Skip to main content

Overview of the DNA Damage Checkpoint

ATM and ATR

  • Chapter
Apoptosis, Senescence, and Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1689 Accesses

summary

Maintenance of genome stability in response to DNA damage is essential for cell survival. DNA damage occurs following external insults such as ultraviolet light and ionizing radiations or as a consequence of DNA replication or physiological DNA rearrangements. Cells respond to DNA damage by the coordinated induction of cell-cycle arrest and DNA repair or trigger apoptosis if the damage is too extensive. The DNA damage response is induced by two prominent intermediates: double-strand breaks and single-strand DNA. These pathways are well conserved from yeast to mammals and comprise a network of proteins acting together to monitor, sense, and repair DNA damage. In this review, we will focus on the central role played by two protein kinases, Ataxia-Telangiectasia mutated (ATM) and ATM related (ATR), during S-phase checkpoints and how these proteins are regulated by other components of the DNA damage response such as BRCA1, the Mre11-Rad50-Nbs1 complex, Claspin, and ATR-interacting protein (ATRIP). All these proteins, which are involved in sensing the damage (ATM, Mre11, Nbs1), in mediating (BRCA1) or transducing (Chk2) the signal, are essential for maintaining genome stability. Notably, mutations in genes encoding these proteins lead to increased risk for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Loeb LA. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 1991;51(12):3075–9.

    PubMed  CAS  Google Scholar 

  2. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 2004;73:39–85.

    PubMed  CAS  Google Scholar 

  3. Shechter D, Costanzo V, Gautier J. ATR and ATM regulate the timing of DNA replication origin firing. Nat Cell Biol 2004;6(7):648–55.

    PubMed  CAS  Google Scholar 

  4. Savitsky K, Bar-Shira A, Gilad S, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 1995;268(5218):1749–53.

    PubMed  CAS  Google Scholar 

  5. Savitsky K, Sfez S, Tagle DA, et al. The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum Mol Genet 1995;4(11):2025–32.

    PubMed  CAS  Google Scholar 

  6. Crawford TO. Ataxia telangiectasia. Semin Pediatr Neurol 1998;5(4):287–94.

    PubMed  CAS  Google Scholar 

  7. Becker-Catania SG, Gatti RA. Ataxia-telangiectasia. Adv Exp Med Biol 2001;495:191–8.

    PubMed  CAS  Google Scholar 

  8. Olsen JH, Hahnemann JM, Borresen-Dale AL, et al. Cancer in patients with ataxia-telangiectasia and in their relatives in the nordic countries. J Natl Cancer Inst 2001;93(2):121–7.

    PubMed  CAS  Google Scholar 

  9. Shiloh Y. Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Annu Rev Genet 1997;31:635–62.

    PubMed  CAS  Google Scholar 

  10. Concannon P, Gatti RA. Diversity of ATM gene mutations detected in patients with ataxia-telangiectasia. Hum Mutat 1997;10(2):100–7.

    PubMed  CAS  Google Scholar 

  11. Goodship J, Gill H, Carter J, Jackson A, Splitt M, Wright M. Autozygosity mapping of a seckel syndrome locus to chromosome 3q22.1-q24. Am J Hum Genet 2000;67(2):498–503.

    PubMed  CAS  Google Scholar 

  12. O’Driscoll M, Jeggo PA. Clinical impact of ATR checkpoint signalling failure in humans. Cell Cycle 2003;2(3):194–5.

    PubMed  CAS  Google Scholar 

  13. Theunissen JW, Kaplan MI, Hunt PA, et al. Checkpoint failure and chromosomal instability without lymphomagenesis in Mre11(ATLD1/ATLD1) mice. Mol Cell 2003;12(6):1511–23.

    PubMed  CAS  Google Scholar 

  14. Mohaghegh P, Hickson ID. The Bloom’s syndrome helicase: keeping cancer at bay. Biologist (London) 2003;50(1):29–33.

    Google Scholar 

  15. Wang X, D’Andrea AD. The interplay of Fanconi anemia proteins in the DNA damage response. DNA Repair (Amst) 2004;3(8–9):1063–9.

    CAS  Google Scholar 

  16. Tischkowitz M, Dokal I. Fanconi anaemia and leukaemia – clinical and molecular aspects. Br J Haematol 2004;126(2):176–91.

    Google Scholar 

  17. Gatti RA, Berkel I, Boder E, et al. Localization of an ataxia-telangiectasia gene to chromosome 11q22–23. Nature 1988;336(6199):577–80.

    PubMed  CAS  Google Scholar 

  18. Uziel T, Savitsky K, Platzer M, et al. Genomic Organization of the ATM gene. Genomics 1996;33(2):317–20.

    PubMed  CAS  Google Scholar 

  19. Lakin ND, Weber P, Stankovic T, Rottinghaus ST, Taylor AM, Jackson SP. Analysis of the ATM protein in wild-type and ataxia telangiectasia cells. Oncogene 1996;13(12):2707–16.

    PubMed  CAS  Google Scholar 

  20. Gately DP, Hittle JC, Chan GK, Yen TJ. Characterization of ATM expression, localization, and associated DNA-dependent protein kinase activity. Mol Biol Cell 1998;9(9):2361–74.

    PubMed  CAS  Google Scholar 

  21. Chan DW, Gately DP, Urban S, et al. Lack of correlation between ATM protein expression and tumour cell radiosensitivity. Int J Radiat Biol 1998;74(2):217–24.

    PubMed  CAS  Google Scholar 

  22. Lim DS, Kirsch DG, Canman CE, et al. ATM binds to beta-adaptin in cytoplasmic vesicles. Proc Natl Acad Sci USA 1998;95(17):10146–51.

    PubMed  CAS  Google Scholar 

  23. Watters D, Kedar P, Spring K, et al. Localization of a portion of extranuclear ATM to peroxisomes. J Biol Chem 1999;274(48):34277–82.

    PubMed  CAS  Google Scholar 

  24. Barlow C, Ribaut-Barassin C, Zwingman TA, et al. ATM is a cytoplasmic protein in mouse brain required to prevent lysosomal accumulation. Proc Natl Acad Sci USA 2000;97(2):871–6.

    PubMed  CAS  Google Scholar 

  25. Cimprich KA, Shin TB, Keith CT, Schreiber SL. cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein. Proc Natl Acad Sci USA 1996;93(7):2850–5.

    PubMed  CAS  Google Scholar 

  26. Bentley NJ, Holtzman DA, Flaggs G, et al. The Schizosaccharomyces pombe rad3 checkpoint gene. EMBO J 1996;15(23):6641–51.

    PubMed  CAS  Google Scholar 

  27. de Klein A, Muijtjens M, van Os R, et al. Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr Biol 2000;10(8):479–82.

    PubMed  Google Scholar 

  28. Brown EJ, Baltimore D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 2000;14(4):397–402.

    PubMed  CAS  Google Scholar 

  29. Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 2001;15(17):2177–96.

    PubMed  CAS  Google Scholar 

  30. Bosotti R, Isacchi A, Sonnhammer EL. FAT: a novel domain in PIK-related kinases. Trends Biochem Sci 2000;25(5):225–7.

    PubMed  CAS  Google Scholar 

  31. Perry J, Kleckner N. The ATRs, ATMs, and TORs are giant HEAT repeat proteins. Cell 2003;112(2):151–5.

    PubMed  CAS  Google Scholar 

  32. Kim ST, Lim DS, Canman CE, Kastan MB. Substrate specificities and identification of putative substrates of ATM kinase family members. J Biol Chem 1999;274(53):37538–43.

    PubMed  CAS  Google Scholar 

  33. O’Neill T, Dwyer AJ, Ziv Y, et al. Utilization of oriented peptide libraries to identify substrate motifs selected by ATM. J Biol Chem 2000;275(30):22719–27.

    PubMed  CAS  Google Scholar 

  34. Smith GC, Cary RB, Lakin ND, et al. Purification and DNA binding properties of the ataxia-telangiectasia gene product ATM. Proc Natl Acad Sci USA 1999;96(20):11134–9.

    PubMed  CAS  Google Scholar 

  35. Banin S, Moyal L, Shieh S, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 1998;281(5383):1674–7.

    PubMed  CAS  Google Scholar 

  36. Canman CE, Lim DS, Cimprich KA, et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 1998;281(5383):1677–9.

    PubMed  CAS  Google Scholar 

  37. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003;421(6922):499–506.

    PubMed  CAS  Google Scholar 

  38. Kozlov S, Gueven N, Keating K, Ramsay J, Lavin MF. ATP activates ataxia-telangiectasia mutated (ATM) in vitro. Importance of autophosphorylation. J Biol Chem 2003;278(11):9309–17.

    PubMed  CAS  Google Scholar 

  39. D’Amours D, Jackson SP. The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nat Rev Mol Cell Biol 2002;3(5):317–27.

    PubMed  CAS  Google Scholar 

  40. Zhang Y, Zhou J, Lim CU. The role of NBS1 in DNA double strand break repair, telomere stability, and cell cycle checkpoint control. Cell Res 2006;16(1):45–54.

    PubMed  Google Scholar 

  41. Tauchi H, Kobayashi J, Morishima K, et al. The forkhead-associated domain of NBS1 is essential for nuclear foci formation after irradiation but not essential for hRAD50-hMRE11[middle dot]NBS1 complex DNA repair activity. J Biol Chem 2001;276(1):12–5.

    PubMed  CAS  Google Scholar 

  42. Falck J, Coates J, Jackson SP. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 2005;434(7033):605–11.

    PubMed  CAS  Google Scholar 

  43. You Z, Chahwan C, Bailis J, Hunter T, Russell P. ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol Cell Biol 2005;25(13):5363–79.

    PubMed  CAS  Google Scholar 

  44. Cerosaletti K, Wright J, Concannon P. Active role for nibrin in the kinetics of atm activation. Mol Cell Biol 2006;26(5):1691–9.

    PubMed  CAS  Google Scholar 

  45. Kobayashi J, Antoccia A, Tauchi H, Matsuura S, Komatsu K. NBS1 and its functional role in the DNA damage response. DNA Repair (Amst) 2004;3(8–9):855–61.

    CAS  Google Scholar 

  46. Petrini JH. The Mre11 complex and ATM: collaborating to navigate S phase. Curr Opin Cell Biol 2000;12(3):293–6.

    PubMed  CAS  Google Scholar 

  47. Paull TT, Lee JH. The Mre11/Rad50/Nbs1 complex and its role as a DNA double-strand break sensor for ATM. Cell Cycle 2005;4(6):737–40.

    PubMed  CAS  Google Scholar 

  48. Lisby M, Barlow JH, Burgess RC, Rothstein R. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 2004;118(6):699–713.

    PubMed  CAS  Google Scholar 

  49. Lukas C, Falck J, Bartkova J, Bartek J, Lukas J. Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat Cell Biol 2003;5(3):255–60.

    PubMed  CAS  Google Scholar 

  50. Nakanishi K, Taniguchi T, Ranganathan V, et al. Interaction of FANCD2 and NBS1 in the DNA damage response. Nat Cell Biol 2002;4(12):913–20.

    PubMed  CAS  Google Scholar 

  51. Yazdi PT, Wang Y, Zhao S, Patel N, Lee EY, Qin J. SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev 2002;16(5):571–82.

    PubMed  CAS  Google Scholar 

  52. Lee JH, Xu B, Lee CH, et al. Distinct functions of Nijmegen breakage syndrome in ataxia telangiectasia mutated-dependent responses to DNA damage. Mol Cancer Res 2003;1(9):674–81.

    PubMed  CAS  Google Scholar 

  53. Buscemi G, Savio C, Zannini L, et al. Chk2 activation dependence on Nbs1 after DNA damage. Mol Cell Biol 2001;21(15):5214–22.

    PubMed  CAS  Google Scholar 

  54. Girard PM, Riballo E, Begg AC, Waugh A, Jeggo PA. Nbs1 promotes ATM dependent phosphorylation events including those required for G1/S arrest. Oncogene 2002;21(27):4191–9.

    PubMed  CAS  Google Scholar 

  55. Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 2003;22(20):5612–21.

    PubMed  CAS  Google Scholar 

  56. Carson CT, Schwartz RA, Stracker TH, Lilley CE, Lee DV, Weitzman MD. The Mre11 complex is required for ATM activation and the G2/M checkpoint. EMBO J 2003;22(24):6610–20.

    PubMed  CAS  Google Scholar 

  57. Lee JH, Paull TT. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 2005;308(5721):551–4.

    PubMed  CAS  Google Scholar 

  58. Lee JH, Paull TT. Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 2004;304(5667):93–6.

    PubMed  CAS  Google Scholar 

  59. Costanzo V, Paull T, Gottesman M, Gautier J. Mre11 assembles linear DNA fragments into DNA damage signaling complexes. PLoS Biol 2004;2(5):E110.

    PubMed  Google Scholar 

  60. Costanzo V, Robertson K, Ying CY, et al. Reconstitution of an ATM-dependent checkpoint that inhibits chromosomal DNA replication following DNA damage. Mol Cell 2000;6(3):649–59.

    PubMed  CAS  Google Scholar 

  61. Lukas C, Melander F, Stucki M, et al. Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. EMBO J 2004;23(13):2674–83.

    PubMed  CAS  Google Scholar 

  62. Goldberg M, Stucki M, Falck J, et al. MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 2003;421(6926):952–6.

    PubMed  CAS  Google Scholar 

  63. Mochan TA, Venere M, DiTullio RA Jr, Halazonetis TD. 53BP1 and NFBD1/MDC1-Nbs1 function in parallel interacting pathways activating ataxia-telangiectasia mutated (ATM) in response to DNA damage. Cancer Res 2003;63(24):8586–91.

    PubMed  CAS  Google Scholar 

  64. Stucki M, Jackson SP. MDC1/NFBD1: a key regulator of the DNA damage response in higher eukaryotes. DNA Repair (Amst) 2004;3(8–9):953–7.

    CAS  Google Scholar 

  65. Lee AC, Fernandez-Capetillo O, Pisupati V, Jackson SP, Nussenzweig A. Specific association of mouse MDC1/NFBD1 with NBS1 at sites of DNA-damage. Cell Cycle 2005;4(1):177–82.

    PubMed  CAS  Google Scholar 

  66. Lou Z, Minter-Dykhouse K, Franco S, et al. MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol Cell 2006;21(2):187–200.

    PubMed  CAS  Google Scholar 

  67. Iwabuchi K, Bartel PL, Li B, Marraccino R, Fields S. Two cellular proteins that bind to wild-type but not mutant p53. Proc Natl Acad Sci USA 1994;91(13):6098–102.

    PubMed  CAS  Google Scholar 

  68. Iwabuchi K, Li B, Massa HF, Trask BJ, Date T, Fields S. Stimulation of p53-mediated transcriptional activation by the p53-binding proteins, 53BP1 and 53BP2. J Biol Chem 1998;273(40):26061–8.

    PubMed  CAS  Google Scholar 

  69. Joo WS, Jeffrey PD, Cantor SB, Finnin MS, Livingston DM, Pavletich NP. Structure of the 53BP1 BRCT region bound to p53 and its comparison to the Brca1 BRCT structure. Genes Dev 2002;16(5):583–93.

    PubMed  CAS  Google Scholar 

  70. Derbyshire DJ, Basu BP, Date T, Iwabuchi K, Doherty AJ. Purification, crystallization and preliminary X-ray analysis of the BRCT domains of human 53BP1 bound to the p53 tumour suppressor. Acta Crystallogr D Biol Crystallogr 2002;58(Pt 10 Pt 2):1826–9.

    Google Scholar 

  71. Derbyshire DJ, Basu BP, Serpell LC, et al. Crystal structure of human 53BP1 BRCT domains bound to p53 tumour suppressor. EMBO J 2002;21(14):3863–72.

    PubMed  CAS  Google Scholar 

  72. Schultz LB, Chehab NH, Malikzay A, Halazonetis TD. p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J Cell Biol 2000;151(7): 1381–90.

    PubMed  CAS  Google Scholar 

  73. Xia Z, Morales JC, Dunphy WG, Carpenter PB. Negative cell cycle regulation and DNA damage-inducible phosphorylation of the BRCT protein 53BP1. J Biol Chem 2001;276(4):2708–18.

    PubMed  CAS  Google Scholar 

  74. Anderson L, Henderson C, Adachi Y. Phosphorylation and rapid relocalization of 53BP1 to nuclear foci upon DNA damage. Mol Cell Biol 2001;21(5):1719–29.

    PubMed  CAS  Google Scholar 

  75. Rappold I, Iwabuchi K, Date T, Chen J. Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. J Cell Biol 2001;153(3):613–20.

    PubMed  CAS  Google Scholar 

  76. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998;273(10):5858–68.

    PubMed  CAS  Google Scholar 

  77. Maser RS, Monsen KJ, Nelms BE, Petrini JH. hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol Cell Biol 1997;17(10):6087–96.

    PubMed  CAS  Google Scholar 

  78. Zgheib O, Huyen Y, DiTullio RA Jr, et al. ATM signaling and 53BP1. Radiother Oncol 2005;76(2):119–22.

    PubMed  CAS  Google Scholar 

  79. DiTullio RA Jr, Mochan TA, Venere M, et al. 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat Cell Biol 2002;4(12):998–1002.

    PubMed  CAS  Google Scholar 

  80. Vialard JE, Gilbert CS, Green CM, Lowndes NF. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. EMBO J 1998;17(19):5679–88.

    PubMed  CAS  Google Scholar 

  81. Emili A. MEC1-dependent phosphorylation of Rad9p in response to DNA damage. Mol Cell 1998;2(2):183–9.

    PubMed  CAS  Google Scholar 

  82. Zhang J, Powell SN. The role of the BRCA1 tumor suppressor in DNA double-strand break repair. Mol Cancer Res 2005;3(10):531–9.

    PubMed  CAS  Google Scholar 

  83. Foray N, Marot D, Gabriel A, et al. A subset of ATM- and ATR-dependent phosphorylation events requires the BRCA1 protein. EMBO J 2003;22(11):2860–71.

    PubMed  CAS  Google Scholar 

  84. Yarden RI, Pardo-Reoyo S, Sgagias M, Cowan KH, Brody LC. BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet 2002;30(3):285–9.

    PubMed  Google Scholar 

  85. Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 2000;14(8):927–39.

    PubMed  CAS  Google Scholar 

  86. Ali A, Zhang J, Bao S, et al. Requirement of protein phosphatase 5 in DNA-damage-induced ATM activation. Genes Dev 2004;18(3):249–54.

    PubMed  CAS  Google Scholar 

  87. Goodarzi AA, Jonnalagadda JC, Douglas P, et al. Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. EMBO J 2004;23(22):4451–61.

    PubMed  CAS  Google Scholar 

  88. Unsal-Kacmaz K, Makhov AM, Griffith JD, Sancar A. Preferential binding of ATR protein to UV-damaged DNA. Proc Natl Acad Sci USA 2002;99(10):6673–8.

    PubMed  CAS  Google Scholar 

  89. Guo Z, Kumagai A, Wang SX, Dunphy WG. Requirement for Atr in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts. Genes Dev 2000;14(21):2745–56.

    PubMed  CAS  Google Scholar 

  90. Shiloh Y. ATM and ATR: networking cellular responses to DNA damage. Curr Opin Genet Dev 2001;11(1):71–7.

    PubMed  CAS  Google Scholar 

  91. Hammond EM, Dorie MJ, Giaccia AJ. Inhibition of ATR leads to increased sensitivity to hypoxia/reoxygenation. Cancer Res 2004;64(18):6556–62.

    PubMed  CAS  Google Scholar 

  92. Heffernan TP, Simpson DA, Frank AR, et al. An ATR- and Chk1-dependent S checkpoint inhibits replicon initiation following UVC-induced DNA damage. Mol Cell Biol 2002;22(24):8552–61.

    PubMed  CAS  Google Scholar 

  93. Cliby WA, Roberts CJ, Cimprich KA, et al. Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J 1998;17(1): 159–69.

    PubMed  CAS  Google Scholar 

  94. Unsal-Kacmaz K, Sancar A. Quaternary structure of ATR and effects of ATRIP and replication protein A on its DNA binding and kinase activities. Mol Cell Biol 2004;24(3):1292–300.

    PubMed  CAS  Google Scholar 

  95. Bomgarden RD, Yean D, Yee MC, Cimprich KA. A novel protein activity mediates DNA binding of an ATR-ATRIP complex. J Biol Chem 2004;279(14):13346–53.

    PubMed  CAS  Google Scholar 

  96. Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 2003;300(5625):1542–8.

    PubMed  CAS  Google Scholar 

  97. Cortez D, Guntuku S, Qin J, Elledge SJ. ATR and ATRIP: partners in checkpoint signaling. Science 2001;294(5547):1713–6.

    PubMed  CAS  Google Scholar 

  98. You Z, Kong L, Newport J. The role of single-stranded DNA and polymerase alpha in establishing the ATR, Hus1 DNA replication checkpoint. J Biol Chem 2002;277(30):27088–93.

    PubMed  CAS  Google Scholar 

  99. Costanzo V, Gautier J. Single-strand DNA gaps trigger an ATR- and Cdc7-dependent checkpoint. Cell Cycle 2003;2(1):17.

    PubMed  CAS  Google Scholar 

  100. Itakura E, Takai KK, Umeda K, et al. Amino-terminal domain of ATRIP contributes to intranuclear relocation of the ATR-ATRIP complex following DNA damage. FEBS Lett 2004;577(1–2):289–93.

    PubMed  CAS  Google Scholar 

  101. Itakura E, Umeda K, Sekoguchi E, Takata H, Ohsumi M, Matsuura A. ATR-dependent phosphorylation of ATRIP in response to genotoxic stress. Biochem Biophys Res Commun 2004;323(4): 1197–202.

    PubMed  CAS  Google Scholar 

  102. Jazayeri A, Falck J, Lukas C, et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 2006;8(1):37–45.

    PubMed  CAS  Google Scholar 

  103. Adams KE, Medhurst AL, Dart DA, Lakin ND. Recruitment of ATR to sites of ionising radiation-induced DNA damage requires ATM and components of the MRN protein complex. Oncogene 2006;25(28):3894–904.

    PubMed  CAS  Google Scholar 

  104. Myers JS, Cortez D. Rapid activation of ATR by ionizing radiation requires ATM and Mre11. J Biol Chem 2006;281(14):9346–50.

    PubMed  CAS  Google Scholar 

  105. Chan DW, Son SC, Block W, et al. Purification and characterization of ATM from human placenta. A manganese-dependent, wortmannin-sensitive serine/threonine protein kinase. J Biol Chem 2000;275(11):7803–10.

    PubMed  CAS  Google Scholar 

  106. Suzuki K, Kodama S, Watanabe M. Recruitment of ATM protein to double strand DNA irradiated with ionizing radiation. J Biol Chem 1999;274(36):25571–5.

    PubMed  CAS  Google Scholar 

  107. Andegeko Y, Moyal L, Mittelman L, Tsarfaty I, Shiloh Y, Rotman G. Nuclear retention of ATM at sites of DNA double strand breaks. J Biol Chem 2001;276(41):38224–30.

    PubMed  CAS  Google Scholar 

  108. Kumagai A, Kim SM, Dunphy WG. Claspin and the activated form of ATR-ATRIP collaborate in the activation of Chk1. J Biol Chem 2004;279(48):49599–608.

    PubMed  CAS  Google Scholar 

  109. Bell SP, Dutta A. DNA replication in eukaryotic cells. Annu Rev Biochem 2002;71:333–74.

    PubMed  CAS  Google Scholar 

  110. Petersen P, Chou DM, You Z, Hunter T, Walter JC, Walter G. Protein phosphatase 2A antagonizes ATM and ATR in a Cdk2- and Cdc7-independent DNA damage checkpoint. Mol Cell Biol 2006;26(5):1997–2011.

    PubMed  CAS  Google Scholar 

  111. Massague J. G1 cell-cycle control and cancer. Nature 2004;432(7015):298–306.

    PubMed  CAS  Google Scholar 

  112. Costanzo V, Robertson K, Bibikova M, et al. Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication. Mol Cell 2001;8(1):137–47.

    PubMed  CAS  Google Scholar 

  113. Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature 2004;432(7015):316–23.

    PubMed  CAS  Google Scholar 

  114. Falck J, Petrini JH, Williams BR, Lukas J, Bartek J. The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nat Genet 2002;30(3):290–4.

    PubMed  Google Scholar 

  115. Kim JM, Yamada M, Masai H. Functions of mammalian Cdc7 kinase in initiation/monitoring of DNA replication and development. Mutat Res 2003;532(1–2):29–40.

    PubMed  CAS  Google Scholar 

  116. Yoo HY, Shevchenko A, Shevchenko A, Dunphy WG. Mcm2 is a direct substrate of ATM and ATR during DNA damage and DNA replication checkpoint responses. J Biol Chem 2004;279(51): 53353–64.

    PubMed  CAS  Google Scholar 

  117. Lei M, Kawasaki Y, Young MR, Kihara M, Sugino A, Tye BK. Mcm2 is a target of regulation by Cdc7-Dbf4 during the initiation of DNA synthesis. Genes Dev 1997;11(24):3365–74.

    PubMed  CAS  Google Scholar 

  118. Zou L, Stillman B. Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p-Dbf4p kinase. Mol Cell Biol 2000;20(9):3086–96.

    PubMed  CAS  Google Scholar 

  119. Sato N, Arai K, Masai H. Human and Xenopus cDNAs encoding budding yeast Cdc7-related kinases: in vitro phosphorylation of MCM subunits by a putative human homologue of Cdc7. EMBO J 1997;16(14):4340–51.

    PubMed  CAS  Google Scholar 

  120. Jones GG, Reaper PM, Pettitt AR, Sherrington PD. The ATR-p53 pathway is suppressed in noncycling normal and malignant lymphocytes. Oncogene 2004;23(10):1911–21.

    PubMed  CAS  Google Scholar 

  121. Dierov J, Dierova R, Carroll M. BCR/ABL translocates to the nucleus and disrupts an ATR-dependent intra-S phase checkpoint. Cancer Cell 2004;5(3):275–85.

    PubMed  CAS  Google Scholar 

  122. Tibbetts RS, Cortez D, Brumbaugh KM, et al. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev 2000;14(23):2989–3002.

    PubMed  CAS  Google Scholar 

  123. Zhao H, Piwnica-Worms H. ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol 2001;21(13):4129–39.

    PubMed  CAS  Google Scholar 

  124. Liu Q, Guntuku S, Cui XS, et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 2000;14(12):1448–59.

    PubMed  CAS  Google Scholar 

  125. Busino L, Chiesa M, Draetta GF, Donzelli M. Cdc25A phosphatase: combinatorial phosphorylation, ubiquitylation and proteolysis. Oncogene 2004;23(11):2050–6.

    PubMed  CAS  Google Scholar 

  126. Hekmat-Nejad M, You Z, Yee MC, Newport JW, Cimprich KA. Xenopus ATR is a replication-dependent chromatin-binding protein required for the DNA replication checkpoint. Curr Biol 2000;10(24):1565–73.

    PubMed  CAS  Google Scholar 

  127. Lupardus PJ, Byun T, Yee MC, Hekmat-Nejad M, Cimprich KA. A requirement for replication in activation of the ATR-dependent DNA damage checkpoint. Genes Dev 2002;16(18):2327–32.

    PubMed  CAS  Google Scholar 

  128. Shechter D, Costanzo V, Gautier J. Regulation of DNA replication by ATR: signaling in response to DNA intermediates. DNA Repair (Amst) 2004;3(8–9):901–8.

    CAS  Google Scholar 

  129. Lopes M, Cotta-Ramusino C, Pellicioli A, et al. The DNA replication checkpoint response stabilizes stalled replication forks. Nature 2001;412(6846):557–61.

    PubMed  CAS  Google Scholar 

  130. Lucca C, Vanoli F, Cotta-Ramusino C, et al. Checkpoint-mediated control of replisome-fork associa- tion and signalling in response to replication pausing. Oncogene 2004;23(6):1206–13.

    PubMed  CAS  Google Scholar 

  131. Cortez D, Glick G, Elledge SJ. Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. Proc Natl Acad Sci USA 2004;101(27):10078–83.

    PubMed  CAS  Google Scholar 

  132. Shechter D, Gautier J. MCM proteins and checkpoint kinases get together at the fork. Proc Natl Acad Sci USA 2004;101(30):10845–6.

    PubMed  CAS  Google Scholar 

  133. Kumagai A, Dunphy WG. Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol Cell 2000;6(4):839–49.

    PubMed  CAS  Google Scholar 

  134. Alcasabas AA, Osborn AJ, Bachant J, et al. Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat Cell Biol 2001;3(11):958–65.

    PubMed  CAS  Google Scholar 

  135. Osborn AJ, Elledge SJ. Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev 2003;17(14):1755–67.

    PubMed  CAS  Google Scholar 

  136. Zhao H, Tanaka K, Nogochi E, Nogochi C, Russell P. Replication checkpoint protein Mrc1 is regulated by Rad3 and Tel1 in fission yeast. Mol Cell Biol 2003;23(22):8395–403.

    PubMed  CAS  Google Scholar 

  137. Chini CC, Chen J. Human claspin is required for replication checkpoint control. J Biol Chem 2003;278(32):30057–62.

    PubMed  CAS  Google Scholar 

  138. Chini CC, Chen J. Claspin, a regulator of Chk1 in DNA replication stress pathway. DNA Repair (Amst) 2004;3(8–9):1033–7.

    CAS  Google Scholar 

  139. Jeong SY, Kumagai A, Lee J, Dunphy WG. Phosphorylated claspin interacts with a phosphate-binding site in the kinase domain of Chk1 during ATR-mediated activation. J Biol Chem 2003;278(47):46782–8.

    PubMed  CAS  Google Scholar 

  140. Kumagai A, Dunphy WG. Repeated phosphopeptide motifs in Claspin mediate the regulated binding of Chk1. Nat Cell Biol 2003;5(2):161–5.

    PubMed  CAS  Google Scholar 

  141. Lim DS, Kim ST, Xu B, et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 2000;404(6778):613–7.

    PubMed  CAS  Google Scholar 

  142. Wu X, Ranganathan V, Weisman DS, et al. ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 2000;405(6785):477–82.

    PubMed  CAS  Google Scholar 

  143. Zhao S, Weng YC, Yuan SS, et al. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 2000;405(6785):473–7.

    PubMed  CAS  Google Scholar 

  144. Fernandez-Capetillo O, Celeste A, Nussenzweig A. Focusing on foci: H2AX and the recruitment of DNA-damage response factors. Cell Cycle 2003;2(5):426–7.

    PubMed  CAS  Google Scholar 

  145. Celeste A, Fernandez-Capetillo O, Kruhlak MJ, et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol 2003;5(7):675–9.

    PubMed  CAS  Google Scholar 

  146. Kim JS, Krasieva TB, LaMorte V, Taylor AM, Yokomori K. Specific recruitment of human cohesin to laser-induced DNA damage. J Biol Chem 2002;277(47):45149–53.

    PubMed  CAS  Google Scholar 

  147. Kitagawa R, Bakkenist CJ, McKinnon PJ, Kastan MB. Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes Dev 2004;18(12):1423–38.

    PubMed  CAS  Google Scholar 

  148. Pichierri P, Rosselli F. The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways. EMBO J 2004;23(5):1178–87.

    PubMed  CAS  Google Scholar 

  149. Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 2003;421(6926):961–6.

    PubMed  CAS  Google Scholar 

  150. Xu B, Kim S, Kastan MB. Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol 2001;21(10):3445–50.

    PubMed  CAS  Google Scholar 

  151. Gatei M, Scott SP, Filippovitch I, et al. Role for ATM in DNA damage-induced phosphorylation of BRCA1. Cancer Res 2000;60(12):3299–304.

    PubMed  CAS  Google Scholar 

  152. Cortez D, Wang Y, Qin J, Elledge SJ. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 1999;286(5442):1162–6.

    PubMed  CAS  Google Scholar 

  153. Gatei M, Zhou BB, Hobson K, Scott S, Young D, Khanna KK. Ataxia telangiectasia mutated (ATM) kinase and ATM and Rad3 related kinase mediate phosphorylation of Brca1 at distinct and overlapping sites. In vivo assessment using phospho-specific antibodies. J Biol Chem 2001;276(20):17276–80.

    PubMed  CAS  Google Scholar 

  154. Joenje H, Oostra AB, Wijker M, et al. Evidence for at least eight Fanconi anemia genes. Am J Hum Genet 1997;61(4):940–4.

    PubMed  CAS  Google Scholar 

  155. Levitus M, Rooimans MA, Steltenpool J, et al. Heterogeneity in Fanconi anemia: evidence for 2 new genetic subtypes. Blood 2004;103(7):2498–503.

    PubMed  CAS  Google Scholar 

  156. Garcia-Higuera I, Kuang Y, Naf D, Wasik J, D’Andrea AD. Fanconi anemia proteins FANCA, FANCC, and FANCG/XRCC9 interact in a functional nuclear complex. Mol Cell Biol 1999;19(7):4866–73.

    PubMed  CAS  Google Scholar 

  157. de Winter JP, van der Weel L, de Groot J, et al. The Fanconi anemia protein FANCF forms a nuclear complex with FANCA, FANCC and FANCG. Hum Mol Genet 2000;9(18):2665–74.

    PubMed  Google Scholar 

  158. Meetei AR, Sechi S, Wallisch M, et al. A multiprotein nuclear complex connects Fanconi anemia and Bloom syndrome. Mol Cell Biol 2003;23(10):3417–26.

    PubMed  CAS  Google Scholar 

  159. Meetei AR, Levitus M, Xue Y, et al. X-linked inheritance of Fanconi anemia complementation group B. Nat Genet 2004;36(11):1219–24.

    PubMed  CAS  Google Scholar 

  160. Garcia-Higuera I, Taniguchi T, Ganesan S, et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 2001;7(2):249–62.

    PubMed  CAS  Google Scholar 

  161. Wang X, Andreassen PR, D’Andrea AD. Functional interaction of monoubiquitinated FANCD2 and BRCA2/FANCD1 in chromatin. Mol Cell Biol 2004;24(13):5850–62.

    PubMed  CAS  Google Scholar 

  162. Kupfer G, Naf D, Garcia-Higuera I, et al. A patient-derived mutant form of the Fanconi anemia protein, FANCA, is defective in nuclear accumulation. Exp Hematol 1999;27(4):587–93.

    PubMed  CAS  Google Scholar 

  163. Hashizume R, Fukuda M, Maeda I, et al. The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem 2001;276(18):14537–40.

    PubMed  CAS  Google Scholar 

  164. Brzovic PS, Rajagopal P, Hoyt DW, King MC, Klevit RE. Structure of a BRCA1-BARD1 heterodimeric RING-RING complex. Nat Struct Biol 2001;8(10):833–7.

    PubMed  CAS  Google Scholar 

  165. Folias A, Matkovic M, Bruun D, et al. BRCA1 interacts directly with the Fanconi anemia protein FANCA. Hum Mol Genet 2002;11(21):2591–7.

    PubMed  CAS  Google Scholar 

  166. Hirsch B, Shimamura A, Moreau L, et al. Association of biallelic BRCA2/FANCD1 mutations with spontaneous chromosomal instability and solid tumors of childhood. Blood 2004;103(7):2554–9.

    PubMed  CAS  Google Scholar 

  167. Howlett NG, Taniguchi T, Olson S, et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 2002;297(5581):606–9.

    PubMed  CAS  Google Scholar 

  168. Taniguchi T, Garcia-Higuera I, Xu B, et al. Convergence of the fanconi anemia and ataxia telangiectasia signaling pathways. Cell 2002;109(4):459–72.

    PubMed  CAS  Google Scholar 

  169. Brown EJ, Baltimore D. Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes Dev 2003;17(5):615–28.

    PubMed  CAS  Google Scholar 

  170. Xu X, Tsvetkov LM, Stern DF. Chk2 activation and phosphorylation-dependent oligomerization. Mol Cell Biol 2002;22(12):4419–32.

    PubMed  CAS  Google Scholar 

  171. Rhind N, Russell P. Roles of the mitotic inhibitors Wee1 and Mik1 in the G(2) DNA damage and replication checkpoints. Mol Cell Biol 2001;21(5):1499–508.

    PubMed  CAS  Google Scholar 

  172. Walworth NC. DNA damage: Chk1 and Cdc25, more than meets the eye. Curr Opin Genet Dev 2001;11(1):78–82.

    PubMed  CAS  Google Scholar 

  173. Beamish H, Williams R, Chen P, et al. Rapamycin resistance in ataxia-telangiectasia. Oncogene 1996;13(5):963–70.

    PubMed  CAS  Google Scholar 

  174. Chaturvedi P, Eng WK, Zhu Y, et al. Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene 1999;18(28):4047–54.

    PubMed  CAS  Google Scholar 

  175. Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci USA 2000;97(19):10389–94.

    PubMed  CAS  Google Scholar 

  176. Melchionna R, Chen XB, Blasina A, McGowan CH. Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1. Nat Cell Biol 2000;2(10):762–5.

    PubMed  CAS  Google Scholar 

  177. Hirao A, Kong YY, Matsuoka S, et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 2000;287(5459):1824–7.

    PubMed  CAS  Google Scholar 

  178. Zhou BB, Chaturvedi P, Spring K, et al. Caffeine abolishes the mammalian G(2)/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity. J Biol Chem 2000;275(14):10342–8.

    PubMed  CAS  Google Scholar 

  179. Matsuoka S, Huang M, Elledge SJ. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 1998;282(5395):1893–7.

    PubMed  CAS  Google Scholar 

  180. Blasina A, Price BD, Turenne GA, McGowan CH. Caffeine inhibits the checkpoint kinase ATM. Curr Biol 1999;9(19):1135–8.

    PubMed  CAS  Google Scholar 

  181. Lopez-Girona A, Tanaka K, Chen XB, Baber BA, McGowan CH, Russell P. Serine-345 is required for Rad3-dependent phosphorylation and function of checkpoint kinase Chk1 in fission yeast. Proc Natl Acad Sci USA 2001;98(20):11289–94.

    PubMed  CAS  Google Scholar 

  182. Wilker E, Yaffe MB. 14-3-3 Proteins–a focus on cancer and human disease. J Mol Cell Cardiol 2004;37(3):633–42.

    PubMed  CAS  Google Scholar 

  183. Luo Y, Rockow-Magnone SK, Kroeger PE, et al. Blocking Chk1 expression induces apoptosis and abrogates the G2 checkpoint mechanism. Neoplasia 2001;3(5):411–9.

    PubMed  CAS  Google Scholar 

  184. Xu B, Kim ST, Lim DS, Kastan MB. Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol Cell Biol 2002;22(4):1049–59.

    PubMed  CAS  Google Scholar 

  185. Xu B, O’Donnell AH, Kim ST, Kastan MB. Phosphorylation of serine 1387 in Brca1 is specifically required for the Atm-mediated S-phase checkpoint after ionizing irradiation. Cancer Res 2002;62(16):4588–91.

    PubMed  CAS  Google Scholar 

  186. Turner BM. Histone acetylation and an epigenetic code. Bioessays 2000;22(9):836–45.

    PubMed  CAS  Google Scholar 

  187. Ye X, Franco AA, Santos H, Nelson DM, Kaufman PD, Adams PD. Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest. Mol Cell 2003;11(2):341–51.

    PubMed  CAS  Google Scholar 

  188. Gaillard PH, Martini EM, Kaufman PD, Stillman B, Moustacchi E, Almouzni G. Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I. Cell 1996;86(6): 887–96.

    PubMed  CAS  Google Scholar 

  189. Hoek M, Stillman B. Chromatin assembly factor 1 is essential and couples chromatin assembly to DNA replication in vivo. Proc Natl Acad Sci USA 2003;100(21):12183–8.

    PubMed  CAS  Google Scholar 

  190. Qin S, Parthun MR. Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair. Mol Cell Biol 2002;22(23):8353–65.

    PubMed  CAS  Google Scholar 

  191. Megee PC, Morgan BA, Smith MM. Histone H4 and the maintenance of genome integrity. Genes Dev 1995;9(14):1716–27.

    PubMed  CAS  Google Scholar 

  192. Bassing CH, Alt FW. H2AX may function as an anchor to hold broken chromosomal DNA ends in close proximity. Cell Cycle 2004;3(2):149–53.

    PubMed  CAS  Google Scholar 

  193. Celeste A, Difilippantonio S, Difilippantonio MJ, et al. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 2003;114(3):371–83.

    PubMed  CAS  Google Scholar 

  194. Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 1999;146(5):905–16.

    PubMed  CAS  Google Scholar 

  195. Downs JA, Lowndes NF, Jackson SP. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 2000;408(6815):1001–4.

    PubMed  CAS  Google Scholar 

  196. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 2000;10(15):886–95.

    PubMed  CAS  Google Scholar 

  197. Fernandez-Capetillo O, Chen HT, Celeste A, et al. DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat Cell Biol 2002;4(12):993–7.

    PubMed  CAS  Google Scholar 

  198. Widlak P, Pietrowska M, Lanuszewska J. The role of chromatin proteins in DNA damage recognition and repair Mini-review. Histochem Cell Biol 2006;125(1–2):119–26.

    PubMed  CAS  Google Scholar 

  199. de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 2005;19(18):2100–10.

    PubMed  Google Scholar 

  200. Takai H, Smogorzewska A, de Lange T. DNA damage foci at dysfunctional telomeres. Curr Biol 2003;13(17):1549–56.

    PubMed  CAS  Google Scholar 

  201. Brunori M, Luciano P, Gilson E, Geli V. The telomerase cycle: normal and pathological aspects. J Mol Med 2005;83(4):244–57.

    PubMed  CAS  Google Scholar 

  202. Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 1999;283(5406):1321–5.

    PubMed  CAS  Google Scholar 

  203. Karlseder J, Smogorzewska A, de Lange T. Senescence induced by altered telomere state, not telomere loss. Science 2002;295(5564):2446–9.

    PubMed  CAS  Google Scholar 

  204. Smogorzewska A, de Lange T. Different telomere damage signaling pathways in human and mouse cells. EMBO J 2002;21(16):4338–48.

    PubMed  CAS  Google Scholar 

  205. Smogorzewska A, Karlseder J, Holtgreve-Grez H, Jauch A, de Lange T. DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. Curr Biol 2002;12(19):1635–44.

    PubMed  CAS  Google Scholar 

  206. d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003;426(6963):194–8.

    PubMed  CAS  Google Scholar 

  207. Karlseder J. Telomere repeat binding factors: keeping the ends in check. Cancer Lett 2003;194(2):189–97.

    PubMed  CAS  Google Scholar 

  208. Wong KK, Chang S, Weiler SR, et al. Telomere dysfunction impairs DNA repair and enhances sensitivity to ionizing radiation. Nat Genet 2000;26(1):85–8.

    PubMed  CAS  Google Scholar 

  209. Bradshaw PS, Stavropoulos DJ, Meyn MS. Human telomeric protein TRF2 associates with genomic double-strand breaks as an early response to DNA damage. Nat Genet 2005;37(2):193–7.

    PubMed  CAS  Google Scholar 

  210. Karlseder J, Hoke K, Mirzoeva OK, et al. The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response. PLoS Biol 2004;2(8):E240.

    PubMed  Google Scholar 

  211. Ira G, Pellicioli A, Balijja A, et al. DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 2004;431(7011):1011–7.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Duprè, A., Gautier, J. (2007). Overview of the DNA Damage Checkpoint. In: Gewirtz, D.A., Holt, S.E., Grant, S. (eds) Apoptosis, Senescence, and Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-221-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-221-2_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-527-9

  • Online ISBN: 978-1-59745-221-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics