Skip to main content

Signaling Pathways That Protect the Heart Against Apoptosis Induced by Ischemia and Reperfusion

  • Chapter
Apoptosis, Cell Signaling, and Human Diseases
  • 987 Accesses

Summary

Ischemia and reperfusion injury commonly occurs in ischemic heart disease, resulting in apoptotic or necrotic cell death. Apoptotic cell death is highly regulated. Two mechanisms of apoptosis involve the extrinsic death receptor pathway and the intrinsic mitochondrial pathway. Both pathways lead to the activation of effector caspases, resulting in cell death. The mitochondrial pathway plays a key role in initiating apoptosis after ischemia and reperfusion. The phosphatidylinositol 3-kinase (PI3K), protein kinase C (PKC), and extracellular signal-regulated kinase (ERK) signaling pathways protect the heart against ischemia and reperfusion injury. They inhibit mitochondrial cytochrome c release into the cytosol by regulating the Bcl-2 family proteins and activating the mitoKATP channel, thereby blocking the process of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Searle J, Kerr JF, Bishop CJ. Necrosis and apoptosis: Distinct modes of cell death with fundamentally different significance. Pathol Annu 1982;17(Pt2):229–259.

    PubMed  Google Scholar 

  2. Fliss H, Gattinger D. Apoptosis in ischemic and reperfused rat myocardium. Circ Res 1996;79(5):949–956.

    PubMed  CAS  Google Scholar 

  3. Kajstura J, Cheng W, Reiss K, et al. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest1996;74(1):86–107.

    PubMed  CAS  Google Scholar 

  4. Scarabelli TM, Knight RA, Rayment NB, et al. Quantitative assessment of cardiac myocyte apoptosis in tissue sections using the fluorescence-based tunel technique enhanced with counterstains. J Immunol Methods 1999;228(1-2):23–28.

    Article  PubMed  CAS  Google Scholar 

  5. Freude B, Masters TN, Robicsek F, et al. Apoptosis is initiated by myocardial ischemia and executed during reperfusion. J Mol Cell Cardiol 2000;32(2):197–208.

    Article  PubMed  CAS  Google Scholar 

  6. Ohno M, Takemura G, Ohno A, et al. “Apoptotic” myocytes in infarct area in rabbit hearts may be oncotic myocytes with DNA fragmentation: analysis by immunogold electron microscopy combined with In situ nick end-labeling. Circulation 1998;98(14):1422–1430.

    PubMed  CAS  Google Scholar 

  7. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 1994;94(4):1621–1628.

    Article  PubMed  CAS  Google Scholar 

  8. Anversa P, Cheng W, liu Y, Ledaelli G, Kajstura J. Apoptosis and myocardial infarction. Basic Res Cardio 1998;93(suppl 3):8–12.

    Article  Google Scholar 

  9. Lee P, Sata M, Lefer DJ, Factor SM, Walsh K, Kitsis RN. Fas pathway is a critical mediator of cardiac myocyte death and MI during ischemia-reperfusion in vivo. Am J Physiol Heart Circ Physiol 2003;284:H456–H463.

    PubMed  CAS  Google Scholar 

  10. Jeremias I, Kupatt C, Martin-Villalba A, et al. Involvement of CD95/Apol/Fas in cell death after myocardial ischemia. Circulation 2000;102:915–920.

    PubMed  CAS  Google Scholar 

  11. Lefer AM, Tsao P, Aoki N, Palladino MA, Jr. Mediation of cardioprotection by transforming growth factor-beta. Science 1990;249:61–64.

    Article  PubMed  CAS  Google Scholar 

  12. Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis. Trends Cell Biol 2000;10:369–377.

    Article  PubMed  CAS  Google Scholar 

  13. Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of MACH, a novel MORTI/FADD-interacting protease, in Fas/APO-1-and TNF receptor-induced cell death. Cell 1996;85:803–815.

    Article  PubMed  CAS  Google Scholar 

  14. Muzio M, Chinnaiyan AM, Kischkel FC, et al. FLICE, α novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 1996;85:817–827.

    Article  PubMed  CAS  Google Scholar 

  15. Hirata H, Takahashi A, Kobayashi et al. Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. J Exp Med 1998; 187:587–600.

    Article  PubMed  CAS  Google Scholar 

  16. Slee EA, Harte MT, Kluck RM, et al. Ordering the cytochrome c-initiated caspase cascade: Hierarchical activation of caspases-2,-3,-6,-7,-8, and-10 in a caspase-9-dependent manner. J Cell Biol 1999;144:281–292.

    Article  PubMed  CAS  Google Scholar 

  17. Lee P, Sata M, Lefer DJ, Factor SM, Walsh K, Kitsis RN. Fas pathway is a critical mediator of cardiac myocyte death and MI during ischemia-reperfusion in vivo. Am J Physiol Heart Circ Physiol 2003;284:H456–H463.

    PubMed  CAS  Google Scholar 

  18. Ferrari R, Bachetti T, Confortini R, et al. Tumor necrosis factor soluble receptors in patients with various degrees of congestive heart failure. Circulation 1995;92:1479–1486.

    PubMed  CAS  Google Scholar 

  19. Sliwa K, Skudicky D, Candy G, Wisenbaugh T, Sareli P. Randomised investigation of effects of pentoxifylline on leftventricular performance in idiopathic dilated cardiomyopathy. Lancet 1998;351:1091–1093.

    Article  PubMed  CAS  Google Scholar 

  20. Eddy LJ, Goeddel DV, Wong GH. Tumor necrosis factor-alpha pretreatment is protective in a rat model of myocardial ischemia reperfusion injury. Biochem Biophys Res Commun 1992;184:1056–1059.

    Article  PubMed  CAS  Google Scholar 

  21. Kurrelmeyer KM, Michael LH, Baumgarten G, et al. Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic induced apoptosis in a murine model of acute myocardial infarction. Proc Natl Acad Sci USA 2000;97:5456–5461.

    Article  PubMed  CAS  Google Scholar 

  22. Liu ZG, Hsu H, Goeddel DV, Karin M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 1996;87:565–576.

    Article  PubMed  CAS  Google Scholar 

  23. Bergmann MW, Loser P, Dietz R, Von Harsdorf R. Effect of NFAB inhibition on TNF-á-induced apoptosis and downstream pathways in cardiomyocytes. J Mol Cell Cardiol 2001;33:1223–1232.

    Article  PubMed  CAS  Google Scholar 

  24. McFalls EO, Liem D, Schoonderwoere K, Lamers J, Sluiter W, and Duncker D. Mitochondrial function: the heart of myocardial preservation. J Lab Clin Med 2003;142:141–149.

    Article  PubMed  CAS  Google Scholar 

  25. Halestrap A, Davidson A. Inhibition of Ca2-induced large amplitude swelling of liver and heart mitochondria by cyclosporin A is probably caused by the inhibitor binding to mitochondrial matrix peptidyl-propyl cis-trans isomerase and preventing it interacting within the adenine nucleotide translocase. Biochem J 1990;268:153–160.

    PubMed  CAS  Google Scholar 

  26. Shimizu S, Matsaoka Y, Shinohara Y, Yomeda Y, Tsujimoto Y. Essential role of voltagedependent anion channel in various forms of apoptosis in mammalian cells. J Cell Biol 2001;152:237–250.

    Article  PubMed  CAS  Google Scholar 

  27. Antosson B, Conti F, Ciavatta A, et al. Inhibition of Bax channel-forming activity by Bcl-2. Science 1997;277:370–372

    Article  Google Scholar 

  28. Zou H, Li Y, Liu X, Wang X. An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 1999;274:11,549-11,556

    Article  Google Scholar 

  29. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000;102:33–42.

    Article  PubMed  CAS  Google Scholar 

  30. Verhagen AM, Ekert PG, Pakusch M, et al. of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000;102:43–53.

    Article  PubMed  CAS  Google Scholar 

  31. Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999;397:441–446.

    Article  PubMed  CAS  Google Scholar 

  32. Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 2001;412:95–99

    Article  PubMed  CAS  Google Scholar 

  33. Parrish J, Li L, Klotz K, Ledwich D, Wang X, Xue D. Mitochondrial endonuclease G is important for apoptosis in C elegans. Nature 2001;412:90–94.

    Article  PubMed  CAS  Google Scholar 

  34. Chen M, He H, Zhan S, Krajewski S, Reed JC, Gottlieb RA. Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion. J Biol Chem 2001;276:30,724-30,728.

    Google Scholar 

  35. Scheubel RJ, Bartling B, Simm A, et al. Apoptotic pathway activation from mitochondria and death receptors without caspase-3 cleavage in failing human myocardium: Fragile balance of myocyte survival? J Am Coll Cardiol 2002;39:481–488.

    Article  PubMed  CAS  Google Scholar 

  36. Adams JM, Cory S. The Bcl-2 protein family: Arbiters of cell survival. Science 1998;281:1322–1326.

    Article  PubMed  CAS  Google Scholar 

  37. Cheng EH, Wei MC, Weiler S, et al. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX-and BAK-mediated mitochondrial apoptosis. Mol Cell 2001;8:705–711.

    Article  PubMed  CAS  Google Scholar 

  38. Chen Z, Chua CC, Ho YS, Hamdy RC, Chua BH. Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. Am J Physiol Heart Circ Physiol 2001;280:H2313–H2320.

    PubMed  CAS  Google Scholar 

  39. Kang PM, Haunstetter A, Aoki H, Usheva A, Izumo S. Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation. Circ Res 2000;87:118–125.

    PubMed  CAS  Google Scholar 

  40. Zha J, Harada H, Yang E, Jocket J, Korsmeyer SJ. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 1996;87:619–628.

    Article  PubMed  CAS  Google Scholar 

  41. Troy CM, Salvesen GS. Caspases on the brain. J Neurosci Res 2002;69:145–150.

    Article  PubMed  CAS  Google Scholar 

  42. Cohen GM. Caspases: the executioners of apoptosis. Biochem J 1997;326:1–16.

    PubMed  CAS  Google Scholar 

  43. Thornberry NA, Lazebnik Y. Caspases: Enemies within. Science 1998;281:1312–1316.

    Article  PubMed  CAS  Google Scholar 

  44. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998;94:491–501.

    Article  PubMed  CAS  Google Scholar 

  45. Luo X, Budihardjo I, Zou H, Slaughter C, Wang, X. Bid, α Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998;94:481–490.

    Article  PubMed  CAS  Google Scholar 

  46. Stephanou A, Brar B, Liao Z, Scarabelli T, Knight RA, Latchman DS. Distinct initiator caspases are required for the induction of apoptosis in cardiac myocytes during ischaemia versus reperfusion injury. Cell Death Differ 2001;8:434–435.

    Article  PubMed  CAS  Google Scholar 

  47. Scarabelli TM, Stephanou A, Pasini E, et al. Different signaling pathways induce apoptosis in endothelial cells and cardiac myocytes during ischemia/ reperfusion injury. Circ Res 2002;90:745–748.

    Article  PubMed  CAS  Google Scholar 

  48. Mocanu MM, Baxter GF, Yellon DM. Caspase inhibition and limitation of myocardial infarct size: Protection against lethal reperfusion injury. Br J Pharmacol 2000;130:197–200.

    Article  PubMed  CAS  Google Scholar 

  49. Holly TA, Drincic A, Byun Y, et al. Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol 1999;31:1709–1715.

    Article  PubMed  CAS  Google Scholar 

  50. Condorelli G, Roncarati R, Ross J, et al. Heart-targeted overexpression of caspase3 in mice increases infarct size and depresses cardiac function. Proc Natl Acad Sci USA 2001;98: 9977–9982.

    Article  PubMed  CAS  Google Scholar 

  51. Laugwitz KL, Moretti A, et al. Blocking caspase activated apoptosis improves contractility in failing myocardium. Hum Gene Ther 2001;12:2051–2063.

    Article  PubMed  CAS  Google Scholar 

  52. Crompton M, Ellinger H, Costi A. Inhibition by cyclosporin A of a Ca2-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J 1988;255:357–360.

    PubMed  CAS  Google Scholar 

  53. Calvillo L, Latini R, Kajstura J, et al. Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc Natl Acad Sci USA 2003;100:4802–4806.

    Article  PubMed  CAS  Google Scholar 

  54. Cai Z, Manalo DJ, Wei G, et al. Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury. Circulation 2003;108:79–85.

    Article  PubMed  CAS  Google Scholar 

  55. Parsa CJ, Matsumoto A, Kim J, et al. A novel protective effect of erythropoietin in the infarcted heart. J Clin Invest 2003;112:999–1007.

    Article  PubMed  CAS  Google Scholar 

  56. Tramontano AF, Muniyappa R, Black AD, et al. Erythropoietin protects cardiac myocytes from hypoxia-induced apoptosis through an Akt-dependent pathway. Biochem Biophys Res Commun 2003;112:990–994.

    Article  CAS  Google Scholar 

  57. Moon C, Krawczyk M, Ahn D, et al. Erythropoietin reduces myocardial infarction and left ventricular functional decline after coronary artery ligation in rats. Proc Natl Acad Sci USA 2003;100:11,612-11,617.

    Google Scholar 

  58. Cai Z, Semenza GL. Phosphatidylinositol-3-kinase signaling is required for erythropoietinmediated acute protection against myocardial ischemia/reperfusion injury. Circulation 2004;109:2050–2053.

    Article  PubMed  CAS  Google Scholar 

  59. Jonassen AK, Sack MN, Mjos OD, Yellon DM. Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res 2001;89(12):1191–1198.

    Article  PubMed  CAS  Google Scholar 

  60. Buerke M, Murohara T, Skurk C, Nuss C, Tomaselli K, Lefer AM. Cardioprotective effect of insulin-like growth factor I in myocardial ischemia followed by reperfusion. Proc Natl Acad Sci USA 1995;92(17):8031–8035.

    Article  PubMed  CAS  Google Scholar 

  61. Luo Z, Diaco M, Murohara T, Ferrara N, Isner JM, Symes JF. Vascular endothelial growth factor attenuates myocardial ischemia-reperfusion injury. Ann Thorac Surg 1997;64(4):993–998.

    Article  PubMed  CAS  Google Scholar 

  62. Yamashita K, Kajstura J, Discher DJ, et al. Reperfusion-activated Akt kinase prevents apoptosis in transgenic mouse hearts overexpressing insulin-like growth factor-1. Circ Res 2001;88(6):609–614.

    PubMed  CAS  Google Scholar 

  63. Kureishi Y, Luo Z, Shiojima I, et al. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med 2000;6(9):1004–1010.

    Article  PubMed  CAS  Google Scholar 

  64. Bell RM, Yellon DM. Atorvastatin, administered at the onset of reperfusion, and independent of lipid lowering, protects the myocardium by up-regulating a pro-survival pathway. J Am Coll Cardiol 2003;41:508–515.

    Article  PubMed  CAS  Google Scholar 

  65. Tong H, Chen W, Steenbergen C, Murphy E. Ischemic preconditioning activates phosphatidylinositol-3-kinase upstream of protein kinase C. Circ Res 2000;87:309–315.

    PubMed  CAS  Google Scholar 

  66. Mocanu M, Bell R, Yellon D. PI3 kinase and not p42/p44 appear to be implicated in the protection conferred by ischemic preconditioning. J Mol Cell Cardiol2002;34:661–668.

    Article  PubMed  CAS  Google Scholar 

  67. Bell RM, Yellon DM. Bradykinin limits infarction when administered as an adjunct to reperfusion in mouse heart: the role of PI3K, Akt and eNOS. J Mol Cell Cardiol 2003; 35(2):185–193.

    Article  PubMed  CAS  Google Scholar 

  68. Matsui T, Li L, delMonte F, et al. Adenovirus gene transfer of activated phosphatidylinositol-3’kinase and Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro. Circulation 1999; 100:2373–2379.

    PubMed  CAS  Google Scholar 

  69. Chan T, Rittenhouse S, Tsichlis P. Akt/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Ann Rev Biochem 1999; 68:965–1014.

    Article  PubMed  CAS  Google Scholar 

  70. Cantley L. The phosphoinositide 3-kinase pathway. Science2002;296:1655–1657.

    Article  PubMed  CAS  Google Scholar 

  71. Tong H, Steenbergen C, Koch WJ, Murphy E. G protein-dependent signaling pathway in ischemic preconditioning: a role for endosomal signaling. Circulation 2003;108(suppl IV): IV–37. Abstract.

    Google Scholar 

  72. Oldenburg O, Qin Q, Sharma AR, Cohen MV, Downey JM, Benoit JN. Acetylcholine leads to free radical production dependent on KATP channels, Gi proteins, phosphatidylinositol 3-kinase and tyrosine kinase. Cardiovasc Res 2002;55:544–552.

    Article  PubMed  CAS  Google Scholar 

  73. Schwartzbauer G, Robbins J. The tumor suppressor gene PTEN can regulate cardiac hypertrophy and survival. J Biol Chem 2001;276:35,786-35,793.

    Article  Google Scholar 

  74. Tong H, Imahashi K, Steenbergen C, Murphy E. Phosphorylation of glycogen synthase kinase 3b during preconditioning through a phosphatidylinositol-3-kinase-dependent pathway is cardioprotective. Circ Res 2002;90:377–379.

    Article  PubMed  CAS  Google Scholar 

  75. Bell RM, Yellon DM. The contribution of endothelial nitric oxide synthase to early ischaemic preconditioning: the lowering of the preconditioning threshold: an investigation in eNOS knockout mice. Cardiovasc Res 2001;52:274–280.

    Article  PubMed  CAS  Google Scholar 

  76. Ping P, Takano H, Zhang J, et al. Isoform-selective activation of protein kinase C by nitric oxide in the heart of conscious rabbits: a signaling mechanism for both nitric oxide-induced and ischemia-induced preconditioning. Circ Res 1999;84:587–604.

    PubMed  CAS  Google Scholar 

  77. Sasaki N, Sato T, Ohler A, O’Rourke B, Marbán E. Activation of mitochondrial ATPdependent potassium channels by nitric oxide. Circulation 2000;101:439–445.

    PubMed  CAS  Google Scholar 

  78. Scheid MP, Woodgett JR. PKB/Akt: functional insights from genetic models. Nat Rev Mol Cell Biol 2001;2:760–768.

    Article  PubMed  CAS  Google Scholar 

  79. Yamaguchi H, Wang HG. The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene 2001;20(53):7779–7786.

    Article  PubMed  CAS  Google Scholar 

  80. Harada H, Andersen JS, Mann M, Terada N, Korsmeyer SJ. p70S6 kinase signals cell survival as well as growth, inactivating the proapoptotic molecule BAD. Proc Natl Acad Sci USA 2001;98(17):9666–9670.

    Google Scholar 

  81. Tong H, Chen W, Steenbergen C, Murphy E. Ischemic preconditioning activates phosphatidylinositol-3-kinase upstream of protein kinase C. Circ Res 2000;87:309–315.

    PubMed  CAS  Google Scholar 

  82. Speechly-Dick ME, Mocanu MM, Yellon DM. Protein kinase C: its role in ischemic preconditioning in the rat. Circ Res 1994;75:586–590.

    PubMed  CAS  Google Scholar 

  83. Mitchell MB, Meng X, Ao L, Brown JM, Harken AH, Banerjee A. Preconditioning of isolated rat heart is mediated by protein kinase C. Circ Res 1995;76:73–81.

    PubMed  CAS  Google Scholar 

  84. Goto M, Liu Y, Yang XM, Ardell JL, Cohen MV, Downey JM. Role of bradykinin in protection of ischemic preconditioning in rabbit hearts. Circ Res 1995;77:611–621.

    PubMed  CAS  Google Scholar 

  85. Lepicier P, Bouchard JF, Lagneux C, Lamontagne D. Endocannabinoids protect the rat isolated heart against ischaemia. Br J Pharmacol 2003;139:805–815.

    Article  PubMed  CAS  Google Scholar 

  86. Miyamae M, Rodriguez MM, Camacho SA, Diamond I, Mochly-Rosen D, Figueredo VM. Activation of epsilon protein kinase C correlates with a cardioprotective effect of regular ethanol consumption. Proc Natl Acad Sci USA 1998;95:8262–8267.

    Article  PubMed  CAS  Google Scholar 

  87. Palmen M, Daemen MJ, De Windt LJ, et al. Fibroblast growth factor-1 improves cardiac functional recovery and enhances cell survival after ischemia and reperfusion: a fibroblast growth factor receptor, protein kinase C, and tyrosine kinase-dependent mechanism. J Am Coll Cardiol 2004;44:1113–1123.

    Article  PubMed  CAS  Google Scholar 

  88. Tian R, Miao W, Spindler M, et al. Long-term expression of protein kinase C in adult mouse hearts improves postischemic recovery. Proc Natl Acad Sci USA 1999;96:13,536-13,541.

    Google Scholar 

  89. Dorn GW 2nd, Souroujon MC, Liron T, et al. Sustained in vivo cardiac protection by a rationally designed peptide that causes protein kinase C translocation. Proc Natl Acad Sci USA 1999;96:12,798-12,803.

    Google Scholar 

  90. Mackay K, Mochly-Rosen D. Location, anchoring, and functions of protein kinase C isozymes in the heart. J Mol Cell Cardiol 2001;33:1301–1307.

    Article  PubMed  CAS  Google Scholar 

  91. Chen L, Hahn H, Wu G, et al. Opposing cardioprotective action and parallel hypertrophic effects of aPKC and äPKC. Proc Natl Acad Sci USA 2001;98:11,114-11,119.

    Article  Google Scholar 

  92. Mayr M, Metzler B, Chung YL, et al. Ischemic preconditioning exaggerates cardiac damage in PKC-delta null mice. Am J Physiol Heart Circ Physiol 2004;287:H946–H956.

    Article  PubMed  CAS  Google Scholar 

  93. Sato T, O’Rourke B, Marbán E. Modulation of mitochondrial ATP dependent K channels by protein kinase C. Circ Res 1998;83:110–114.

    PubMed  CAS  Google Scholar 

  94. Baines CP, Song CX, Zheng YT, et al. Protein kinase C interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res 2003;92:873–880.

    Article  PubMed  CAS  Google Scholar 

  95. Hu K, Mochly-Rosen D, Boutjdir M. Evidence for functional role of äPKC isozyme in the regulation of cardiac Ca2+ channels. Am J Physiol 2000;279:H2658–H2664.

    CAS  Google Scholar 

  96. Heidkamp MC, Bayer AL, Martin JL, Smarel AM. Differential activation of mitogen-activated protein kinase cascades and apoptosis by protein kinase C-ä and a in neonatal rat ventricular myocytes. Circ Res 2001;89:882–890.

    Article  PubMed  CAS  Google Scholar 

  97. Ping P, Zhang J, Cao X, et al. PKC-dependent activation of p44/p42 MAPKs during myocardial ischemia-reperfusion in conscious rabbits. Am J Physiol 1999;276:H1468–H1481.

    PubMed  CAS  Google Scholar 

  98. Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 1999;79:143–180.

    PubMed  CAS  Google Scholar 

  99. Baxter GF, Mocanu MM, Brar BK, Latchman DS, Yellon DM. Cardioprotective effects of transforming growth factor-beta1 during early reoxygenation or reperfusion are mediated by p42/p44 MAPK. J Cardiovasc Pharmacol 2001;38:930–939.

    Article  PubMed  CAS  Google Scholar 

  100. Parrizas M, Saltiel AR, LeRoith D. Insulin-like growth factor 1 inhibits apoptosis using the phosphatidylinositol 3V-kinase and mitogenactivated protein kinase pathways. J Biol Chem 1997;272:154–161.

    Article  PubMed  CAS  Google Scholar 

  101. Xu Z, Yang XM, Cohen MV, Neumann T, Heusch G, Downey JM. Limitation of infarct size in rabbit hearts by the novel adenosine receptor agonist AMP 579 administered at reperfusion. J Mol Cell Cardiol 2000;32:2339–2347.

    Article  PubMed  CAS  Google Scholar 

  102. Liao Z, Brar BK, Cai Q, et al. Cardiotrophin-1 (CT-1) can protect the adult heart from injury when added both prior to ischaemia and at reperfusion. Cardiovasc Res 2002;53:902–910.

    Article  PubMed  CAS  Google Scholar 

  103. Brar BK, Stephanou A, Liao Z, et al. Cardiotrophin-1 can protect cardiac myocytes from injury when added both prior to simulated ischaemia and at reoxygenation. Cardiovasc Res 2001;51:265–274.

    Article  PubMed  CAS  Google Scholar 

  104. Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM. Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol 2005 Feb; 288:H971–H976.

    Article  PubMed  CAS  Google Scholar 

  105. Strohm C, Barancik T, Bruhl ML, Kilian SA, Schaper W. Inhibition of the ER-kinase cascade by PD98059 and UO126 counteracts ischemic preconditioning in pig myocardium. J Cardiovasc Pharmacol 2000;36:218–229.

    Article  PubMed  CAS  Google Scholar 

  106. Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997;91(2):231–241.

    Article  PubMed  CAS  Google Scholar 

  107. Yamaguchi H, Wang HG. The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene 2001;20(53):7779–7786.

    Article  PubMed  CAS  Google Scholar 

  108. Tsuruta F, Masuyama N, Gotoh Y. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway suppresses Bax translocation to mitochondria. J Biol Chem 2002;277:14,040-14,047.

    Article  CAS  Google Scholar 

  109. Baines CP, Zhang J, Wang GW, et al. Mitochondrial PKCä and MAPK form signaling modules in the murine heart: enhanced mitochondrial PKC-MAPK interactions and differential MAPK activation in PKCä-induced cardioprotection. Circ Res 2002;90:390–397.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Cai, Z., Semenza, G.L. (2006). Signaling Pathways That Protect the Heart Against Apoptosis Induced by Ischemia and Reperfusion. In: Srivastava, R. (eds) Apoptosis, Cell Signaling, and Human Diseases. Humana Press. https://doi.org/10.1007/978-1-59745-199-4_9

Download citation

Publish with us

Policies and ethics