation by 5-HT1A receptor agonists. Psychopharmacology (Berl) 1998;139:160–168.

    Article  CAS  Google Scholar 

  13. Iken K, Chheng S, Fargin A, Goulet AC, Kouassi E. Serotonin upregulates mitogen-stimulated B lymphocyte proliferation through 5-HT1A receptors. Cell Immunol 1995;163:1–9.

    Article  PubMed  CAS  Google Scholar 

  14. Albert PR, Zhou QY, Van Tol HH, Bunzow JR, Civelli O. Cloning, functional expression, and mRNA tissue distribution of the rat 5-hydroxytryptamine1A receptor gene. J Biol Chem 1990;265:5825–5832.

    PubMed  CAS  Google Scholar 

  15. Fujiwara Y, Nelson DL, Kashihara K, Varga E, Roeske WR, Yamamura HI. The cloning and sequence analysis of the rat serotonin-1A receptor gene. Life Sci 1990;47:PL127–PL132.

    Article  PubMed  CAS  Google Scholar 

  16. Kirchgessner AL, Liu MT, Howard MJ, Gershon MD. Detection of the 5-HT1A receptor and 5-HT1A receptor mRNA in the rat bowel and pancreas: comparison with 5-HT1P receptors. J Comp Neurol 1993;327:233–250.

    Article  PubMed  CAS  Google Scholar 

  17. Raymond JR, Kim J, Beach RE, Tisher CC. Immunohistochemical mapping of cellular and subcellular distribution of 5-HT1P receptors in rat and human kidneys. Am J Physiol 1993;264:F9–F19.

    PubMed  CAS  Google Scholar 

  18. De Vivo M, Maayani S. Characterization of the 5-hydroxytryptamine1P receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea pig and rat hippocampal membranes. J Pharmacol Exp Ther 1986;238:248–253.

    PubMed  Google Scholar 

  19. Weiss S, Sebben M, Kemp DE, Bockaert J. Serotonin 5-HT1 receptors mediate inhibition of cyclic AMP production in neurons. Eur J Pharmacol 1986;120:227–230.

    Article  PubMed  CAS  Google Scholar 

  20. Hensler JG, Cervera LS, Miller HA, Corbitt J. Expression and modulation of 5-hydroxytryptamine1P receptors in P11 cells. J Pharmacol Exp Ther 1996;278:1138–1145.

    PubMed  CAS  Google Scholar 

  21. Singh JK, Yan Q, Dawson G, Banerjee P. Cell-specific regulation of the stably expressed serotonin 5-HT1P receptor and altered ganglioside synthesis. Biochim BiophysActa 1996;1310:201–211.

    Google Scholar 

  22. Albert O, Ancellin N, Preisser L, Morel A, Corman B. Serotonin, bradykinin and endothelin signalling in a sheep choroid plexus cell line. Life Sci 1999;64:859–867.

    Article  PubMed  CAS  Google Scholar 

  23. Liu YF, Albert PR. Cell-specific signaling of the 5-HT1P receptor. Modulation by protein kinases C and A. J Biol Chem 1991;266:23,689–23,697.

    PubMed  CAS  Google Scholar 

  24. Raymond JR. Protein kinase C induces phosphorylation and desensitization of the human 5-HT1P receptor. J Biol Chem 1991;266:14,747–14,753.

    PubMed  CAS  Google Scholar 

  25. Varrault A, Bockaert J, Waeber C. Activation of 5-HT1P receptors expressed in NIH-3T3 cells induces focus formation and potentiates EGF effect on DNA synthesis. Mol Biol Cell 1992;3:961–969.

    PubMed  CAS  Google Scholar 

  26. Varrault A, Journot L, Audigier Y, Bockaert J. Transfection of human 5-hydroxy-tryptamine1P receptors in NIH-3T3 fibroblasts: effects of increasing receptor density on the coupling of 5-hydroxytryptamine1P receptors to adenylyl cyclase. Mol Pharmacol 1992;41:999–1007.

    PubMed  CAS  Google Scholar 

  27. Albert PR, Sajedi N, Lemonde S, Ghahremani MH. Constitutive Gi2 dependent activation of adenylyl cyclase type II by the 5-HT1P receptor. Inhibition by anx-iolytic partial agonists. J Biol Chem 1999;274:35,469–35,474.

    Article  PubMed  CAS  Google Scholar 

  28. Fargin A, Raymond JR, Regan JW, Cotecchia S, Lefkowitz RJ, Caron MG. Effector coupling mechanisms of the cloned 5-HT1P receptor. J Biol Chem 1989;264:14,848–14,852.

    PubMed  CAS  Google Scholar 

  29. Langlois X, el Mestikawy S, Arpin M, Triller A, Hamon M, Darmon M. Differential addressing of 5-HT1P and 5-HT1B receptors in transfected LLC-PK1 epithelial cells: a model of receptor targeting in neurons. Neuroscience 1996;74:297–302.

    Article  PubMed  CAS  Google Scholar 

  30. Carmena MJ, Camacho A, Solano RM, et al. 5-Hydroxytryptamine1P receptor-mediated effects on adenylate cyclase and nitric oxide synthase activities in rat ventral prostate. Cell Signal 1998;10:583–587.

    Article  PubMed  CAS  Google Scholar 

  31. Mulheron JG, Casanas SJ, Arthur JM, Garnovskaya MN, Gettys TW, Raymond JR. Human 5-HT1P receptor expressed in insect cells activates endogenous Go-like G protein(s). J Biol Chem 1994;269:12,954–12,962.

    PubMed  CAS  Google Scholar 

  32. Fargin A, Yamamoto K, Cotecchia S, et al. Dual coupling of the cloned 5-HT1P receptor to both adenylyl cyclase and phospholipase C is mediated via the same Gi protein. Cell Signal 1991;3:547–557.

    Article  PubMed  CAS  Google Scholar 

  33. Liu YF, Jakobs KH, Rasenick MM, Albert PR. G protein specificity in receptor-effector coupling. Analysis of the roles of Go and Gi2 in GH4C1 pituitary cells. J Biol Chem 1994;269:13,880–13,886.

    PubMed  CAS  Google Scholar 

  34. Bertin B, Freissmuth M, Breyer RM, Schutz W, Strosberg AD, Marullo S. Functional expression of the human serotonin 5-HT1P receptor in Escherichiacoli. Ligand binding properties and interaction with recombinant G protein alpha-subunits. J Biol Chem 1992;267:8200–8206.

    PubMed  CAS  Google Scholar 

  35. Raymond JR, Olsen CL, Gettys TW. Cell-specific physical and functional coupling of human 5-HT1P receptors to inhibitory G protein alpha-subunits and lack of coupling to Gs alpha. Biochemistry 1993;32:11,064–11,073.

    Article  PubMed  CAS  Google Scholar 

  36. Butkerait P, Zheng Y, Hallak H, et al. Expression of the human 5-hydroxy-tryptamine1P receptor in Sf9 cells. Reconstitution of a coupled phenotype by coexpression of mammalian G protein subunits. J Biol Chem 1995;270:18,691–18,699.

    Article  PubMed  CAS  Google Scholar 

  37. Barr AJ, Brass LF, Manning DR. Reconstitution of receptors and GTP-binding regulatory proteins (G proteins) in Sf9 cells. A direct evaluation of selectivity in receptor-G protein coupling. J Biol Chem 1997;272:2223–2229.

    Article  PubMed  CAS  Google Scholar 

  38. Barr AJ, Manning DR. Agonist-independent activation of Gz by the 5-hydroxy-tryptamine1A receptor co-expressed in Spodoptera frugiperda cells. Distinguishing inverse agonists from neutral antagonists. J Biol Chem 1997;272:32,979–32,987.

    Article  PubMed  CAS  Google Scholar 

  39. Clawges HM, Depree KM, Parker EM, Graber SG. Human 5-HT1 receptor subtypes exhibit distinct G protein coupling behaviors in membranes from Sf9 cells. Biochemistry 1997;36:12,930–12,938.

    Article  PubMed  CAS  Google Scholar 

  40. Garnovskaya MN, Gettys TW, van Biesen T, Prpic V, Chuprun JK, Raymond JR. 5-HT1P receptor activates Na+/H+ exchange in CHO-K1 cells through Gia2 and Gia3. J Biol Chem 1997;272:7770–7776.

    Article  PubMed  CAS  Google Scholar 

  41. Clarke WP, Yocca FD, Maayani S. Lack of 5-hydroxytryptamine1P-mediated inhibition of adenylyl cyclase in dorsal raphe of male and female rats. J Pharmacol ExpTher 1996;277:1259–1266.

    CAS  Google Scholar 

  42. Hirst WD, Cheung NY, Rattray M, Price GW, Wilkin GP. Cultured astrocytes express messenger RNA for multiple serotonin receptor subtypes, without functional coupling of 5-HT1 receptor subtypes to adenylyl cyclase. Brain Res Mol Brain Res 1998;61:90–99.

    Article  PubMed  CAS  Google Scholar 

  43. Adayev T, Ray I, Sondhi R, Sobocki T, Banerjee P. The G protein-coupled 5-HT1P receptor causes suppression of caspase-3 through MAPK and protein kinase Cα. Biochim Biophys Acta 2003;1640:85–96.

    Article  PubMed  CAS  Google Scholar 

  44. Cowen DS, Sowers RS, Manning DR. Activation of a mitogen-activated protein kinase (ERK2) by the 5-hydroxytryptamine1A receptor is sensitive not only to inhibitors of phosphatidylinositol 3-kinase, but to an inhibitor of phosphatidyl-choline hydrolysis. J Biol Chem 1996;271:22,297–22,300.

    Article  PubMed  CAS  Google Scholar 

  45. Garnovskaya MN, van Biesen T, Hawe B, Casanas Ramos S, Lefkowitz RJ, Raymond JR. Ras-dependent activation of fibroblast mitogen-activated protein kinase by 5-HT1P receptor via a G protein βγ-subunit-initiated pathway. Biochemistry 1996;35:13,716–13,722.

    Article  PubMed  CAS  Google Scholar 

  46. Garnovskaya MN, Mukhin Y, Raymond JR. Rapid activation of sodium-proton exchange and extracellular signal-regulated protein kinase in fibroblasts by G protein-coupled 5-HT1P receptor involves distinct signalling cascades. BiochemJ 1998;330(Pt 1):489–495.

    CAS  Google Scholar 

  47. Della Rocca GJ, Mukhin YV, Garnovskaya MN, et al. Serotonin 5-HT1P receptor-mediated Erk activation requires calcium/calmodulin-dependent receptor endo-cytosis. J Biol Chem 1999;274:4749–4753.

    Article  PubMed  CAS  Google Scholar 

  48. Mendez J, Kadia TM, Somayazula RK, El-Badawi KI, Cowen DS. Differential coupling of serotonin 5-HT1P and 5-HT 1P receptors to activation of ERK2 and inhibition of adenylyl cyclase in transfected CHO cells. J Neurochem 1999;73:162–168.

    Article  PubMed  CAS  Google Scholar 

  49. Mukhin YV, Garnovskaya MN, Collinsworth G, et al. 5-Hydroxytryptamine1P receptor/Giβγ stimulates mitogen-activated protein kinase via NAD(P)H oxidase and reactive oxygen species upstream of src in chinese hamster ovary fibroblasts. Biochem J 2000;347(Pt 1):61–67.

    Article  PubMed  CAS  Google Scholar 

  50. Cowen DS, Molinoff PB, Manning DR. 5-Hydroxytryptamine1P receptor-mediated increases in receptor expression and activation of nuclear factor-kappaB in transfected Chinese hamster ovary cells. Mol Pharmacol 1997;52:221–226.

    PubMed  CAS  Google Scholar 

  51. Adayev T, El-Sherif Y, Barua M, Penington NJ, Banerjee P. Agonist stimulation of the serotonin1P receptor causes suppression of anoxia-induced apoptosis via mitogen-activated protein kinase in neuronal HN2-5 cells. J Neurochem 1999;72:1489–1496.

    Article  PubMed  CAS  Google Scholar 

  52. Ishizuka J, Beauchamp RD, Townsend CM Jr, Greeley GH Jr, Thompson JC. Receptor-mediated autocrine growth-stimulatory effect of 5-hydroxytryptamine on cultured human pancreatic carcinoid cells. J Cell Physiol 1992;150:1–7.

    Article  PubMed  CAS  Google Scholar 

  53. Cattaneo MG, Palazzi E, Bondiolotti G, Vicentini LM. 5-HT1D receptor type is involved in stimulation of cell proliferation by serotonin in human small cell lung carcinoma. Eur J Pharmacol 1994;268:425–430.

    Article  PubMed  CAS  Google Scholar 

  54. Abdel-Baset H, Bozovic V, Szyf M, Albert PR. Conditional transformation mediated via a pertussis toxin-sensitive receptor signalling pathway. Mol Endocrinol 1992;6:730–740.

    Article  PubMed  CAS  Google Scholar 

  55. Ferriere F, Khan NA, Troutaud D, Deschaux P. Serotonin modulation of lymphocyte proliferation via 5-HT1a receptors in rainbow trout (Oncorhynchus mykiss). Dev Comp Immunol 1996;20:273–283.

    Article  PubMed  CAS  Google Scholar 

  56. Andrade R, Nicoll RA. Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J Physiol 1987;394:99–124.

    PubMed  CAS  Google Scholar 

  57. Colino A, Halliwell JV. Differential modulation of three separate K-conductances in hippocampal CA1 neurons by serotonin. Nature 1987;328:73–77.

    Article  PubMed  CAS  Google Scholar 

  58. Zgombick JM, Beck SG, Mahle CD, Craddock-Royal B, Maayani S. Pertussis toxin-sensitive guanine nucleotide-binding protein(s) couple adenosine A1a and 5-hydroxytryptamine1a receptors to the same effector systems in rat hippocampus: biochemical and electrophysiological studies. Mol Pharmacol 1989;35:484–494.

    PubMed  CAS  Google Scholar 

  59. Penington NJ, Kelly JS, Fox AP. Whole-cell recordings of inwardly rectifying K+ currents activated by 5-HT1P receptors on dorsal raphe neurones of the adult rat. J Physiol 1993;469:387–405.

    PubMed  CAS  Google Scholar 

  60. Doupnik CA, Davidson N, Lester HA, Kofuji P. RGS proteins reconstitute the rapid gating kinetics of Gβγ-activated inwardly rectifying K+ channels. Proc Natl Acad Sci USA 1997;94:10,461–10,466.

    Article  PubMed  CAS  Google Scholar 

  61. Doupnik CA, Dessauer CW, Slepak VZ, Gilman AG, Davidson N, Lester HA. Time resolved kinetics of direct G-β1γ2 interactions with the carboxyl terminus of Kir3.4 inward rectifier K+ channel subunits. Neuropharmacology 1996;35:923–931.

    Article  PubMed  CAS  Google Scholar 

  62. Karschin A, Ho BY, Labarca C, et al. Heterologously expressed serotonin1a receptors couple to muscarinic K+ channels in heart. Proc Natl Acad Sci USA 1991;88:5694–5698.

    Article  PubMed  CAS  Google Scholar 

  63. Dascal N, Lim NF, Schreibmayer W, Wang W, Davidson N, Lester HA. Expression of an atrial G protein-activated potassium channel in Xenopus oocytes. Proc Natl Acad Sci USA 1993;90:6596–6600.

    Article  PubMed  CAS  Google Scholar 

  64. Dissmann E, Wischmeyer E, Spauschus A, Pfeil DV, Karschin C, Karschin A. Functional expression and cellular mRNA localization of a G protein-activated K+ inward rectifier isolated from rat brain. Biochem Biophys Res Commun 1996;223:474–479.

    Article  PubMed  CAS  Google Scholar 

  65. Shenker A, Maayani S, Weinstein H, Green JP. Pharmacological characterization of two 5-hydroxytryptamine receptors coupled to adenylate cyclase in guinea pig hippocampal membranes. Mol Pharmacol 1987;31:357–367.

    PubMed  CAS  Google Scholar 

  66. Fayolle C, Fillion MP, Barone P, Oudar P, Rousselle JC, Fillion G. 5-Hydroxy-tryptamine stimulates two distinct adenylate cyclase activities in rat brain: high-affinity activation is related to a 5-HT1 subtype different from 5-HT1P, 5-HT1P, and 5-HT1P. Fundam Clin Pharmacol 1988;2:195–214.

    PubMed  CAS  Google Scholar 

  67. Wischmeyer E, Karschin A. Receptor stimulation causes slow inhibition of IRK1 inwardly rectifying K+ channels by direct protein kinase A-mediated phosphory-lation. Proc Natl Acad Sci USA 1996;93:5819–5823.

    Article  PubMed  CAS  Google Scholar 

  68. Markstein R, Hoyer D, Engel G. 5-HT1P-receptors mediate stimulation of adeny-late cyclase in rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol 1986;333:335–341.

    Article  PubMed  CAS  Google Scholar 

  69. Cadogan AK, Kendall DA, Marsden CA. Serotonin 5-HT1P receptor activation increases cyclic AMP formation in the rat hippocampus in vivo. J Neurochem 1994;62:1816–1821.

    PubMed  CAS  Google Scholar 

  70. Malmberg A, Strange PG. Site-directed mutations in the third intracellular loop of the serotonin 5-HT1P receptor alter G protein coupling from Gi to Gs in a ligand-dependent manner. J Neurochem 2000;75:1283–1293.

    Google Scholar 

  71. Uezono Y, Bradley J, Min C, et al. Receptors that couple to 2 classes of G proteins increase cAMP and activate CFTR expressed in Xenopus oocytes. Receptors Channels 1993;1:233–241.

    PubMed  CAS  Google Scholar 

  72. Liu YF, Ghahremani MH, Rasenick MM, Jakobs KH, Albert PR. Stimulation of cAMP synthesis by Gi-coupled receptors upon ablation of distinct Gai protein expression. Gi subtype specificity of the 5-HT1P receptor. J Biol Chem 1999;274:16,444–16,650.

    Article  PubMed  CAS  Google Scholar 

  73. Maura G, Raiteri M. Serotonin 5-HT1D and 5-HT1P receptors respectively mediate inhibition of glutamate release and inhibition of cyclic GMP production in rat cerebellum in vitro. J Neurochem 1996;66:203–209.

    PubMed  CAS  Google Scholar 

  74. Raymond JR, Albers FJ, Middleton JP, et al. 5-HT1P and histamine H1 receptors in HeLa cells stimulate phosphoinositide hydrolysis and phosphate uptake via distinct G protein pools. J Biol Chem 1991;266:372–379.

    PubMed  CAS  Google Scholar 

  75. Middleton JP, Raymond JR, Whorton AR, Dennis VW. Short-term regulation of Na+/K+ adenosine triphosphatase by recombinant human serotonin 5-HT1P receptor expressed in HeLa cells. J Clin Invest 1990;86:1799–1805.

    Article  PubMed  CAS  Google Scholar 

  76. Harrington MA, Shaw K, Zhong P, Ciaranello RD. Agonist-induced desensitiza-tion and loss of high-affinity binding sites of stably expressed human 5-HT1P receptors. J Pharmacol Exp Ther 1994;268:1098–1106.

    PubMed  CAS  Google Scholar 

  77. Ni YG, Panicker MM, Miledi R. Efficient coupling of 5-HT1a receptors to the phospholipase C pathway in Xenopus oocytes. Brain Res Mol Brain Res 1997;51:115–122.

    Article  PubMed  CAS  Google Scholar 

  78. Aune TM, McGrath KM, Sarr T, Bombara MP, Kelley KA. Expression of 5HTla receptors on activated human T cells. Regulation of cyclic AMP levels and T cell proliferation by 5-hydroxytryptamine. J Immunol 1993;151:1175–1183.

    PubMed  CAS  Google Scholar 

  79. Newman-Tancredi A, Wootton R, Strange PG. High-level stable expression ofrecombinant 5-HT1A 5-hydroxytryptamine receptors in Chinese hamster ovary cells. Biochem J 1992;285(Pt 3):933–938.

    PubMed  CAS  Google Scholar 

  80. Claustre Y, Rouquier L, Serrano A, Benavides J, Scatton B. Effect of the putative 5-HT1A receptor antagonist NAN-190 on rat brain serotonergic transmission. Eur J Pharmacol 1991;204:71–77.

    Article  PubMed  CAS  Google Scholar 

  81. Raymond JR, Albers FJ, Middleton JP. Functional expression of human 5-HT1A receptors and differential coupling to second messengers in CHO cells. Naunyn Schmiedebergs Arch Pharmacol 1992;346:127–137.

    Article  PubMed  CAS  Google Scholar 

  82. Strosznajder J, Chalimoniuk M, Samochocki M. Activation of serotonergic 5-HT1A receptor reduces Ca2+-and glutamatergic receptor-evoked arachidonic acid and NO/cGMP release in adult hippocampus. Neurochem Int 1996;28:439–444.

    Article  PubMed  CAS  Google Scholar 

  83. Verbeuren TJ. Vasodilator effect of tertatolol in isolated perfused rat kidneys: involvement of endothelial 5-HT1A receptors. Cardiology 1993;83(Suppl 1):5–9.

    PubMed  CAS  Google Scholar 

  84. Verbeuren TJ, Mennecier P, Laubie M. 5-Hydroxytryptamine-induced vasodilata-tion in the isolated perfused rat kidney: are endothelial 5-HT1A receptors involved? Eur J Pharmacol 1991;201:17–27.

    Article  PubMed  CAS  Google Scholar 

  85. Yamada J, Sugimoto Y, Yoshikawa T, Horisaka K. Effects of a nitric oxide syn-thase inhibitor on 5-HT1A receptor agonist 8-OH-DPAT-induced hyperphagia in rats. Eur J Pharmacol 1996;316:23–26.

    Article  PubMed  CAS  Google Scholar 

  86. Sugimoto Y, Yamada J, Yoshikawa T. A neuronal nitric oxide synthase inhibitor 7-nitroindazole reduces the 5-HT1A receptor against 8-OH-DPAT-elicited hyperphagia in rats. Eur J Pharmacol 1999;376:1–5.

    Article  PubMed  CAS  Google Scholar 

  87. Sugimoto Y, Yoshikawa T, Yamada J. Involvement of nitric oxide in the 5-HT1A autoreceptor-mediated hyperphagia in rats. Adv Exp Med Biol 1999;467:109–111.

    PubMed  CAS  Google Scholar 

  88. Maura G, Marcoli M, Pepicelli O, Rosu C, Viola C, Raiteri M. Serotonin inhibition of the NMDA receptor/nitric oxide/cyclic GMP pathway in human neocortex slices: involvement of 5-HT2C and 5-HT1A receptors. Br J Pharmacol 2000;130:1853–1858.

    Google Scholar 

  89. Penington NJ, Kelly JS. Serotonin receptor activation reduces calcium current in an acutely dissociated adult central neuron. Neuron 1990;4:751–758.

    Article  PubMed  CAS  Google Scholar 

  90. Penington NJ, Kelly JS, Fox AP. A study of the mechanism of Ca2+ current inhibition produced by serotonin in rat dorsal raphe neurons. J Neurosci 1991;11:3594–3609.

    PubMed  CAS  Google Scholar 

  91. Bayliss DA, Umemiya M, Berger AJ. Inhibition of N-and P-type calcium currents and the after-hyperpolarization in rat motoneurones by serotonin. J Physiol 1995;485(Pt 3):635–647.

    PubMed  CAS  Google Scholar 

  92. Sun QQ, Dale N. Differential inhibition of N and P/Q Ca2+ currents by 5-HT1A and 5-HT1D receptors in spinal neurons of Xenopus larvae. J Physiol 1998;510(Pt 1):103–120.

    Article  PubMed  CAS  Google Scholar 

  93. Chen Y, Penington NJ. QEHA27, a peptide that binds to G protein beta gamma-subunits, reduces the inhibitory effect of 5-HT on the Ca2+ current of rat dorsal raphe neurons. Neurosci Lett 1997;224:87–90.

    Article  PubMed  CAS  Google Scholar 

  94. Mangel AW, Raymond JR, Fitz JG. Regulation of high-conductance anion channels by G proteins and 5-HT1A receptors in CHO cells. Am J Physiol 1993;264:F490–F495.

    PubMed  CAS  Google Scholar 

  95. Sharp T, Bramwell SR, Grahame-Smith DG. 5-HT 1 agonists reduce 5-hydroxytryptamine release in rat hippocampus in vivo as determined by brain microdialysis. Br J Pharmacol 1993;96:283–290.

    Google Scholar 

  96. Pineyro G, de Montigny C, Blier P. 5-HT1D receptors regulate 5-HT release in the rat raphe nuclei. In vivo voltammetry and in vitro superfusion studies. Neuropsy-chopharmacology 1995;13:249–260.

    CAS  Google Scholar 

  97. Done CJ, Sharp T. Biochemical evidence for the regulation of central noradren-ergic activity by 5-HT1A and 5-HT2 receptors: microdialysis studies in the awake and anaesthetized rat. Neuropharmacology 1994;33:411–421.

    Article  PubMed  CAS  Google Scholar 

  98. Chen NH, Reith ME. Monoamine interactions measured by microdialysis in the ventral tegmental area of rats treated systemically with (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin. J Neurochem 1995;64:1585–1597.

    PubMed  CAS  Google Scholar 

  99. Bianchi C, Siniscalchi A, Beani L. 5-HT1A agonists increase and 5-HT3 agonists decrease acetylcholine efflux from the cerebral cortex of freely-moving guinea-pigs. Br J Pharmacol 1990;101:448–452.

    PubMed  CAS  Google Scholar 

  100. Turner JH, Gelasco AK, Raymond JR. Calmodulin interacts with the third intra-cellular loop of the serotonin 5-hydroxytryptamine1A receptor at two distinct sites: putative role in receptor phosphorylation by protein kinase C. J Biol Chem 2004;279:17,027–17,037.

    Google Scholar 

  101. Nelson DL, Pedigo NW, Yamamura HI. Multiple 3H-5-hydroxytryptamine binding sites in rat brain. J Physiol (Paris) 1981;77:369–372.

    CAS  Google Scholar 

  102. Middlemiss DN, Hutson PH. The 5-HT1B receptors. Ann NY Acad Sci 1990;600:132–147;discussion 347-348.

    Article  PubMed  CAS  Google Scholar 

  103. Buhlen M, Fink K, Boing C, Gothert M. Evidence for presynaptic location of inhibitory 5-HT1D beta-like autoreceptors in the guinea-pig brain cortex. Naunyn Schmiedebergs Arch Pharmacol 1996;353:281–289.

    Article  PubMed  CAS  Google Scholar 

  104. Bonaventure P, Voorn P, Luyten WH, Jurzak M, Schotte A, Leysen JE. Detailed mapping of serotonin 5-HT1B and 5-HT1D receptor messenger RNA and ligand binding sites in guinea-pig brain and trigeminal ganglion: clues for function. Neu-roscience 1998;82:469–484.

    CAS  Google Scholar 

  105. Ullmer C, Schmuck K, Kalkman HO, Lubbert H. Expression of serotonin receptor mRNAs in blood vessels. FEBS Lett 1995;370:215–221.

    Article  PubMed  CAS  Google Scholar 

  106. Akin D, Gurdal H. Involvement of 5-HT1B and 5-HT1D receptors in sumatriptan mediated vasocontractile response in rabbit common carotid artery. Br J Pharmacol 2002;136:177–182.

    Article  PubMed  CAS  Google Scholar 

  107. De Vries P, Sanchez-Lopez A, Centurion D, Heiligers JP, Saxena PR, Villalon CM. The canine external carotid vasoconstrictor 5-HT1 receptor: blockade by 5-HT1B (SB224289), but not by 5-HT1D (BRL15572) receptor antagonists. Eur J Pharmacol 1998;362:69–72.

    Article  PubMed  Google Scholar 

  108. De Vries P, Willems EW, Heiligers JP, Villalon CM, Saxena PR. Investigation of the role of 5-HT1B and 5-HT1D receptors in the sumatriptan-induced constriction of porcine carotid arteriovenous anastomoses. Br J Pharmacol 1999;127:405–412.

    Article  PubMed  Google Scholar 

  109. Longmore J, Shaw D, Smith D, et al. Differential distribution of 5HT1D-and 5HT1B-immunoreactivity within the human trigemino-cerebrovascular system: implications for the discovery of new antimigraine drugs. Cephalalgia 1997;17:833–842.

    Article  PubMed  CAS  Google Scholar 

  110. Schoeffter P, Ullmer C, Gutierrez M, Weitz-Schmidt G, Lubbert H. Functional serotonin 5-HT1D receptors and 5-HT1D beta receptor mRNA expression in human umbilical vein endothelial cells. Naunyn Schmiedebergs Arch Pharmacol 1995;352:580–582.

    Article  PubMed  CAS  Google Scholar 

  111. Hinton JM, Adams D, Garland CJ. 5-Hydroxytryptamine stimulation of phospho-lipase D activity in the rabbit isolated mesenteric artery. Br J Pharmacol 1999;126:1601–1608.

    Article  PubMed  CAS  Google Scholar 

  112. Ebersole BJ, Diglio CA, Kaufman DW, Berg KA. 5-Hydroxytryptamine1-like receptors linked to increases in intracellular calcium concentration and inhibition of cyclic AMP accumulation in cultured vascular smooth muscle cells derived from bovine basilar artery. J Pharmacol Exp Ther 1993;266:692–699.

    PubMed  CAS  Google Scholar 

  113. Hoyer D, Middlemiss DN. Species differences in the pharmacology of terminal 5-HT autoreceptors in mammalian brain. Trends Pharmacol Sci 1989;10:130–132.

    Article  PubMed  CAS  Google Scholar 

  114. Hamblin MW, Metcalf MA. Primary structure and functional characterization of a human 5-HT1D-type serotonin receptor. Mol Pharmacol 1991;40:143–148.

    PubMed  CAS  Google Scholar 

  115. Hartig PR, Branchek TA, Weinshank RL. A subfamily of 5-HT1D receptor genes. Trends Pharmacol Sci 1992;13:152–159.

    Article  PubMed  CAS  Google Scholar 

  116. Weinshank RL, Zgombick JM, Macchi MJ, Branchek TA, Hartig PR. Human serotonin 1D receptor is encoded by a subfamily of two distinct genes: 5-HT1Dα and 5-HT1Dβ. Proc Natl Acad Sci USA 1992;89:3630–3634.

    Article  PubMed  CAS  Google Scholar 

  117. Voigt MM, Laurie DJ, Seeburg PH, Bach A. Molecular cloning and characterization of a rat brain cDNA encoding a 5-hydroxytryptamine1B receptor. EMBO J 1991;10:4017–4023.

    PubMed  CAS  Google Scholar 

  118. Adham N, Romanienko P, Hartig P, Weinshank RL, Branchek T. The rat 5-hydroxytryptamine1B receptor is the species homologue of the human 5-hydroxytryptamine1D beta receptor. Mol Pharmacol 1992;41:1–7.

    PubMed  CAS  Google Scholar 

  119. Jin H, Oksenberg D, Ashkenazi A, et al. Characterization of the human 5-hydroxytryptamine1B receptor. J Biol Chem 1992;267:5735–5738.

    PubMed  CAS  Google Scholar 

  120. Maroteaux L, Saudou F, Amlaiky N, Boschert U, Plassat JL, Hen R. Mouse 5HT1B serotonin receptor: cloning, functional expression, and localization in motor control centers. Proc Natl Acad Sci USA 1992;89:3020–3024.

    Article  PubMed  CAS  Google Scholar 

  121. Hamblin MW, Metcalf MA, McGuffin RW, Karpells S. Molecular cloning and functional characterization of a human 5-HT1B serotonin receptor: a homologue of the rat 5-HT1B receptor with 5-HT1D-like pharmacological specificity. Biochem Biophys Res Commun 1992;184:752–759.

    Article  PubMed  CAS  Google Scholar 

  122. Metcalf MA, McGuffin RW, Hamblin MW. Conversion of the human 5-HT1Dβ serotonin receptor to the rat 5-HT1B ligand-binding phenotype by Thr355Asn site directed mutagenesis. Biochem Pharmacol 1992;44:1917–1920.

    Article  PubMed  CAS  Google Scholar 

  123. Oksenberg D, Marsters SA, O’Dowd BF, et al. A single amino-acid difference confers major pharmacological variation between human and rodent 5-HT1B receptors. Nature 1992;360:161–163.

    Article  PubMed  CAS  Google Scholar 

  124. Parker EM, Grisel DA, Iben LG, Shapiro RA. A single amino acid difference accounts for the pharmacological distinctions between the rat and human 5-hydroxytryptamine1B receptors. J Neurochem 1993;60:380–383.

    Article  PubMed  CAS  Google Scholar 

  125. Harwood G, Lockyer M, Giles H, Fairweather N. Cloning and characterisation of the rabbit 5-HT1Dα and 5-HT1Dβ receptors. FEBS Lett 1995;377:73–76.

    Article  PubMed  CAS  Google Scholar 

  126. Hartig PR, Hoyer D, Humphrey PP, Martin GR. Alignment of receptor nomenclature with the human genome: classification of 5-HT1B and 5-HT1D receptor subtypes. Trends Pharmacol Sci 1996;17:103–135.

    Article  PubMed  CAS  Google Scholar 

  127. Boess FG, Martin IL. Molecular biology of 5-HT receptors. Neuropharmacology 1994;33:275–317.

    Article  PubMed  CAS  Google Scholar 

  128. Bouhelal R, Smounya L, Bockaert J. 5-HT1B receptors are negatively coupled with adenylate cyclase in rat substantia nigra. Eur J Pharmacol 1988;151:189–196.

    Article  PubMed  CAS  Google Scholar 

  129. Ciaranello RD, Tan GL, Dean R. G Protein-linked serotonin receptors in mouse kidney exhibit identical properties to 5-HT1b receptors in brain. J Pharmacol Exp Ther 1990;252:1347–1354.

    PubMed  CAS  Google Scholar 

  130. Zgombick JM, Branchek TA. Native 5-HT1B receptors expressed in OK cells display dual coupling to elevation of intracellular calcium concentrations and inhibition of adenylate cyclase. Naunyn Schmiedebergs Arch Pharmacol 1998;358:503–508.

    Article  PubMed  CAS  Google Scholar 

  131. Giles H, Lansdell SJ, Bolofo ML, Wilson HL, Martin GR. Characterization of a 5-HT1B receptor on CHO cells: functional responses in the absence of radio-ligand binding. Br J Pharmacol 1996;117:1119–1126.

    PubMed  CAS  Google Scholar 

  132. Ng GY, George SR, Zastawny RL, et al. Human serotonin1B receptor expression in Sf9 cells: phosphorylation, palmitoylation, and adenylyl cyclase inhibition. Biochemistry 1993;32:11,727–11,733.

    Article  PubMed  CAS  Google Scholar 

  133. Levy FO, Gudermann T, Perez-Reyes E, Birnbaumer M, Kaumann AJ, Birnbaumer L. Molecular cloning of a human serotonin receptor (S12) with a pharmacological profile resembling that of the 5-HT1D subtype. J Biol Chem 1992;267:7553-7362.

    Google Scholar 

  134. Zgombick JM, Schechter LE, Adham N, Kucharewicz SA, Weinshank RL, Branchek TA. Pharmacological characterizations of recombinant human 5-HT1Dα and 5-HT1DΒ receptor subtypes coupled to adenylate cyclase inhibition in clonal cell lines: apparent differences in drug intrinsic efficacies between human 5-HT1D subtypes. Naunyn Schmiedebergs Arch Pharmacol 1996;354:226–236.

    Article  PubMed  CAS  Google Scholar 

  135. Seuwen K, Magnaldo I, Pouyssegur J. Serotonin stimulates DNA synthesis in fibroblasts acting through 5-HT1B receptors coupled to a Gi protein. Nature 1988;335:254–256.

    Article  PubMed  CAS  Google Scholar 

  136. Pauwels PJ, Wurch T, Amoureux MC, Palmier C, Colpaert FC. Stimulation of cloned human serotonin 5-HT receptor sites in stably transfected C6 glial cells promotes cell growth. J Neurochem 1996;66:65–73.

    PubMed  CAS  Google Scholar 

  137. McDuffie JE, Coaxum SD, Maleque MA. 5-Hydroxytryptamine evokes endothe-lial nitric oxide synthase activation in bovine aortic endothelial cell cultures. Proc Soc Exp Biol Med 1999;221:386–390.

    Article  PubMed  CAS  Google Scholar 

  138. Leone AM, Errico M, Lin SL, Cowen DS. Activation of extracellular signal-regulated kinase (ERK) and Akt by human serotonin 5-HT1B receptors in transfected BE(2)-C neuroblastoma cells is inhibited by RGS4. J Neurochem 2000;75:934–938.

    Article  PubMed  CAS  Google Scholar 

  139. Pullarkat SR, Mysels DJ, Tan M, Cowen DS. Coupling of serotonin 5-HT1B receptors to activation of mitogen-activated protein kinase (ERK-2) and p70 S6 kinase signaling systems. J Neurochem 1998;71:1059–1067.

    PubMed  CAS  Google Scholar 

  140. Dickenson JM, Hill SJ. Human 5-HT1B receptor stimulated inositol phospholipid hydrolysis in CHO cells: synergy with Gq-coupled receptors. Eur J Pharmacol 1998;348:279–285.

    Article  PubMed  CAS  Google Scholar 

  141. Auch-Schwelk W, Paetsch I, Krackhardt F, Grafe M, Hetzer R, Fleck E. Modulation of contractions to ergonovine and methylergonovine by nitric oxide and thromboxane A2 in the human coronary artery. J Cardiovasc Pharmacol 2000;36:631–639.

    Article  PubMed  CAS  Google Scholar 

  142. Ishida T, Kawashima S, Hirata K, Yokoyama M. Nitric oxide is produced via 5-HT1B and 5-HT2B receptor activation in human coronary artery endothelial cells. Kobe J Med Sci 1998;44:51–63.

    PubMed  CAS  Google Scholar 

  143. Hjorth S, Tao R. The putative 5-HT1B receptor agonist CP-93,129 suppresses rat hippocampal 5-HT release in vivo: comparison with RU 24969. Eur J Pharmacol 1991;209:249–252.

    Article  PubMed  CAS  Google Scholar 

  144. Lawrence AJ, Marsden CA. Terminal autoreceptor control of 5-hydroxytryptamine release as measured by in vivo microdialysis in the conscious guinea-pig. J Neu-rochem 1992;58:142–146.

    CAS  Google Scholar 

  145. Martin KF, Hannon S, Phillips I, Heal DJ. Opposing roles for 5-HT1B and 5-HT3 receptors in the control of 5-HT release in rat hippocampus in vivo. Br J Pharmacol 1992;106:139–142.

    PubMed  CAS  Google Scholar 

  146. Davidson C, Stamford JA. Serotonin efflux in the rat ventral lateral geniculate nucleus assessed by fast cyclic voltammetry is modulated by 5-HT1B and 5-HT1D autoreceptors. Neuropharmacology 1996;35:1627–1634.

    Article  PubMed  CAS  Google Scholar 

  147. Le Grand B, Panissie A, Pauwels PJ, John GW. Activation of recombinant h5-HT1B and h5-HT1D receptors stably expressed in C6 glioma cells produces increases in Ca2+-dependent K+ current. Naunyn Schmiedebergs Arch Pharmacol 1998;358:608–615.

    Article  PubMed  CAS  Google Scholar 

  148. Xie Z, Lee SP, O’Dowd BF, George SR. Serotonin 5-HT1B and 5-HT1D receptors form homodimers when expressed alone and heterodimers when co-expressed. FEBS Lett 1999;456:63–67.

    Article  PubMed  CAS  Google Scholar 

  149. Bruinvels AT, Landwehrmeyer B, Gustafson EL, et al. Localization of 5-HT1B, 5-HT, 5-HT1E and 5-HT1F receptor messenger RNA in rodent and primate brain. Neuropharmacology 1994;33:367–386.

    Article  PubMed  CAS  Google Scholar 

  150. Bruinvels AT, Landwehrmeyer B, Probst A, Palacios JM, Hoyer D. A comparative autoradiographic study of 5-HT1D binding sites in human and guinea-pig brain using different radioligands. Brain Res Mol Brain Res 1994;21:19–29.

    Article  PubMed  CAS  Google Scholar 

  151. Bruinvels AT, Palacios JM, Hoyer D. Autoradiographic characterisation and localisation of 5-HT1D compared to 5-HT1B binding sites in rat brain. Naunyn Schmiedebergs Arch Pharmacol 1993;347:569–582.

    Article  PubMed  CAS  Google Scholar 

  152. Borman RA, Burleigh DE. 5-HT1D and 5-HT2B receptors mediate contraction of smooth muscle in human small intestine. Ann NY Acad Sci 1997;812:222–223.

    Article  PubMed  CAS  Google Scholar 

  153. Hoyer D, Schoeffter P. 5-HT1D receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in calf substantia nigra. Eur J Pharmacol 1988;147:145–147.

    Article  PubMed  CAS  Google Scholar 

  154. Schoeffter P, Bobirnac I. 5-Hydroxytryptamine 5-HT1D receptors mediating inhibition of cyclic AMP accumulation in Madin-Darby canine kidney (MDCK) cells. Naunyn Schmiedebergs Arch Pharmacol 1995;352:256–262.

    Article  PubMed  CAS  Google Scholar 

  155. Lesage AS, Wouters R, Van Gompel P, et al. Agonistic properties of alniditan, sumatriptan and dihydroergotamine on human 5-HT1B and 5-HT1D receptors expressed in various mammalian cell lines. Br J Pharmacol 1998;123:1655–1665.

    Article  PubMed  CAS  Google Scholar 

  156. Beer MS, Stanton JA, Bevan Y, et al. L-694,247: a potent 5-HT1D receptor agonist. Br J Pharmacol 1993;110:1196–1200.

    PubMed  CAS  Google Scholar 

  157. Van Sande J, Allgeier A, Massart C, et al. The human and dog 5-HT1D receptors can both activate and inhibit adenylate cyclase in transfected cells. Eur J Pharmacol 1993;247:177–184.

    Article  PubMed  Google Scholar 

  158. Watson JM, Burton MJ, Price GW, Jones BJ, Middlemiss DN. GR127935 acts as a partial agonist at recombinant human 5-HT1Dα and 5-HT1Dβ receptors. Eur J Pharmacol 1996;314:365–372.

    Article  PubMed  CAS  Google Scholar 

  159. Wurch T, Palmier C, Colpaert FC, Pauwels PJ. Sequence and functional analysis of cloned guinea pig and rat serotonin 5-HT1D receptors: common pharmacological features within the 5-HT1D receptor subfamily. J Neurochem 1997;68:410–418.

    PubMed  CAS  Google Scholar 

  160. Pauwels PJ, Wurch T, Palmier C, Colpaert FC. Promotion of cell growth by stimulation of cloned human 5-HT1D receptor sites in transfected C6-glial cells is highly sensitive to intrinsic activity at 5-HT1D receptors. Naunyn Schmiedebergs Arch Pharmacol 1996;354:136–144.

    Article  PubMed  CAS  Google Scholar 

  161. Cattaneo MG, Fesce R, Vicentini LM. Mitogenic effect of serotonin in human small cell lung carcinoma cells via both 5-HT1A and 5-HT1D receptors. Eur J Pharmacol 1995;291:209–211.

    Article  PubMed  CAS  Google Scholar 

  162. Maura G, Marcoli M, Tortarolo M, Andrioli GC, Raiteri M. Glutamate release in human cerebral cortex and its modulation by 5-hydroxytryptamine acting at h5-HT1D receptors. Br J Pharmacol 1998;123:45–50.

    Article  PubMed  CAS  Google Scholar 

  163. Molderings GJ, Frolich D, Likungu J, Gothert M. Inhibition of noradrenaline release via presynaptic 5-HT1Dα receptors in human atrium. Naunyn Schmiedebergs Arch Pharmacol 1996;353:272–280.

    Article  PubMed  CAS  Google Scholar 

  164. Leonhardt S, Herrick-Davis K, Titeler M. Detection of a novel serotonin receptor subtype (5-HT1E) in human brain: interaction with a GTP-binding protein. J Neurochem 1989;53:465–471.

    Article  PubMed  CAS  Google Scholar 

  165. McAllister G, Charlesworth A, Snodin C, et al. Molecular cloning of a serotonin receptor from human brain (5HT1E): a fifth 5HT1-like subtype. Proc Natl Acad Sci USA 1992;89:5517–5521.

    Article  PubMed  CAS  Google Scholar 

  166. Zgombick JM, Schechter LE, Macchi M, Hartig PR, Branchek TA, Weinshank RL. Human gene S31 encodes the pharmacologically defined serotonin 5-hydroxy-tryptamine1E receptor. Mol Pharmacol 1992;42:180–185.

    PubMed  CAS  Google Scholar 

  167. Lovenberg TW, Erlander MG, Baron BM, et al. Molecular cloning and functional expression of 5-HT1E-like rat and human 5-hydroxytryptamine receptor genes. Proc Natl Acad Sci USA 1993;90:2184–2188.

    Article  PubMed  CAS  Google Scholar 

  168. Bai F, Yin T, Johnstone EM, et al. Molecular cloning and pharmacological characterization of the guinea pig 5-HT1E receptor. Eur J Pharmacol 2004;484:127–139.

    Article  PubMed  CAS  Google Scholar 

  169. Adham N, Vaysse PJ, Weinshank RL, Branchek TA. The cloned human 5-HT1E receptor couples to inhibition and activation of adenylyl cyclase via two distinct pathways in transfected BS-C-1 cells. Neuropharmacology 1994;33:403–410.

    Article  PubMed  CAS  Google Scholar 

  170. Amlaiky N, Ramboz S, Boschert U, Plassat JL, Hen R. Isolation of a mouse “5HT1E-like” serotonin receptor expressed predominantly in hippocampus. J Biol Chem 1992;267:19,761–19,764.

    PubMed  CAS  Google Scholar 

  171. Saudou F, Hen R. 5-Hydroxytryptamine receptor subtypes in vertebrates and invertebrates. Neurochem Int 1994;25:503–532.

    Article  PubMed  CAS  Google Scholar 

  172. Guptan P, Dhingra A, Panicker MM. Multiple transcripts encode the 5-HT1F receptor in rodent brain. Neuroreport 1997;8:3317–3321.

    Article  PubMed  CAS  Google Scholar 

  173. Adham N, Kao HT, Schecter LE, et al. Cloning of another human serotonin receptor (5-HT1F): a fifth 5-HT1 receptor subtype coupled to the inhibition of adenylate cyclase. Proc Natl Acad Sci USA 1993;90:408–412.

    Article  PubMed  CAS  Google Scholar 

  174. Adham N, Borden LA, Schechter LE, et al. Cell-specific coupling of the cloned human 5-HT1F receptor to multiple signal transduction pathways. Naunyn Schmiedebergs Arch Pharmacol 1993;348:566–575.

    Article  PubMed  CAS  Google Scholar 

  175. Hoyer D, Clarke DE, Fozard JR, et al. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 1994;46:157–203.

    PubMed  CAS  Google Scholar 

  176. Gaddum JH, Picarelli ZP. Two kinds of tryptamine receptor. Br J Pharmacol 1957;12:323–328.

    CAS  Google Scholar 

  177. Foguet M, Hoyer D, Pardo LA, et al. Cloning and functional characterization of the rat stomach fundus serotonin receptor. EMBO J 1992;11:3481–3487.

    PubMed  CAS  Google Scholar 

  178. Peroutka SJ. 5-HT receptors: past, present and future. Trends Neurosci 1995;18:68–69.

    Article  PubMed  CAS  Google Scholar 

  179. Conn PJ, Sanders-Bush E. Selective 5HT-2 antagonists inhibit serotonin stimulated phosphatidylinositol metabolism in cerebral cortex. Neuropharmacology 1984;23:993–996.

    Article  PubMed  CAS  Google Scholar 

  180. Pritchett DB, Bach AW, Wozny M, et al. Structure and functional expression of cloned rat serotonin 5HT-2 receptor. EMBO J 1988;7:4135–4140.

    PubMed  CAS  Google Scholar 

  181. Berg KA, Maayani S, Goldfarb J, Clarke WP. Pleiotropic behavior of 5-HT2A and 5-HT2C receptor agonists. Ann NY Acad Sci 1998;861:104–110.

    Article  PubMed  CAS  Google Scholar 

  182. Grotewiel MS, Sanders-Bush E. Differences in agonist-independent activity of 5-HT2A and 5-HT2C receptors revealed by heterologous expression. Naunyn Schmiedebergs Arch Pharmacol 1999;359:21–27.

    Article  PubMed  CAS  Google Scholar 

  183. Leysen JE, Niemegeers CJ, Tollenaere JP, Laduron PM. Serotonergic component of neuroleptic receptors. Nature 1978;272:168–171.

    Article  PubMed  CAS  Google Scholar 

  184. Peroutka SJ, Snyder SH. Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Mol Pharmacol 1979;16:687–699.

    PubMed  CAS  Google Scholar 

  185. Julius D, Huang KN, Livelli TJ, Axel R, Jessell TM. The 5HT2 receptor defines a family of structurally distinct but functionally conserved serotonin receptors. Proc Natl Acad Sci USA 1990;87:928–932.

    Article  PubMed  CAS  Google Scholar 

  186. Pazos A, Cortes R, Palacios JM. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 1985;346:231–249.

    Article  PubMed  CAS  Google Scholar 

  187. Garnovskaya MN, Nebigil CG, Arthur JM, Spurney RF, Raymond JR. 5-Hydroxytryptamine2A receptors expressed in rat renal mesangial cells inhibit cyclic AMP accumulation. Mol Pharmacol 1995;48:230–237.

    PubMed  CAS  Google Scholar 

  188. Grewal JS, Mukhin YV, Garnovskaya MN, Raymond JR, Greene EL. Serotonin 5-HT2A receptor induces TGF-β1 expression in mesangial cells via ERK: proliferative and fibrotic signals. Am J Physiol 1999;276:F922–F930.

    PubMed  CAS  Google Scholar 

  189. Guillet-Deniau I, Burnol AF, Girard J. Identification and localization of a skeletal muscle secrotonin 5-HT2A receptor coupled to the Jak/STAT pathway. J Biol Chem 1997;272:14,825–14,829.

    Article  PubMed  CAS  Google Scholar 

  190. Hajduch E, Dombrowski L, Darakhshan F, Rencurel F, Marette A, Hundal HS. Biochemical localisation of the 5-HT2A (serotonin) receptor in rat skeletal muscle. Biochem Biophys Res Commun 1999;257:369–372.

    Article  PubMed  CAS  Google Scholar 

  191. Hajduch E, Rencurel F, Balendran A, Batty IH, Downes CP, Hundal HS. Serotonin (5-hydroxytryptamine), a novel regulator of glucose transport in rat skeletal muscle. J Biol Chem 1999;274:13,563–13,568.

    Article  PubMed  CAS  Google Scholar 

  192. Kuemmerle JF, Murthy KS, Grider JR, Martin DC, Makhlouf GM. Coexpression of 5-HT2A and 5-HT4 receptors coupled to distinct signaling pathways in human intestinal muscle cells. Gastroenterology 1995;109:1791–1800.

    Article  PubMed  CAS  Google Scholar 

  193. Ellwood AJ, Curtis MJ. Involvement of 5-HT1B/1D and 5-HT2A receptors in 5-HT-induced contraction of endothelium-denuded rabbit epicardial coronary arteries. Br J Pharmacol 1997;122:875–884.

    Article  PubMed  CAS  Google Scholar 

  194. Cook EHJr, Fletcher KE, Wainwright M, Marks N, Yan SY, Leventhal BL. Primary structure of the human platelet serotonin 5-HT2A receptor: identify with frontal cortex serotonin 5-HT2A receptor. J Neurochem 1994;63:465–469.

    PubMed  CAS  Google Scholar 

  195. Tamir H, Hsiung SC, Yu PY, et al. Serotonergic signalling between thyroid cells:protein kinase C and 5-HT2 receptors in the secretion and action of serotonin. Synapse 1992;12:155–168.

    Article  PubMed  CAS  Google Scholar 

  196. Briddon SJ, Leslie RA, Elliott JM. Comparative desensitization of the human 5-HT2A and 5-HT2C receptors expressed in the human neuroblastoma cell line SH-SY5Y. Br J Pharmacol 1998;125:727–734.

    Article  PubMed  CAS  Google Scholar 

  197. Watts SW. Activation of the mitogen-activated protein kinase pathway via the 5-HT2A receptor. Ann NY Acad Sci 1998;861:162–168.

    Article  PubMed  CAS  Google Scholar 

  198. Takuwa N, Ganz M, Takuwa Y, Sterzel RB, Rasmussen H. Studies of the mitogenic effect of serotonin in rat renal mesangial cells. Am J Physiol 1989;257:F431–F439.

    PubMed  CAS  Google Scholar 

  199. Turner JH, Raymond JR. Interaction of calmodulin with the serotonin 5-hydroxytryptamine2A receptor: a putative regulator of G protein coupling and receptor phosphorylation by protein kinase C. J Biol Chem 2005;280:30,741–30,750.

    Article  PubMed  CAS  Google Scholar 

  200. Chen H, Li H, Chuang DM. Role of second messengers in agonist up-regulation of 5-HT2A (5-HT2) receptor binding sites in cerebellar granule neurons: involvement of calcium influx and a calmodulin-dependent pathway. J Pharmacol Exp Ther 1995;275:674–680.

    PubMed  CAS  Google Scholar 

  201. Berg KA, Clarke WP, Chen Y, Ebersole BJ, McKay RD, Maayani S. 5-Hydroxytryptamine type 2A receptors regulate cyclic AMP accumulation in a neuronal cell line by protein kinase C-dependent and calcium/calmodulin-dependent mechanisms. Mol Pharmacol 1994;45:826–836.

    PubMed  CAS  Google Scholar 

  202. Stroebel M, Goppelt-Struebe M. Signal transduction pathways responsible for serotonin-mediated prostaglandin G/H synthase expression in rat mesangial cells. J Biol Chem 1994;269:22,952–22,957.

    PubMed  CAS  Google Scholar 

  203. Goppelt-Struebe M, Hahn A, Stroebel M, Reiser CO. Independent regulation of cyclo-oxygenase 2 expression by p42/44 mitogen-activated protein kinases and Ca2+/calmodulin-dependent kinase. Biochem J 1999;339(Pt 2):329–334.

    Article  PubMed  CAS  Google Scholar 

  204. Eberle-Wang K, Braun BT, Simansky KJ. Serotonin contracts the isolated rat pylorus via a 5-HT2-like receptor. Am J Physiol 1994;266:R284–R291.

    PubMed  CAS  Google Scholar 

  205. Jalonen TO, Margraf RR, Wielt DB, Charniga CJ, Linne ML, Kimelberg HK. Serotonin induces inward potassium and calcium currents in rat cortical astrocytes. Brain Res 1997;758:69–82.

    Article  PubMed  CAS  Google Scholar 

  206. Cox DA, Cohen ML. 5-HT2B receptor signaling in the rat stomach fundus: dependence on calcium influx, calcium release and protein kinase C. Behav Brain Res 1996;73:289–292.

    Article  PubMed  CAS  Google Scholar 

  207. Florian JA, Watts SW. Integration of mitogen-activated protein kinase kinase activation in vascular 5-hydroxytryptamine2A receptor signal transduction. J Pharmacol Exp Ther 1998;284:346–355.

    PubMed  CAS  Google Scholar 

  208. Okoro EO. Overlap in the pharmacology of L-type Ca2+-channel blockers and 5-HT2 receptor antagonists in rat aorta. J Pharm Pharmacol 1999;51:953–957.

    Article  PubMed  CAS  Google Scholar 

  209. Nakaki T, Roth BL, Chuang DM, Costa E. Phasic and tonic components in 5-HT2 receptor-mediated rat aorta contraction: participation of Ca++ channels and phospholipase C. J Pharmacol Exp Ther 1985;234:442–446.

    PubMed  CAS  Google Scholar 

  210. Hagberg GB, Blomstrand F, Nilsson M, Tamir H, Hansson E. Stimulation of 5-HT2A receptors on astrocytes in primary culture opens voltage-independent Ca2+ channels. Neurochem Int 1985;32:153–162.

    Article  Google Scholar 

  211. Bartrup JT, Newberry NR. 5-HT2A receptor-mediated outward current in C6 glioma cells is mimicked by intracellular IP3 release. Neuroreport 1994;5:1245–1248.

    PubMed  CAS  Google Scholar 

  212. Kurscheid-Reich D, Throckmorton DC, Rasmussen H. Serotonin activates phospholipase D in rat mesangial cells. Am J Physiol 1995;268:F997–F1003.

    PubMed  CAS  Google Scholar 

  213. Cox DA, Watts SW, Cohen ML. Neomycin selectively inhibits 5-hydroxytryptamine-induced contraction in the guinea pig trachea. J Pharmacol Exp Ther 1996;277:954–959.

    PubMed  CAS  Google Scholar 

  214. Mitchell R, McCulloch D, Lutz E, et al. Rhodopsin-family receptors associate with small G proteins to activate phospholipase D. Nature 1998;392:411–414.

    Article  PubMed  CAS  Google Scholar 

  215. Robertson DN, Johnson MS, Moggach LO, Holland PJ, Lutz EM, Mitchell R. Selective interaction of ARF1 with the carboxy-terminal tail domain of the5-HT2A receptor. Mol Pharmacol 2003; 64:1239–1250.

    Article  PubMed  CAS  Google Scholar 

  216. Garcia MC, Kim HY. Mobilization of arachidonate and docosahexaenoate by stimulation of the 5-HT2A receptor in rat C6 glioma cells. Brain Res 1997;768:43–48.

    Article  PubMed  CAS  Google Scholar 

  217. Tournois C, Mutel V, Manivet P, Launay JM, Kellermann O. Cross-talk between 5-hydroxytryptamine receptors in a serotonergic cell line. Involvement of arachidonic acid metabolism. J Biol Chem 1998;273:17,498–17,503.

    Article  PubMed  CAS  Google Scholar 

  218. Matsuda H, Li Y, Yoshikawa M. Possible involvement of 5-HT and 5-HT2 receptors in acceleration of gastrointestinal transit by escin Ib in mice. Life Sci 2000;66:2233–2238.

    Article  PubMed  CAS  Google Scholar 

  219. Nitsch RM, Deng M, Growdon JH, Wurtman RJ. Serotonin 5-HT2a and 5-HT2c receptors stimulate amyloid precursor protein ectodomain secretion. J Biol Chem 1996;271:4188–4194.

    Article  PubMed  CAS  Google Scholar 

  220. Lucaites VL, Nelson DL, Wainscott DB, Baez M. Receptor subtype and density determine the coupling repertoire of the 5-HT2 receptor subfamily. Life Sci 1996;59:1081–1095.

    Article  PubMed  CAS  Google Scholar 

  221. Garnovskaya MN, Mukhin YV, Vlasova TM, et al. Mitogen-induced rapid phosphorylation of serine 795 of the retinoblastoma gene product in vascular smooth muscle cells involves ERK activation. J Biol Chem 2004;279:24,899–24,905.

    Article  PubMed  CAS  Google Scholar 

  222. Mukhin YV, Garnovskaya MN, Ullian ME, Raymond JR. ERK is regulated by sodium-proton exchanger in rat aortic vascular smooth muscle cells. J Biol Chem 2004;279:1845–1852.

    Article  PubMed  CAS  Google Scholar 

  223. Greene EL, Houghton O, Collinsworth G, et al. 5-HT2A receptors stimulate mitogen-activated protein kinase via H2O2 generation in rat renal mesangial cells. Am J Physiol Renal Physiol 2000;278:F650–F658.

    PubMed  CAS  Google Scholar 

  224. Grewal JS, Luttrell LM, Raymond JR. G Protein-coupled receptors desensitize and down-regulate epidermal growth factor receptors in renal mesangial cells. J Biol Chem 2001;276:27,335–27,344.

    Article  PubMed  CAS  Google Scholar 

  225. Hahn A, Heusinger-Ribeiro J, Lanz T, Zenkel S, Goppelt-Struebe M. Induction of connective tissue growth factor by activation of heptahelical receptors. Modulation by Rho proteins and the actin cytoskeleton. J Biol Chem 2000;275:37,429–37,435.

    Article  PubMed  CAS  Google Scholar 

  226. Miller KJ, Gonzalez HA. Serotonin 5-HT2A receptor activation inhibits cytokine-stimulated inducible nitric oxide synthase in C6 glioma cells. Ann NY Acad Sci 1998;861:169–173.

    Article  PubMed  CAS  Google Scholar 

  227. Saxena R, Saksa BA, Fields AP, Ganz MB. Activation of Na/H exchanger in mesangial cells is associated with translocation of PKC isoforms. Am J Physiol 1993;265:F53–F60.

    PubMed  CAS  Google Scholar 

  228. Rhoden KJ, Dodson AM, Ky B. Stimulation of the Na(+)-K(+) pump in cultured guinea pig airway smooth muscle cells by serotonin. J Pharmacol Exp Ther 2000;293:107–112.

    PubMed  CAS  Google Scholar 

  229. Mayer SE, Sanders-Bush E. 5-Hydroxytryptamine type 2A and 2C receptors linked to Na+/K+/Cl cotransport. Mol Pharmacol 1994;45:991–996.

    PubMed  CAS  Google Scholar 

  230. Gobert A, Millan MJ. Serotonin (5-HT)2A receptor activation enhances dialysate levels of dopamine and noradrenaline, but not 5-HT, in the frontal cortex of freely-moving rats. Neuropharmacology 1999;38:315–317.

    Article  PubMed  CAS  Google Scholar 

  231. Bhatnagar A, Willins DL, Gray JA, Woods J, Benovic JL, Roth BL. The dynamin-dependent, arrestin-independent internalization of 5-hydroxytryptamine 2A (5-HT2A) serotonin receptors reveals differential sorting of arrestins and 5-HT2A receptors during endocytosis. J Biol Chem 2001;276:8269–8277.

    Article  PubMed  CAS  Google Scholar 

  232. Backstrom JR, Chang MS, Chu H, Niswender CM, Sanders-Bush E. Agonistdirected signaling of serotonin 5-HT2C receptors: differences between serotonin and lysergic acid diethylamide (LSD). Neuropsychopharmacology 1999;21:77S–81S.

    PubMed  CAS  Google Scholar 

  233. Elphick GF, Querbes W, Jordan JA, et al. The human polyomavirus JCV, uses serotonin receptors to infect cells. Science 2004;306:1380–1383.

    Article  PubMed  CAS  Google Scholar 

  234. Gelber EI, Kroeze WK, Willins DL, et al. Structure and function of the third intracellular loop of the 5-hydroxytryptamine2A receptor: the third intracellular loop is alpha-helical and binds purified arrestins. J Neurochem 1999;72:2206–2214.

    Article  PubMed  CAS  Google Scholar 

  235. Bhatnagar A, Sheffler DJ, Kroeze WK, Compton-Toth B, Roth BL. Caveolin-1 interacts with 5-HT2A serotonin receptors and profoundly modulates the signaling of selected Galphaq-coupled protein receptors. J Biol Chem 2004;279:34,614–34,623.

    Article  PubMed  CAS  Google Scholar 

  236. Xia Z, Hufeisen SJ, Gray JA, Roth BL. The PDZ-binding domain is essential for the dendritic targeting of 5-HT2A serotonin receptors in cortical pyramidal neurons in vitro. Neuroscience 2003;122:907–920.

    Article  PubMed  CAS  Google Scholar 

  237. Xia Z, Gray JA, Compton-Toth BA, Roth BL. A direct interaction of PSD-95 with 5-HT2A serotonin receptors regulates receptor trafficking and signal transduction. J Biol Chem 2003;278:21,901–21,908.

    Article  PubMed  CAS  Google Scholar 

  238. Becamel C, Figge A, Poliak S, et al. Interaction of serotonin 5-hydroxytryptamine type 2C receptors with PDZ10 of the multi-PDZ domain protein MUPP1. J Biol Chem 2001;276:12,974–12,982.

    Article  PubMed  CAS  Google Scholar 

  239. Becamel C, Gavarini S, Chanrion B, et al. The serotonin 5-HT2A and 5-HT2C receptors interact with specific sets of PDZ proteins. J Biol Chem 2004;279:20,257–20,266.

    Article  PubMed  CAS  Google Scholar 

  240. Backstrom JR, Price RD, Reasoner DT, Sanders-Bush E. Deletion of the serotonin 5-HT2C receptor PDZ recognition motif prevents receptor phosphorylation and delays resensitization of receptor responses. J Biol Chem 2000;275:23,620–23,626.

    Article  PubMed  CAS  Google Scholar 

  241. Parker LL, Backstrom JR, Sanders-Bush E, Shieh BH. Agonist-induced phosphorylation of the serotonin 5-HT2C receptor regulates its interaction with multiple PDZ protein 1. J Biol Chem 2003;278:21,576–21,583.

    Article  PubMed  CAS  Google Scholar 

  242. Vane JR. The relative activities of some tryptamine analogues on the isolated rat stomach strip preparation. Br J Pharmacol 1959;14:87–98.

    CAS  Google Scholar 

  243. Foguet M, Nguyen H, Le H, Lubbert H. Structure of the mouse 5-HT1C, 5-HT2 and stomach fundus serotonin receptor genes. Neuroreport 1992;3:345–348.

    Article  PubMed  CAS  Google Scholar 

  244. Kursar JD, Nelson DL, Wainscott DB, Baez M. Molecular cloning, functional expression, and mRNA tissue distribution of the human 5-hydroxytryptamine2B receptor. Mol Pharmacol 1994;46:227–234.

    PubMed  CAS  Google Scholar 

  245. Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology 1999;38:1083–1152.

    Article  PubMed  CAS  Google Scholar 

  246. Bonhaus DW, Bach C, DeSouza A, et al. The pharmacology and distribution of human 5-hydroxytryptamine2B (5-HT2B) receptor gene products: comparison with 5-HT2A and 5-HT2C receptors. Br J Pharmacol 1995;115:622–628.

    PubMed  CAS  Google Scholar 

  247. Loric S, Maroteaux L, Kellermann O, Launay JM. Functional serotonin-2B receptors are expressed by a teratocarcinoma-derived cell line during serotoninergic differentiation. Mol Pharmacol 1995;47:458–466.

    PubMed  CAS  Google Scholar 

  248. Duxon MS, Flanigan TP, Reavley AC, Baxter GS, Blackburn TP, Fone KC. Evidence for expression of the 5-hydroxytryptamine-2B receptor protein in the rat central nervous system. Neuroscience 1997;76:323–329.

    Article  PubMed  CAS  Google Scholar 

  249. Wainscott DB, Cohen ML, Schenck KW, et al. Pharmacological characteristics of the newly cloned rat 5-hydroxytryptamine2F receptor. Mol Pharmacol 1993;43:419–426.

    PubMed  CAS  Google Scholar 

  250. Schmuck K, Ullmer C, Engels P, Lubbert H. Cloning and functional characterization of the human 5-HT2B serotonin receptor. FEBS Lett 1994;342:85–90.

    Article  PubMed  CAS  Google Scholar 

  251. Cox DA, Blase DK, Cohen ML. Bradykinin and phorbol ester but not 5-HT2B receptor activation stimulate phospholipase D activity in the rat stomach fundus. Prog Neuropsychopharmacol Biol Psychiatry 1999;23:697–704.

    Article  PubMed  CAS  Google Scholar 

  252. Parekh AB, Foguet M, Lubbert H, Stuhmer W. Ca2+ oscillations and Ca2+ influx in Xenopus oocytes expressing a novel 5-hydroxytryptamine receptor. J Physiol 1993;469:653–671.

    PubMed  CAS  Google Scholar 

  253. Ullmer C, Boddeke HG, Schmuck K, Lubbert H. 5-HT2B receptor-mediated calcium release from ryanodine-sensitive intracellular stores in human pulmonary artery endothelial cells. Br J Pharmacol 1996;117:1081–1088.

    PubMed  CAS  Google Scholar 

  254. Launay JM, Birraux G, Bondoux D, et al. Ras involvement in signal transduction by the serotonin 5-HT2B receptor. J Biol Chem 1996;271:3141–3147.

    Article  PubMed  CAS  Google Scholar 

  255. Nebigil CG, Launay JM, Hickel P, Tournois C, Maroteaux L. 5-Hydroxytryptamine 2B receptor regulates cell-cycle progression: cross-talk with tyrosine kinase pathways. Proc Natl Acad Sci USA 2000;97:2591–2596.

    Article  PubMed  CAS  Google Scholar 

  256. Choi DS, Ward SJ, Messaddeq N, Launay JM, Maroteaux L. 5-HT2B receptormediated serotonin morphogenetic functions in mouse cranial neural crest and myocardiac cells. Development 1997;124:1745–1755.

    PubMed  CAS  Google Scholar 

  257. Nebigil CG, Choi DS, Dierich A, et al. Serotonin 2B receptor is required for heart development. Proc Natl Acad Sci USA 2000;97:9508–9513.

    Article  PubMed  CAS  Google Scholar 

  258. Manivet P, Mouillet-Richard S, Callebert J, et al. PDZ-dependent activation of nitric-oxide synthases by the serotonin 2B receptor. J Biol Chem 2000;275:9324–9331.

    Article  PubMed  CAS  Google Scholar 

  259. Leung GP, Dun SL, Dun NJ, Wong PY. Serotonin via 5-HT1B and 5-HT2B receptors stimulates anion secretion in the rat epididymal epithelium. J Physiol 1999;519(Pt3):657–667.

    Article  PubMed  CAS  Google Scholar 

  260. Launay JM, Loric S, Mutel V, Kellermann O. The 5-HT2B receptor controls the overall 5-HT transport system in the 1C11 serotonergic cell line. Ann NY Acad Sci 1998;861:247.

    Article  PubMed  CAS  Google Scholar 

  261. Lubbert H, Hoffman BJ, Snutch TP, et al. cDNA cloning of a serotonin 5-HT1C receptor by electrophysiological assays of mRNA-injected Xenopus oocytes. Proc Natl Acad Sci USA 1987;84:4332–4336.

    Article  PubMed  CAS  Google Scholar 

  262. Yu L, Nguyen H, Le H, et al. The mouse 5-HT1C receptor contains eight hydrophobic domains and is X-linked. Brain Res Mol Brain Res 1991;11:143–149.

    Article  PubMed  CAS  Google Scholar 

  263. Saltzman AG, Morse B, Whitman MM, Ivanshchenko Y, Jaye M, Felder S. Cloning of the human serotonin 5-HT2 and 5-HT1C receptor subtypes. Biochem Biophys Res Commun 1991;181:1469–1478.

    Article  PubMed  CAS  Google Scholar 

  264. Mengod G, Nguyen H, Le H, Waeber C, Lubbert H, Palacios JM. The distribution and cellular localization of the serotonin 1C receptor mRNA in the rodent brain examined by in situ hybridization histochemistry. Comparison with receptor binding distribution. Neuroscience 1990;35:577–591.

    Article  PubMed  CAS  Google Scholar 

  265. Palacios JM, Waeber C, Hoyer D, Mengod G. Distribution of serotonin receptors. Ann NY Acad Sci 1990;600:36–52.

    Article  PubMed  CAS  Google Scholar 

  266. Abramowski D, Rigo M, Duc D, Hoyer D, Staufenbiel M. Localization of the 5-hydroxytryptamine2C receptor protein in human and rat brain using specific antisera. Neuropharmacology 1995;34:1635–1645.

    Article  PubMed  CAS  Google Scholar 

  267. Stam NJ, Vanderheyden P, van Alebeek C, et al. Genomic organisation and functional expression of the gene encoding the human serotonin 5-HT2C receptor. Eur J Pharmacol 1994;269:339–348.

    Article  PubMed  CAS  Google Scholar 

  268. Canton H, Emeson RB, Barker EL, et al. Identification, molecular cloning, and distribution of a short variant of the 5-hydroxytryptamine2C receptor produced by alternative splicing. Mol Pharmacol 1996;50:799–807.

    PubMed  CAS  Google Scholar 

  269. Burns CM, Chu H, Rueter SM, et al. Regulation of serotonin-2C receptor G protein coupling by RNA editing. Nature 1997;387:303–308.

    Article  PubMed  CAS  Google Scholar 

  270. Sanders-Bush E, Breeding M. Putative selective 5-HT-2 antagonists block serotonin 5-HT-1c receptors in the choroid plexus. J Pharmacol Exp Ther 1988;247:169–173.

    PubMed  CAS  Google Scholar 

  271. Wolf WA, Schutz LJ. The serotonin 5-HT2C receptor is a prominent serotonin receptor in basal ganglia: evidence from functional studies on serotoninmediated phosphoinositide hydrolysis. J Neurochem 1997;69:1449–1458.

    PubMed  CAS  Google Scholar 

  272. Julius D, MacDermott AB, Axel R, Jessell TM. Molecular characterization of a functional cDNA encoding the serotonin 1c receptor. Science 1988;241:558–564.

    Article  PubMed  CAS  Google Scholar 

  273. Chen Y, Baez M, Yu L. Functional coupling of the 5-HT2C serotonin receptor to G proteins in Xenopus oocytes. Neurosci Lett 1994;179:100–102.

    Article  PubMed  CAS  Google Scholar 

  274. Tohda M, Tohda C, Oda H, Nomura Y. Possible involvement of botulinum ADP-ribosyltransferase sensitive low molecular G protein on 5-hydroxytryptamine (5-HT)-induced inositol phosphates formation in 5-HT2c cDNA transfected cells. Neurosci Lett 1995;190:33–36.

    Article  PubMed  CAS  Google Scholar 

  275. Walter AE, Hoger JH, Labarca C, Yu L, Davidson N, Lester HA. Low molecular weight mRNA encodes a protein that controls serotonin 5-HT1c and acetylcholine M1 receptor sensitivity in Xenopus oocytes. J Gen Physiol 1991;98:399–417.

    Article  PubMed  CAS  Google Scholar 

  276. DiMagno L, Dascal N, Davidson N, Lester HA, Schreibmayer W. Serotonin and protein kinase C modulation of a rat brain inwardly rectifying K+ channel expressed in Xenopus oocytes. Pflugers Arch 1996;431:335–340.

    Article  PubMed  CAS  Google Scholar 

  277. Aiyar J, Grissmer S, Chandy KG. Full-length and truncated Kv1.3 K+ channels are modulated by 5-HT1c receptor activation and independently by PKC. Am J Physiol 1993;265:C1571–C1578.

    PubMed  CAS  Google Scholar 

  278. Timpe LC, Fantl WJ. Modulation of a voltage-activated potassium channel by peptide growth factor receptors. J Neurosci 1994;14:1195–1201.

    PubMed  CAS  Google Scholar 

  279. Huidobro-Toro JP, Valenzuela CF, Harris RA. Modulation of GABA-A receptor function by G protein-coupled 5-HT2C receptors. Neuropharmacology 1996;35:1355–1363.

    Article  PubMed  CAS  Google Scholar 

  280. Hung BC, Loo DD, Wright EM. Regulation of mouse choroid plexus apical Cl and K+ channels by serotonin. Brain Res 1993;617:285–295.

    Article  PubMed  CAS  Google Scholar 

  281. Kelly JS, Larkman P, Penington NJ, Rainnie DG, McAllister-Williams H, Hodgkiss J. Serotonin receptor heterogeneity and the role of potassium channels in neuronal excitability. Adv Exp Med Biol 1991;287:177–191.

    PubMed  CAS  Google Scholar 

  282. Panicker MM, Parker I, Miledi R. Receptors of the serotonin 1C subtype expressed from cloned DNA mediate the closing of K+ membrane channels encoded by brain mRNA. Proc Natl Acad Sci USA 1991;88:2560–2562.

    Article  PubMed  CAS  Google Scholar 

  283. Marcoli M, Maura G, Tortarolo M, Raiteri M. Serotonin inhibition of the NMDA receptor/nitric oxide/cyclic GMP pathway in rat cerebellum: involvement of 5-hydroxytryptamine2C receptors. J Neurochem 1997;69:427–430.

    PubMed  CAS  Google Scholar 

  284. Kaufman MJ, Hartig PR, Hoffman BJ. Serotonin 5-HT2C receptor stimulates cyclic GMP formation in choroid plexus. J Neurochem 1995;64:199–205.

    PubMed  CAS  Google Scholar 

  285. Julius D, Livelli TJ, Jessell TM, Axel R. Ectopic expression of the serotonin 1c receptor and the triggering of malignant transformation. Science 1989;244:1057–1062.

    Article  PubMed  CAS  Google Scholar 

  286. Kahan C, Julius D, Pouyssegur J, Seuwen K. Effects of 5-HT1C-receptor expression on cell proliferation control in hamster fibroblasts: serotonin fails to induce a transformed phenotype. Exp Cell Res 1992;200:523–527.

    Article  PubMed  CAS  Google Scholar 

  287. Eriksson KS, Stevens DR, Haas HL. Serotonin excites tuberomammillary neurons by activation of Na+/Ca2+-exchange. Neuropharmacology 2001;40:345–

    Article  PubMed  CAS  Google Scholar 

  288. Cowen PJ, Clifford EM, Walsh AE, Williams C, Fairburn CG. Moderate dieting causes 5-HT2C receptor supersensitivity. Psychol Med 1996;26:1155–1159.

    PubMed  CAS  Google Scholar 

  289. Fuller RW. Serotonin receptors involved in regulation of pituitary-adrenocortical function in rats. Behav Brain Res 1996;73:215–219.

    Article  PubMed  CAS  Google Scholar 

  290. Millan MJ, Dekeyne A, Gobert A. Serotonin (5-HT)2C receptors tonically inhibit dopamine (DA) and noradrenaline (NA), but not 5-HT, release in the frontal cortex in vivo. Neuropharmacology 1998;37:953–955.

    Article  PubMed  CAS  Google Scholar 

  291. Seeburg PH. The role of RNA editing in controlling glutamate receptor channel properties. J Neurochem 1996;66:1–5.

    PubMed  CAS  Google Scholar 

  292. Niswender CM, Sanders-Bush E, Emeson RB. Identification and characterization of RNA editing events within the 5-HT2C receptor. Ann NY Acad Sci 1998;861:38–48.

    Article  PubMed  CAS  Google Scholar 

  293. Fitzgerald LW, Iyer G, Conklin DS, et al. Messenger RNA editing of the human serotonin 5-HT2C receptor. Neuropsychopharmacology 1999;21:82S–90S.

    PubMed  CAS  Google Scholar 

  294. Niswender CM, Copeland SC, Herrick-Davis K, Emeson RB, Sanders-Bush E. RNA editing of the human serotonin 5-hydroxytryptamine 2C receptor silences constitutive activity. J Biol Chem 1999;274:9472–9478.

    Article  PubMed  CAS  Google Scholar 

  295. Price RD, Weiner DM, Chang MS, Sanders-Bush E. RNA editing of the human serotonin 5-HT2C receptor alters receptor-mediated activation of G13 protein. J Biol Chem 2001;276:44,663–44,668.

    Article  PubMed  CAS  Google Scholar 

  296. Hamblin MW, Guthrie CR, Kohen R, Heidmann DE. Gs Protein-coupled serotonin receptors: receptor isoforms and functional differences. Ann NY Acad Sci 1998;861:31–37.

    Article  PubMed  CAS  Google Scholar 

  297. Dumuis A, Bouhelal R, Sebben M, Cory R, Bockaert J. A nonclassical 5-hydroxytryptamine receptor positively coupled with adenylate cyclase in the central nervous system. Mol Pharmacol 1988;34:880–887.

    PubMed  CAS  Google Scholar 

  298. Bockaert J, Sebben M, Dumuis A. Pharmacological characterization of 5-hydroxytryptamine4 (5-HT4) receptors positively coupled to adenylate cyclase in adult guinea pig hippocampal membranes: effect of substituted benzamide derivatives. Mol Pharmacol 1990;37:408–411.

    PubMed  CAS  Google Scholar 

  299. Claeysen S, Faye P, Sebben M, Lemaire S, Bockaert J, Dumuis A. Cloning and expression of human 5-HT4S receptors. Effect of receptor density on their coupling to adenylyl cyclase. Neuroreport 1997;8:3189–3196.

    Article  PubMed  CAS  Google Scholar 

  300. Claeysen S, Faye P, Sebben M, Taviaux S, Bockaert J, Dumuis A. 5-HT4 receptors: cloning and expression of new splice variants. Ann NY Acad Sci 1998;861:49–56.

    Article  PubMed  CAS  Google Scholar 

  301. Claeysen S, Sebben M, Journot L, Bockaert J, Dumuis A. Cloning, expression and pharmacology of the mouse 5-HT4L receptor. FEBS Lett. 1996;398:19–25.

    Article  PubMed  CAS  Google Scholar 

  302. Gerald C, Adham N, Kao HT, et al. The 5-HT4 receptor: molecular cloning and pharmacological characterization of two splice variants. EMBO J. 1995;14:2806–2815.

    PubMed  CAS  Google Scholar 

  303. Bockaert J, Ansanay H, Letty S, et al. 5-HT4 receptors: long-term blockade of K+ channels and effects on olfactory memory. CR Acad Sci III 1998;321:217–221.

    CAS  Google Scholar 

  304. Bockaert J, Claeysen S, Sebben M, Dumuis A. 5-HT4 receptors: gene, transduction and effects on olfactory memory. Ann NY Acad Sci 1998;861:1–15.

    Article  PubMed  CAS  Google Scholar 

  305. Kaumann AJ, Sanders L, Brown AM, Murray KJ, Brown MJ. A 5-hydroxytryptamine receptor in human atrium. Br J Pharmacol 1990;100:879–885.

    PubMed  CAS  Google Scholar 

  306. Van den Wyngaert I, Gommeren W, Verhasselt P, et al. Cloning and expression of a human serotonin 5-HT4 receptor cDNA. J Neurochem 1997;69:1810–1819.

    PubMed  Google Scholar 

  307. Claeysen S, Sebben M, Becamel C, Bockaert J, Dumuis A. Novel brain-specific 5-HT4 receptor splice variants show marked constitutive activity: role of the C-terminal intracellular domain. Mol Pharmacol 1999;55:910–920.

    PubMed  CAS  Google Scholar 

  308. Blondel O, Gastineau M, Dahmoune Y, Langlois M, Fischmeister R. Cloning, expression, and pharmacology of four human 5-hydroxytryptamine 4 receptor isoforms produced by alternative splicing in the carboxyl terminus. J Neurochem 1998;70:2252–2261.

    PubMed  CAS  Google Scholar 

  309. Brattelid T, Kvingedal AM, Krobert KA, et al. Cloning, pharmacological characterisation and tissue distribution of a novel 5-HT4 receptor splice variant, 5-HT4i. Naunyn Schmiedebergs Arch Pharmacol 2004;369:616–628.

    Article  PubMed  CAS  Google Scholar 

  310. Vilaro MT, Domenech T, Palacios JM, Mengod G. Cloning and characterization of a novel human 5-HT4 receptor variant that lacks the alternatively spliced car-boxy terminal exon. RT-PCR distribution in human brain and periphery of multiple 5-HT4 receptor variants. Neuropharmacology 2002;42:60–73.

    Article  PubMed  CAS  Google Scholar 

  311. Blondel O, Vandecasteele G, Gastineau M, et al. Molecular and functional characterization of a 5-HT4 receptor cloned from human atrium. FEBS Lett. 1997;412:465–474.

    Article  PubMed  CAS  Google Scholar 

  312. Mialet J, Berque-Bestel I, Sicsic S, Langlois M, Fischmeister R, Lezoualc’h F. Pharmacological characterization of the human 5-HT4d receptor splice variant stably expressed in Chinese hamster ovary cells. Br J Pharmacol 2000;131:827–835.

    Article  PubMed  CAS  Google Scholar 

  313. Vilaro MT, Cortes R, Gerald C, Branchek TA, Palacios JM, Mengod G. Localization of 5-HT4 receptor mRNA in rat brain by in situ hybridization histochemistry. Brain Res Mol Brain Res 1996;43:356–360.

    Article  PubMed  CAS  Google Scholar 

  314. Medhurst AD, Lezoualc’h F, Fischmeister R, Middlemiss DN, Sanger GJ. Quantitative mRNA analysis of five C-terminal splice variants of the human 5-HT4 receptor in the central nervous system by TaqMan real time RT-PCR. Brain Res Mol Brain Res 2001;90:125–134.

    Article  PubMed  CAS  Google Scholar 

  315. Bach T, Syversveen T, Kvingedal AM, et al. 5HT4a and 5-HT4b receptors have nearly identical pharmacology and are both expressed in human atrium and ventricle. Naunyn Schmiedebergs Arch Pharmacol 2001;363:146–160.

    Article  PubMed  CAS  Google Scholar 

  316. McLean PG, Coupar IM. Stimulation of cyclic AMP formation in the circular smooth muscle of human colon by activation of 5-HT4-like receptors. Br J Pharmacol 1996;117:238–239.

    PubMed  CAS  Google Scholar 

  317. Ford AP, Baxter GS, Eglen RM, Clarke DE. 5-Hydroxytryptamine stimulates cyclic AMP formation in the tunica muscularis mucosae of the rat oesophagus via 5-HT4 receptors. Eur J Pharmacol 1992;211:117–120.

    Article  PubMed  CAS  Google Scholar 

  318. Albuquerque FC Jr, Smith EH, Kellum JM. 5-HT induces cAMP production in crypt colonocytes at a 5-HT4 receptor. J Surg Res 1998;77:137–140.

    Article  PubMed  CAS  Google Scholar 

  319. Mialet J, Berque-Bestel I, Eftekhari P, et al. Isolation of the serotoninergic 5-HT4e receptor from human heart and comparative analysis of its pharmacological profile in C6-glial and CHO cell lines. Br J Pharmacol 2000;129:771–781.

    Article  PubMed  CAS  Google Scholar 

  320. Fagni L, Dumuis A, Sebben M, Bockaert J. The 5-HT4 receptor subtype inhibits K+ current in colliculi neurones via activation of a cyclic AMP-dependent protein kinase. Br J Pharmacol 1992;105:973-939.

    Google Scholar 

  321. McLean PG, Coupar IM. Further investigation into the signal transduction mechanism of the 5-HT4-like receptor in the circular smooth muscle of human colon. Br J Pharmacol 1996;118:1058–1064.

    PubMed  CAS  Google Scholar 

  322. Kaumann AJ, Sanders L, Brown AM, Murray KJ, Brown MJ. A 5-HT4-like receptor in human right atrium. Naunyn Schmiedebergs Arch Pharmacol 1991;344:150–159.

    Article  PubMed  CAS  Google Scholar 

  323. Kaumann AJ. 5-HT4-like receptors in mammalian atria. J Neural Transm 1991;34(Suppl):195–201.

    Google Scholar 

  324. Steward LJ, Ge J, Stowe RL, et al. Ability of 5-HT4 receptor ligands to modulate rat striatal dopamine release in vitro and in vivo. Br J Pharmacol 1996;117:55–62.

    PubMed  CAS  Google Scholar 

  325. Torres GE, Chaput Y, Andrade R. Cyclic AMP and protein kinase A mediate 5-hydroxytryptamine type 4 receptor regulation of calcium-activated potassium current in adult hippocampal neurons. Mol Pharmacol 1995;47:191–197.

    PubMed  CAS  Google Scholar 

  326. Ouadid H, Seguin J, Dumuis A, Bockaert J, Nargeot J. Serotonin increases calcium current in human atrial myocytes via the newly described 5-hydroxytryptamine4 receptors. Mol Pharmacol 1992;41:346–351.

    PubMed  CAS  Google Scholar 

  327. Norum JH, Hart K, Levy FO. Ras-dependent ERK activation by the human Gs-coupled serotonin receptors 5-HT4b and 5-HT7a. J Biol Chem 2003;278:3098–3104.

    Article  PubMed  CAS  Google Scholar 

  328. Lezoualc’h F, Robert SJ. The serotonin 5-HT4 receptor and the amyloid precursor protein processing. Exp Gerontol 2003;38:159–166.

    Article  CAS  Google Scholar 

  329. Robert S, Maillet M, Morel E, et al. Regulation of the amyloid precursor protein ectodomain shedding by the 5-HT4 receptor and Epac. FEBS Lett 2005;579:1136–1142.

    Article  PubMed  CAS  Google Scholar 

  330. Budhoo MR, Harris RP, Kellum JM. The role of the 5-HT4 receptor in Cl secretion in human jejunal mucosa. Eur J Pharmacol 1996;314:109–114.

    Article  PubMed  CAS  Google Scholar 

  331. Budhoo MR, Harris RP, Kellum JM. 5-Hydroxytryptamine-induced Cl transport is mediated by 5-HT3 and 5-HT4 receptors in the rat distal colon. Eur J Pharmacol 1996;298:137–144.

    Article  PubMed  CAS  Google Scholar 

  332. Pino R, Cerbai E, Calamai G, et al. Effect of 5-HT4 receptor stimulation on the pacemaker current I(f) in human isolated atrial myocytes. Cardiovasc Res 1998;40:516–522.

    Article  PubMed  CAS  Google Scholar 

  333. Lefebvre H, Cartier D, Duparc C, et al. Effect of serotonin4 (5-HT4) receptor agonists on aldosterone secretion in idiopathic hyperaldosteronism. Endocr Res 2000;26:583–587.

    PubMed  CAS  Google Scholar 

  334. Lefebvre H, Gonzalez KN, Contesse V, Delarue C, Vaudry H, Kuhnl JM. Effect of prolonged administration of the serotonin4 (5-HT4) receptor agonist cisapride on aldosterone secretion in healthy volunteers. Endocr Res 1998;24:749–752.

    PubMed  CAS  Google Scholar 

  335. Consolo S, Arnaboldi S, Giorgi S, Russi G, Ladinsky H. 5-HT4 receptor stimulation facilitates acetylcholine release in rat frontal cortex. Neuroreport 1994;5:1230–1232.

    PubMed  CAS  Google Scholar 

  336. Bianchi C, Rodi D, Marino S, Beani L, Siniscalchi A. Dual effects of 5-HT4 receptor activation on GABA release from guinea pig hippocampal slices. Neuroreport 2002;13:2177–2180.

    Article  PubMed  CAS  Google Scholar 

  337. Ge J, Barnes NM. 5-HT4 receptor-mediated modulation of 5-HT release in the rat hippocampus in vivo. Br J Pharmacol 1996;117:1475–1480.

    PubMed  CAS  Google Scholar 

  338. Ansanay H, Dumuis A, Sebben M, Bockaert J, Fagni L. cAMP-dependent, longlasting inhibition of a K+ current in mammalian neurons. Proc Natl Acad Sci USA 1995;92:6635–6639.

    Article  PubMed  CAS  Google Scholar 

  339. Gill RK, Saksena S, Tyagi S, et al. Serotonin inhibits Na+/H+ exchange activity via 5-HT4 receptors and activation of PKCα in human intestinal epithelial cells. Gastroenterology 2005;128:962–974.

    Article  PubMed  CAS  Google Scholar 

  340. Joubert L, Hanson B, Barthet G, et al. New sorting nexin (SNX27) and NHERF specifically interact with the 5-HT4a receptor splice variant: roles in receptor targeting. J Cell Sci 2004;117:5367–5379.

    Article  PubMed  CAS  Google Scholar 

  341. Mialet J, Fischmeister R, Lezoualc’h F. Characterization of human 5-HT4d receptor desensitization in CHO cells. Br J Pharmacol 2003;138:445–452.

    Article  PubMed  CAS  Google Scholar 

  342. Pindon A, van Hecke G, van Gompel P, Lesage AS, Leysen JE, Jurzak M. Differences in signal transduction of two 5-HT4 receptor splice variants: compound specificity and dual coupling with Gαs-and Gαi/o proteins. Mol Pharmacol 2002; 61:85–96.

    Article  PubMed  CAS  Google Scholar 

  343. Nelson DL. 5-HT5 receptors. Curr Drug Targets: CNS Neurol Disord 2004;3:53–58.

    Article  CAS  Google Scholar 

  344. Plassat JL, Boschert U, Amlaiky N, Hen R. The mouse 5HT5 receptor reveals a remarkable heterogeneity within the 5HT1D receptor family. EMBO J 1992;11:4779–4786.

    PubMed  CAS  Google Scholar 

  345. Matthes H, Boschert U, Amlaiky N, et al. Mouse 5-hydroxytryptamine5A and 5-hydroxytryptamine5B receptors define a new family of serotonin receptors: cloning, functional expression, and chromosomal localization. Mol Pharmacol 1993;43:313–319.

    PubMed  CAS  Google Scholar 

  346. Erlander MG, Lovenberg TW, Baron BM, et al. Two members of a distinct subfamily of 5-hydroxytryptamine receptors differentially expressed in rat brain. Proc Natl Acad Sci USA 1993;90:3452–3456.

    Article  PubMed  CAS  Google Scholar 

  347. Rees S, den Daas I, Foord S, et al. Cloning and characterisation of the human 5-HT5A serotonin receptor. FEBS Lett 1994;355:242–246.

    Article  PubMed  CAS  Google Scholar 

  348. Carson MJ, Thomas EA, Danielson PE, Sutcliffe JG. The 5HT5A serotonin receptor is expressed predominantly by astrocytes in which it inhibits cAMP accumulation: a mechanism for neuronal suppression of reactive astrocytes. Glia 1996;17:317–326.

    Article  PubMed  CAS  Google Scholar 

  349. Francken BJ, Jurzak M, Vanhauwe JF, Luyten WH, Leysen JE. The human 5-ht5A receptor couples to Gi/Go proteins and inhibits adenylate cyclase in HEK 293 cells. Eur J Pharmacol 1998;361:299–309.

    Article  PubMed  CAS  Google Scholar 

  350. Hurley PT, McMahon RA, Fanning P, O’Boyle KM, Rogers M, Martin F. Functional coupling of a recombinant human 5-HT5A receptor to G proteins in HEK-293 cells. Br J Pharmacol 1998;124:1238–1244.

    Article  PubMed  CAS  Google Scholar 

  351. Francken BJ, Josson K, Lijnen P, et al. Human 5-hydroxytryptamine5A receptors activate coexpressed Gi and Go proteins in Spodoptera frugiperda 9 cells. Mol Pharmacol 2000;57:1034–1044.

    PubMed  CAS  Google Scholar 

  352. Noda M, Yasuda S, Okada M, et al. Recombinant human serotonin 5A receptors stably expressed in C6 glioma cells couple to multiple signal transduction pathways. J Neurochem 2003;84:222–232.

    Article  PubMed  CAS  Google Scholar 

  353. Grailhe R, Grabtree GW, Hen R. Human 5-HT5 receptors: the 5-HT5A receptor is functional but the 5-HT5B receptor was lost during mammalian evolution. Eur J Pharmacol 2001;418:157–167.

    Article  PubMed  CAS  Google Scholar 

  354. Monsma FJ Jr, Shen Y, Ward RP, Hamblin MW, Sibley DR. Cloning and expression of a novel serotonin receptor with high affinity for tricyclic psychotropic drugs. Mol Pharmacol 1993;43:320–327.

    PubMed  CAS  Google Scholar 

  355. Ruat M, Traiffort E, Arrang JM, et al. A novel rat serotonin (5-HT6) receptor: molecular cloning, localization and stimulation of cAMP accumulation. Biochem Biophys Res Commun 1993;193:268–276.

    Article  PubMed  CAS  Google Scholar 

  356. Kohen R, Metcalf MA, Khan N, et al. Cloning, characterization, and chromosomal localization of a human 5-HT6 serotonin receptor. J Neurochem 1996;66:47–56.

    PubMed  CAS  Google Scholar 

  357. Kohen R, Fashingbauer LA, Heidmann DE, Guthrie CR, Hamblin MW. Cloning of the mouse 5-HT6 serotonin receptor and mutagenesis studies of the third cytoplasmic loop. Brain Res Mol Brain Res 2001;90:110–117.

    Article  PubMed  CAS  Google Scholar 

  358. Gerard C, el Mestikawy S, Lebrand C, et al. Quantitative RT-PCR distribution of serotonin 5-HT6 receptor mRNA in the central nervous system of control or 5, 7-dihydroxytryptamine-treatedrats. Synapse 1996;23:164–173.

    Article  PubMed  CAS  Google Scholar 

  359. Gerard C, Martres MP, Lefevre K, et al. Immuno-localization of serotonin 5-HT6 receptor-like material in the rat central nervous system. Brain Res 1997;746:207–219.

    Article  PubMed  CAS  Google Scholar 

  360. Grimaldi B, Bonnin A, Fillion MP, Ruat M, Traiffort E, Fillion G. Characterization of 5-ht6 receptor and expression of 5-ht6 mRNA in the rat brain during ontogenetic development. Naunyn Schmiedebergs Arch Pharmacol 1998;357:393–400.

    Article  PubMed  CAS  Google Scholar 

  361. Sleight AJ, Boess FG, Bos M, Bourson A. The putative 5-ht6 receptor: localization and function. Ann NY Acad Sci 1998;861:91–96.

    Article  PubMed  CAS  Google Scholar 

  362. Hamon M, Doucet E, Lefevre K, et al. Antibodies and antisense oligonucleotide for probing the distribution and putative functions of central 5-HT6 receptors. Neuropsychopharmacology 1999;21:68S–76S.

    PubMed  CAS  Google Scholar 

  363. Yoshioka M, Matsumoto M, Togashi H, Mori K, Saito H. Central distribution and function of 5-HT6 receptor subtype in the rat brain. Life Sci 1998;62:1473–1477.

    Article  PubMed  CAS  Google Scholar 

  364. Bourson A, Boess FG, Bos M, Sleight AJ. Involvement of 5-HT6 receptors in nigro-striatal function in rodents. Br J Pharmacol 1998;125:1562–1566.

    Article  PubMed  CAS  Google Scholar 

  365. Branchek TA, Blackburn TP. 5-ht6 receptors as emerging targets for drug discovery. Annu Rev Pharmacol Toxicol 2000;40:319–334.

    Article  PubMed  CAS  Google Scholar 

  366. Riemer C, Borroni E, Levet-Trafit B, et al. Influence of the 5-HT6 receptor on acetylcholine release in the cortex: pharmacological characterization of 4-(2-bromo-6-pyrrolidin-1-ylpyridine-4-sulfonyl)phenylamine, a potent and selective 5-HT6 receptor antagonist. J Med Chem 2003;46:1273–1276.

    Article  PubMed  CAS  Google Scholar 

  367. Woolley ML, Marsden CA, Fone KC. 5-ht6 receptors. Curr Drug Targets: CNS Neurol Disord 2004;3:59–79.

    Article  CAS  Google Scholar 

  368. Meneses A. Role of 5-HT6 receptors in memory formation. Drug News Perspect 2001;14:396–400.

    Article  PubMed  CAS  Google Scholar 

  369. Baker LP, Nielsen MD, Impey S, et al. Stimulation of type 1 and type 8 Ca2+ calmodulin-sensitive adenylyl cyclases by the Gs coupled 5-hydroxytryptamine subtype 5-HT7A receptor. J Biol Chem 1998;273:17,469–17,476.

    Article  PubMed  CAS  Google Scholar 

  370. Schoeffter P, Waeber C. 5-Hydroxytryptamine receptors with a 5-HT6 receptor-like profile stimulating adenylyl cyclase activity in pig caudate membranes. Naunyn Schmiedebergs Arch Pharmacol 1994;350:356–360.

    Article  PubMed  CAS  Google Scholar 

  371. Boess FG, Monsma FJ Jr, Carolo C, et al. Functional and radioligand binding characterization of rat 5-HT6 receptors stably expressed in HEK293 cells. Neuropharmacology 1997;36:713–720.

    Article  PubMed  CAS  Google Scholar 

  372. Purohit A, Herrick-Davis K, Teitler M. Creation, expression, and characterization of a constitutively active mutant of the human serotonin 5-HT6 receptor. Synapse 2003;47:218–224.

    Article  PubMed  CAS  Google Scholar 

  373. Kang H, Lee WK, Choi YH, et al. Molecular analysis of the interaction between the intracellular loops of the human serotonin receptor type 6 (5-HT6) and the alpha subunit of Gs protein. Biochem Biophys Res Commun 2005;329:684–692.

    Article  PubMed  CAS  Google Scholar 

  374. Olsen MA, Nawoschik SP, Schurman BR, et al. Identification of a human 5-HT6 receptor variant produced by alternative splicing. Brain Res Mol Brain Res 1999;64:255–263.

    Article  PubMed  CAS  Google Scholar 

  375. Shen Y, Monsma FJ Jr, Metcalf MA, Jose PA, Hamblin MW, Sibley DR. Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype. J Biol Chem 1993;268:18,200–18,214.

    PubMed  CAS  Google Scholar 

  376. Bard JA, Zgombick J, Adham N, Vaysse P, Branchek TA, Weinshank RL. Cloning of a novel human serotonin receptor (5-HT7) positively linked to adenylate cyclase. J Biol Chem 1993;268:23,422–23,426.

    PubMed  CAS  Google Scholar 

  377. Lovenberg TW, Baron BM, de Lecea L, et al. A novel adenylyl cyclase-activating serotonin receptor (5-HT7) implicated in the regulation of mammalian circadian rhythms. Neuron 1993;11:449–458.

    Article  PubMed  CAS  Google Scholar 

  378. Plassat JL, Amlaiky N, Hen R. Molecular cloning of a mammalian serotonin receptor that activates adenylate cyclase. Mol Pharmacol 1993;44:229–236.

    PubMed  CAS  Google Scholar 

  379. Ruat M, Traiffort E, Leurs R, et al. Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating cAMP formation. Proc Natl Acad Sci USA 1993;90:8547-8451.

    Google Scholar 

  380. Tsou AP, Kosaka A, Bach C, et al. Cloning and expression of a 5-hydroxytryptamine7 receptor positively coupled to adenylyl cyclase. J Neurochem 1994;63:456–464.

    Article  PubMed  CAS  Google Scholar 

  381. Bhalla P, Saxena PR, Sharma HS. Molecular cloning and tissue distribution of mRNA encoding porcine 5-HT7 receptor and its comparison with the structure of other species. Mol Cell Biochem 2002;238:81–88.

    Article  PubMed  CAS  Google Scholar 

  382. Meyerhof W, Obermuller F, Fehr S, Richter D. A novel rat serotonin receptor: primary structure, pharmacology, and expression pattern in distinct brain regions. DNA Cell Biol 1993;12:401–409.

    Article  PubMed  CAS  Google Scholar 

  383. Johnson MP, Baez M, Kursar JD, Nelson DL. Species differences in 5-HT2A receptors: cloned pig and rhesus monkey 5-HT2A receptors reveal conserved trans-membrane homology to the human rather than rat sequence. Biochim Biophys Acta 1995;1236:201–206.

    Article  PubMed  Google Scholar 

  384. Hobson RJ, Geng J, Gray AD, Komuniecki RW. SER-7b, a constitutively active Galphas coupled 5-HT7-like receptor expressed in the Caenorhabditis elegans M4 pharyngeal motorneuron. J Neurochem 2003;87:22–29.

    Article  PubMed  CAS  Google Scholar 

  385. Lee DW, Pietrantonio PV. In vitro expression and pharmacology of the 5-HT7-like receptor present in the mosquito Aedes aegypti tracheolar cells and hindguta-ssociated nerves. Insect Mol Biol 2003;12:561–569.

    Article  PubMed  CAS  Google Scholar 

  386. Witz P, Amlaiky N, Plassat JL, Maroteaux L, Borrelli E, Hen R. Cloning and characterization of a Drosophila serotonin receptor that activates adenylate cyclase. Proc Natl Acad Sci USA 1990;87:8940–8944.

    Article  PubMed  CAS  Google Scholar 

  387. Erdmann J, Nothen MM, Shimron-Abarbanell D, et al. The human serotonin 7 (5-HT7) receptor gene: genomic organization and systematic mutation screening in schizophrenia and bipolar affective disorder. Mol Psychiatry 1996;1:392–397.

    PubMed  CAS  Google Scholar 

  388. Heidmann DE, Metcalf MA, Kohen R, Hamblin MW. Four 5-hydroxytryptamine7 (5-HT7) receptor isoforms in human and rat produced by alternative splicing: species differences due to altered intron-exon organization. J Neurochem 1997;68:1372–1381.

    PubMed  CAS  Google Scholar 

  389. Varnas K, Thomas DR, Tupala E, Tiihonen J, Hall H. Distribution of 5-HT7 receptors in the human brain: a preliminary autoradiographic study using [3H]SB-269970. Neurosci Lett 2004;367:313–316.

    Article  PubMed  CAS  Google Scholar 

  390. Thomas DR, Hagan JJ. 5-HT7 receptors. Curr Drug Targets: CNS Neurol Disord 2004;3:81–90.

    Article  CAS  Google Scholar 

  391. Stowe RL, Barnes NM. Selective labelling of 5-HT7 receptor recognition sites in rat brain using [3H]5-carboxamidotryptamine. Neuropharmacology 1998;37:1611–1619.

    Article  PubMed  CAS  Google Scholar 

  392. Harsing LG Jr, Prauda I, Barkoczy J, Matyus P, Juranyi Z. A 5-HT7 heteroreceptor-mediated inhibition of [3H] serotonin release in raphe nuclei slices of the rat:evidence for a serotonergic-glutamatergic interaction. Neurochem Res 2004;29:1487–1497.

    Article  PubMed  CAS  Google Scholar 

  393. Mahe C, Bernhard M, Bobirnac I, et al. Functional expression of the serotonin 5-HT7 receptor in human glioblastoma cell lines. Br J Pharmacol 2004;143:404–410.

    Article  PubMed  CAS  Google Scholar 

  394. Hirst WD, Price GW, Rattray M, Wilkin GP. Identification of 5-hydroxytryptamine receptors positively coupled to adenylyl cyclase in rat cultured astrocytes. Br J Pharmacol 1997;120:509–515.

    Article  PubMed  CAS  Google Scholar 

  395. Graveleau C, Paust HJ, Schmidt-Grimminger D, Mukhopadhyay AK. Presence of a 5-HT7 receptor positively coupled to adenylate cyclase activation in human granulosa-lutein cells. J Clin Endocrinol Metab 2000;85:1277–1286.

    Article  PubMed  CAS  Google Scholar 

  396. Shimizu M, Nishida A, Zensho H, Yamawaki S. Chronic antidepressant exposure enhances 5-hydroxytryptamine7 receptor-mediated cyclic adenosine monophosphate accumulation in rat frontocortical astrocytes. J Pharmacol Exp Ther 1996;279:1551–1558.

    PubMed  CAS  Google Scholar 

  397. Eglen RM, Jasper JR, Chang DJ, Martin GR. The 5-HT7 receptor: orphan found. Trends Pharmacol Sci 1997;18:104–107.

    Article  PubMed  CAS  Google Scholar 

  398. Liu H, Irving HR, Coupar IM. Expression patterns of 5-HT7 receptor isoforms in the rat digestive tract. Life Sci 2001;69:2467–2475.

    Article  PubMed  CAS  Google Scholar 

  399. Janssen P, Prins NH, Peeters PJ, Zuideveld KP, Lefebvre RA. 5-HT7 receptor efficacy distribution throughout the canine stomach. Br J Pharmacol 2004;143:331–342.

    Article  PubMed  CAS  Google Scholar 

  400. Heidmann DE, Szot P, Kohen R, Hamblin MW. Function and distribution of three rat 5-hydroxytryptamine7 (5-HT7) receptor isoforms produced by alternative splicing. Neuropharmacology 1998;37:1621–1632.

    Article  PubMed  CAS  Google Scholar 

  401. Schoeffter P, Ullmer C, Bobirnac I, Gabbiani G, Lubbert H. Functional, endogenously expressed 5-hydroxytryptamine 5-ht7 receptors in human vascular smooth muscle cells. Br J Pharmacol 1996;117:993–994.

    PubMed  CAS  Google Scholar 

  402. Lenglet S, Delarue C, Lefebvre H, Vaudry H, Contesse V. Rat glomerulosa cells express functional 5-HT7 receptors. Endocr Res 2000;26:597–602.

    Article  PubMed  CAS  Google Scholar 

  403. Lenglet S, Louiset E, Delarue C, Vaudry H, Contesse V. Involvement of T-type calcium channels in the mechanism of action of 5-HT in rat glomerulosa cells: a novel signaling pathway for the 5-HT7 receptor. Endocr Res 2002;28:651–655.

    Article  PubMed  CAS  Google Scholar 

  404. Crider JY, Williams GW, Drace CD, Katoli P, Senchyna M, Sharif NA. Pharmacological characterization of a serotonin receptor (5-HT7) stimulating cAMP production in human corneal epithelial cells. Invest Ophthalmol Vis Sci 2003;44:4837–4844.

    Article  PubMed  Google Scholar 

  405. Hedlund PB, Sutcliffe JG. Functional, molecular and pharmacological advances in 5-HT7 receptor research. Trends Pharmacol Sci 2004;25:481–486.

    Article  PubMed  CAS  Google Scholar 

  406. Obosi LA, Hen R, Beadle DJ, Bermudez I, King LA. Mutational analysis of the mouse 5-HT7 receptor: importance of the third intracellular loop for receptor-G protein interaction. FEBS Lett 1997;412:321–324.

    Article  PubMed  CAS  Google Scholar 

  407. Stam NJ, Roesink C, Dijcks F, Garritsen A, van Herpen A, Olijve W. Human serotonin 5-HT7 receptor: cloning and pharmacological characterisation of two receptor variants. FEBS Lett 1997;413:489–494.

    Article  PubMed  CAS  Google Scholar 

  408. Jasper JR, Kosaka A, To ZP, Chang DJ, Eglen RM. Cloning, expression and pharmacology of a truncated splice variant of the human 5-HT7 receptor (h5-HT7b). Br J Pharmacol 1997;122:126–132.

    Article  PubMed  CAS  Google Scholar 

  409. Bruheim S, Krobert KA, Andressen KW, Levy FO. Unaltered agonist potency upon inducible 5-HT7a but not 5-HT4b receptor expression indicates agonist-independent association of 5-HT7a receptor and Gs. Receptors Channels 2003;9:107–116.

    Article  PubMed  CAS  Google Scholar 

  410. Mork A, Geisler A. 5-Hydroxytryptamine receptor agonists influence calcium-stimulated adenylate cyclase activity in the cerebral cortex and hippocampus of the rat. Eur J Pharmacol 1990; 175:237–244.

    Article  PubMed  CAS  Google Scholar 

  411. Lieb K, Biersack L, Waschbisch A, et al. Serotonin via 5-HT7 receptors activates p38 mitogen-activated protein kinase and protein kinase C epsilon resulting in interleukin-6 synthesis in human U373 MG astrocytoma cells. J Neurochem 2005;93:549–559.

    Article  PubMed  CAS  Google Scholar 

  412. Errico M, Crozier RA, Plummer MR, Cowen DS. 5-HT7 receptors activate the mitogen activated protein kinase extracellular signal related kinase in cultured rat hippocampal neurons. Neuroscience 2001;102:361–367.

    Article  PubMed  CAS  Google Scholar 

  413. Lin SL, Johnson-Farley NN, Lubinsky DR, Cowen DS. Coupling of neuronal 5-HT7 receptors to activation of extracellular-regulated kinase through a protein kinase A-independent pathway that can utilize Epac. J Neurochem 2003;87:1076–1085.

    Article  PubMed  CAS  Google Scholar 

  414. Krobert KA, Bach T, Syversveen T, Kvingedal AM, Levy FO. The cloned human 5-HT7 receptor splice variants: a comparative characterization of their pharmacology, function and distribution. Naunyn Schmiedebergs Arch Pharmacol 2001;363:620–632.

    Article  PubMed  CAS  Google Scholar 

  415. Krobert KA, Levy FO. The human 5-HT7 serotonin receptor splice variants: constitutive activity and inverse agonist effects. Br J Pharmacol 2002;135:1563–1571.

    Article  PubMed  CAS  Google Scholar 

  416. Becamel C, Alonso G, Galeotti N, et al. Synaptic multiprotein complexes associated with 5-HT2C receptors: a proteomic approach. EMBO J 2002;21:2332–2342.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Turner, J.H., Gelasco, A.K., Ayiku, H.B., Coaxum, S.D., Arthur, J.M., Garnovskaya, M.N. (2006). 5-HT Receptor Signal Transduction Pathways. In: Roth, B.L. (eds) The Serotonin Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-59745-080-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-080-5_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-568-2

  • Online ISBN: 978-1-59745-080-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics