Skip to main content

Cholesterol, Cell Signaling, and Prostate Cancer

  • Chapter
Prostate Cancer

Abstract

Cholesterol, a sterolic lipid, accumulates in solid tumors. Biochemical mechanisms essential to cholesterol metabolism are altered with age and with the transition to the malignant state. In cell membranes, cholesterol is a mediator of the liquid-ordered state, a biophysical condition that provokes sequestration within discrete membrane microdomains of certain signaling proteins and other lipids. Cholesterol-enriched membrane domains, commonly referred to as lipid rafts, serve as platforms for signal transduction mechanisms that mediate cell growth, survival, and other processes relevant to cancer. This review summarizes the established links between cholesterol and prostate cancer, with a focus on how accumulation of cholesterol within the lipid raft component of the plasma membrane may promote progression to hormone refractory disease. Large-scale characterization of proteins that localize to cholesterol-rich domains may help unravel signaling networks and lead to identification of novel mediators of disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schaid, D. J. and Chang, B. L. (2005). Description of the international consortium for prostate cancer genetics, and failure to replicate linkage of hereditary prostate cancer to 20q13. Prostate 63, 276–290.

    PubMed  CAS  Google Scholar 

  2. Cook, L. S., Goldoft, M., Schwartz, S. M., and Weiss, N. S. (1999). Incidence of adenocarcinoma of the prostate in Asian immigrants to the United States and their descendants. J. Urol. 161, 152–155.

    PubMed  CAS  Google Scholar 

  3. Shimizu, H., Ross, R. K., Bernstein, L., Yatani, R., Henderson, B. E., and Mack, T. M. (1991). Cancers of the prostate and breast among Japanese and white immigrants in Los Angeles County. Br. J. Cancer 63, 963–966.

    PubMed  CAS  Google Scholar 

  4. Pu, Y. S., Chiang, H. S., Lin, C. C., Huang, C. Y., Huang, K. H., and Chen, J. (2004). Changing trends of prostate cancer in Asia. Aging Male 7, 120–132.

    PubMed  CAS  Google Scholar 

  5. Yatani, R., Shiraishi, T., Nakakuki, K., et al. (1988). Trends in frequency of latent prostate carcinoma in Japan from 1965–1979 to 1982–1986. J. Natl. Cancer Inst. 80, 683–687.

    PubMed  CAS  Google Scholar 

  6. Weisburger, J. H. (1997). Dietary fat and risk of chronic disease: mechanistic insights from experimental studies. J. Am. Diet Assoc. 97, S16–S23.

    PubMed  CAS  Google Scholar 

  7. Pienta, K. J. (1994). The epidemiology of prostate cancer: clues for chemoprevention. In Vivo 8, 419–422.

    PubMed  CAS  Google Scholar 

  8. Fleshner, N., Bagnell, P. S., Klotz, L., and Venkateswaran, V. (2004). Dietary fat and prostate cancer. J. Urol. 171, S19–S24.

    PubMed  CAS  Google Scholar 

  9. Harvei, S., Bjerve, K. S., Tretli, S., Jellum, E., Robsahm, T. E., and Vatten, L. (1997). Prediagnostic level of fatty acids in serum phospholipids: omega-3 and omega-6 fatty acids and the risk of prostate cancer. Int. J. Cancer 71, 545–551.

    PubMed  CAS  Google Scholar 

  10. Fleshner, N. E. and Kucuk, O. (2001). Antioxidant dietary supplements: Rationale and current status as chemopreventive agents for prostate cancer. Urology 57, 90–94.

    PubMed  CAS  Google Scholar 

  11. Simons, K. and Vaz, W. L. (2004). Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33, 269–295.

    PubMed  CAS  Google Scholar 

  12. Dessi, S., Batetta, B., Anchisi, C., et al. (1992). Cholesterol metabolism during the growth of a rat ascites hepatoma (Yoshida AH-130). Br. J. Cancer 66, 787–793.

    PubMed  CAS  Google Scholar 

  13. Dessi, S., Batetta, B., Pulisci, D., et al. (1994). Cholesterol content in tumor tissues is inversely associated with highdensity lipoprotein cholesterol in serum in patients with gastrointestinal cancer. Cancer 73, 253–258.

    PubMed  CAS  Google Scholar 

  14. Kolanjiappan, K., Ramachandran, C. R., and Manoharan, S. (2003). Biochemical changes in tumor tissues of oral cancer patients. Clin. Biochem. 36, 61–65.

    PubMed  CAS  Google Scholar 

  15. Rudling, M. and Collins, V. P. (1996). Low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA levels are coordinately reduced in human renal cell carcinoma. Biochim. Biophys. Acta 1299, 75–79.

    PubMed  Google Scholar 

  16. Nygren, C., von Holst, H., Mansson, J. E., and Fredman, P. (1997). Increased levels of cholesterol esters in glioma tissue and surrounding areas of human brain. Br. J. Neurosurg. 11, 216–220.

    PubMed  CAS  Google Scholar 

  17. Swyer, G. (1942). The cholesterol content of normal and enlarged prostates. Cancer Res 2, 372–375.

    CAS  Google Scholar 

  18. White, R. M. (1909). What do Statin trials tell us? Clin. Cardiol. 24, 1113–1117.

    Google Scholar 

  19. Schaffner, C. P. and Gordon, H. W. (1968). The hypocholesterolemic activity of orally administered polyene macrolides. Proc. Natl. Acad. Sci. USA 61, 36–41.

    PubMed  CAS  Google Scholar 

  20. Freeman, M. R. and Solomon, K. R. (2004). Cholesterol and prostate cancer. J. Cell Biochem. 91, 54–69.

    PubMed  CAS  Google Scholar 

  21. De Stefani, E., Mendilaharsu, M., Deneo-Pellegrini, H., and Ronco, A. (1997). Influence of dietary levels of fat, cholesterol, and calcium on colorectal cancer. Nutr. Cancer 29, 83–89.

    PubMed  Google Scholar 

  22. Horn-Ross, P. L., Morrow, M., and Ljung, B. M. (1997). Diet and the risk of salivary gland cancer. Am. J. Epidemiol. 146, 171–176.

    PubMed  CAS  Google Scholar 

  23. Jarvinen, R., Knekt, P., Seppanen, R., and Teppo, L. (1997). Diet and breast cancer risk in a cohort of Finnish women. Cancer Lett. 114, 251–253.

    PubMed  CAS  Google Scholar 

  24. Graziani, S. R., Igreja, F. A., Hegg, R., et al. (2002). Uptake of a cholesterol-rich emulsion by breast cancer. Gynecol. Oncol. 85, 493–497.

    PubMed  CAS  Google Scholar 

  25. Tatidis, L., Masquelier, M., and Vitols, S. (2002). Elevated uptake of low density lipoprotein by drug resistant human leukemic cell lines. Biochem. Pharmacol. 63, 2169–2180.

    PubMed  CAS  Google Scholar 

  26. Caruso, M. G., Notarnicola, M., Cavallini, A., and Di Leo, A. (2002). 3-Hydroxy-3-methylglutaryl coenzyme A reductase activity and low-density lipoprotein receptor expression in diffuse-type and intestinal-type human gastric cancer. J. Gastroenterol. 37, 504–508.

    PubMed  CAS  Google Scholar 

  27. Charbonneau, C., Fournier, I., Dufresne, S., Barwicz, J., and Tancrede, P. (2001). The interactions of amphotericin B with various sterols in relation to its possible use in anticancer therapy. Biophys. Chem. 91, 125–133.

    PubMed  CAS  Google Scholar 

  28. Gordon, H. W., and Schaffner, C. P. (1968). The effect of polyene macrolides on the prostate gland and canine prostatic hyperplasia. Proc. Natl. Acad. Sci. USA 60, 1201–1208.

    PubMed  CAS  Google Scholar 

  29. Keshin, J. G. (1973). Effect of candicidin on the human benign hypertrophied prostate gland. Int. Surg. 58, 116–122.

    PubMed  CAS  Google Scholar 

  30. Sporer, A., Cohen, S., Kamat, M. H., and Seebode, J. J. (1975). Candicidin: physiologic effect on prostate. Urology 6, 298–304.

    PubMed  CAS  Google Scholar 

  31. Yang, G., Truong, L. D., Wheeler, T. M., and Thompson, T. C. (1999). Caveolin-1 expression in clinically confined human prostate cancer: a novel prognostic marker. Cancer Res. 59, 5719–5723.

    PubMed  CAS  Google Scholar 

  32. Yang, G., Truong, L. D., Timme, T. L., et al. (1998). Elevated expression of caveolin is associated with prostate and breast cancer. Clin. Cancer Res. 4, 1873–1880.

    PubMed  CAS  Google Scholar 

  33. Williams, T. M., Hassan, G. S., Li, J., et al. (2005). Caveolin-1 promotes tumor progression in an autochthonous mouse model of prostate cancer: Genetic ablation of Cav-1 delays advanced prostate tumor development in TRAMP mice. J. Biol. Chem. 280, 25,134–25,145

    PubMed  CAS  Google Scholar 

  34. Schlegel, A., Wang, C., Katzenellenbogen, B. S., Pestell, R. G., and Lisanti, M. P. (1999). Caveolin-1 potentiates estrogen receptor alpha (ERalpha) signaling. caveolin-1 drives ligand-independent nuclear translocation and activation of ERalpha. J. Biol. Chem. 274, 33,551–33,556.

    PubMed  CAS  Google Scholar 

  35. Schlegel, A. and Lisanti, M. P. (2001). The caveolin triad: caveolae biogenesis, cholesterol trafficking, and signal transduction. Cytokine Growth Factor Rev. 12, 41–51.

    PubMed  CAS  Google Scholar 

  36. Li, L., Ren, C. H., Tahir, S. A., Ren, C., and Thompson, T. C. (2003). Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Mol. Cell Biol. 23, 9389–9404.

    PubMed  CAS  Google Scholar 

  37. Zhuang, L., Lin, J., Lu, M. L., Solomon, K. R., and Freeman, M. R. (2002). Cholesterol-rich lipid rafts mediate akt-regulated survival in prostate cancer cells. Cancer Res. 62, 2227–2231.

    PubMed  CAS  Google Scholar 

  38. Paez, J. and Sellers, W. R. (2003). PI3K/PTEN/AKT pathway. A critical mediator of oncogenic signaling. Cancer Treat Res. 115, 145–167.

    PubMed  CAS  Google Scholar 

  39. Zhuang, L., Kim, J., Adam, R. M., Solomon, K. R., and Freeman, M. R. (2005). Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. J. Clin. Invest. 115, 959–968.

    PubMed  CAS  Google Scholar 

  40. Fisher, P. B., Goldstein, N. I., Bonner, D. P., Mechlinski, W., Bryson, V., and Schaffner, C. P. (1975). Toxicity of amphotericin B and its methyl ester toward normal and tumor cell lines. Cancer Res. 35, 1996–1999.

    PubMed  CAS  Google Scholar 

  41. Kaplan, S., Novikov, I., and Modan, B. (1997). Nutritional factors in the etiology of brain tumors: potential role of nitrosamines, fat, and cholesterol. Am. J. Epidemiol. 146, 832–841.

    PubMed  CAS  Google Scholar 

  42. Knekt, P., Reunanen, A., Aromaa, A., Heliovaara, M., Hakulinen, T., and Hakama, M. (1988). Serum cholesterol and risk of cancer in a cohort of 39,000 men and women. J. Clin. Epidemiol. 41, 519–530.

    PubMed  CAS  Google Scholar 

  43. Wald, N. J., Thompson, S. G., Law, M. R., Densem, J. W., and Bailey, A. (1989). Serum cholesterol and subsequent risk of cancer: results from the BUPA study. Br. J. Cancer 59, 936–938.

    PubMed  CAS  Google Scholar 

  44. Vatten, L. J. and Foss, O. P. (1990). Total serum cholesterol and triglycerides and risk of breast cancer: a prospective study of 24,329 Norwegian women. Cancer Res. 50, 2341–2346.

    PubMed  CAS  Google Scholar 

  45. Eichholzer, M., Stahelin, H. B., Gutzwiller, F., Ludin, E., and Bernasconi, F. (2000). Association of low plasma cholesterol with mortality for cancer at various sites in men: 17-y follow-up of the prospective Basel study. Am. J. Clin. Nutr. 71, 569–574.

    PubMed  CAS  Google Scholar 

  46. Fiorenza, A. M., Branchi, A., and Sommariva, D. (2000). Serum lipoprotein profile in patients with cancer. A comparison with non-cancer subjects. Int. J. Clin. Lab. Res. 30, 141–145.

    PubMed  CAS  Google Scholar 

  47. Umeki, S. (1993). Decreases in serum cholesterol levels in advanced lung cancer. Respiration 60, 178–181.

    PubMed  CAS  Google Scholar 

  48. Graaf, M. R., Beiderbeck, A. B., Egberts, A. C., Richel, D. J., and Guchelaar, H. J. (2004). The risk of cancer in users of statins. J. Clin. Oncol. 22, 2388–2394.

    PubMed  CAS  Google Scholar 

  49. Pedersen, T. R., Wilhelmsen, L., Faergeman, O., et al. (2000). Follow-up study of patients randomized in the Scandinavian simvastatin survival study (4S) of cholesterol lowering. Am. J. Cardiol. 86, 257–262.

    PubMed  CAS  Google Scholar 

  50. Friis, S., Poulsen, A. H., Johnsen, S. P., et al. (2005). Cancer risk among statin users: A population-based cohort study. Int. J. Cancer 114, 643–647.

    PubMed  CAS  Google Scholar 

  51. Blais, L., Desgagne, A., and LeLorier, J. (2000). 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors and the risk of cancer: a nested case-control study. Arch. Intern. Med. 160, 2363–2368.

    PubMed  CAS  Google Scholar 

  52. Platz, E. A., Leitzmann, M.F., Visvanathan, K., et al. (2005). Cholesterol-lowering drugs including statins and risk of prostate cancer in a large prospective cohort study. AACR Abstract 4374.

    Google Scholar 

  53. Schaffner, C. P., Brill, D. R., Singhal, A. K., Bonner, D. P., Goldstein, N. I., and Wang, G. M. (1981). Absence of cholesterogenesis regulation in the liver and prostate of the BIO 87.20 hamster. Lipids 16, 835–840.

    PubMed  CAS  Google Scholar 

  54. Wong, W. W., Tan, M. M., Xia, Z., Dimitroulakos, J., Minden, M. D., and Penn, L. Z. (2001). Cerivastatin triggers tumor-specific apoptosis with higher efficacy than lovastatin. Clin. Cancer Res. 7, 2067–2075.

    PubMed  CAS  Google Scholar 

  55. Coogan, P. F., Rosenberg, L., Palmer, J. R., Strom, B. L., Zauber, A. G., and Shapiro, S. (2002). Statin use and the risk of breast and prostate cancer. Epidemiology 13, 262–267.

    PubMed  Google Scholar 

  56. Jakobisiak, M., Bruno, S., Skierski, J. S., and Darzynkiewicz, Z. (1991). Cell cycle-specific effects of lovastatin. Proc. Natl. Acad. Sci. USA 88, 3628–3632.

    PubMed  CAS  Google Scholar 

  57. Macaulay, R. J., Wang, W., Dimitroulakos, J., Becker, L. E., and Yeger, H. (1999). Lovastatin-induced apoptosis of human medulloblastoma cell lines in vitro. J. Neurooncol. 42, 1–11.

    PubMed  CAS  Google Scholar 

  58. Rao, S., Porter, D. C., Chen, X., Herliczek, T., Lowe, M., and Keyomarsi, K. (1999). Lovastatin-mediated G1 arrest is through inhibition of the proteasome, independent of hydroxymethyl glutaryl-CoA reductase. Proc. Natl. Acad. Sci. USA 96, 7797–7802.

    PubMed  CAS  Google Scholar 

  59. Keyomarsi, K., Sandoval, L., Band, V., and Pardee, A. B. (1991). Synchronization of tumor and normal cells from G1 to multiple cell cycles by lovastatin. Cancer Res. 51, 3602–3609.

    PubMed  CAS  Google Scholar 

  60. Sebti, S. M., Tkalcevic, G. T., and Jani, J. P. (1991). Lovastatin, a cholesterol biosynthesis inhibitor, inhibits the growth of human H-ras oncogene transformed cells in nude mice. Cancer Commun. 3, 141–147.

    PubMed  CAS  Google Scholar 

  61. Iishi, H., Tatsuta, M., Baba, M., et al. (2000). ras p21 Isoprenylation inhibition induces flat colon tumors in Wistar rats. Dis. Colon Rectum 43, 70–75.

    PubMed  CAS  Google Scholar 

  62. Matar, P., Rozados, V. R., Roggero, E. A., and Scharovsky, O. G. (1998). Lovastatin inhibits tumor growth and metastasis development of a rat fibrosarcoma. Cancer Biother. Radiopharm. 13, 387–393.

    PubMed  CAS  Google Scholar 

  63. Prasanna, P., Thibault, A., Liu, L., and Samid, D. (1996). Lipid metabolism as a target for brain cancer therapy: synergistic activity of lovastatin and sodium phenylacetate against human glioma cells. J. Neurochem. 66, 710–716.

    PubMed  CAS  Google Scholar 

  64. Ganne, F., Vasse, M., Beaudeux, J. L., et al. (2000). Cerivastatin, an inhibitor of HMG-CoA reductase, inhibits urokinase/ urokinase-receptor expression and MMP-9 secretion by peripheral blood monocytes-a possible protective mechanism against atherothrombosis. Thromb. Haemost. 84, 680–688.

    PubMed  CAS  Google Scholar 

  65. Ukomadu, C. and Dutta, A. (2003). Inhibition of cdk2 activating phosphorylation by mevastatin. J. Biol. Chem. 278, 4840–4846.

    PubMed  CAS  Google Scholar 

  66. Alonso, D. F., Farina, H. G., Skilton, G., Gabri, M. R., De Lorenzo, M. S., and Gomez, D. E. (1998). Reduction of mouse mammary tumor formation and metastasis by lovastatin, an inhibitor of the mevalonate pathway of cholesterol synthesis. Breast Cancer Res. Treat. 50, 83–93.

    PubMed  CAS  Google Scholar 

  67. Park, H. J., Kong, D., Iruela-Arispe, L., Begley, U., Tang, D., and Galper, J. B. (2002). 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors interfere with angiogenesis by inhibiting the geranylgeranylation of RhoA. Circ. Res. 91, 143–150.

    PubMed  CAS  Google Scholar 

  68. Farina, H. G., Bublik, D. R., Alonso, D. F., and Gomez, D. E. (2002). Lovastatin alters cytoskeleton organization and inhibits experimental metastasis of mammary carcinoma cells. Clin. Exp. Metastasis 19, 551–559.

    PubMed  CAS  Google Scholar 

  69. Vincent, L., Soria, C., Mirshahi, F., et al. (2002). Cerivastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme a reductase, inhibits endothelial cell proliferation induced by angiogenic factors in vitro and angiogenesis in in vivo models. Arterioscler. Thromb. Vasc. Biol. 22, 623–629.

    PubMed  CAS  Google Scholar 

  70. Feleszko, W., Balkowiec, E. Z., Sieberth, E., et al. (1999). Lovastatin and tumor necrosis factor-alpha exhibit potentiated antitumor effects against Ha-ras-transformed murine tumor via inhibition of tumor-induced angiogenesis. Int. J. Cancer 81, 560–567.

    PubMed  CAS  Google Scholar 

  71. Weis, M., Heeschen, C., Glassford, A. J., and Cooke, J. P. (2002). Statins have biphasic effects on angiogenesis. Circulation 105, 739–745.

    PubMed  CAS  Google Scholar 

  72. Kureishi, Y., Luo, Z., Shiojima, I., et al. (2000). The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat. Med. 6, 1004–1010.

    PubMed  CAS  Google Scholar 

  73. Urbich, C., Dernbach, E., Zeiher, A. M., and Dimmeler, S. (2002). Double-edged role of statins in angiogenesis signaling. Circ. Res. 90, 737–744.

    PubMed  CAS  Google Scholar 

  74. Brouet, A., DeWever, J., Martinive, P., et al. (2005). Antitumor effects of in vivo caveolin gene delivery are associated with the inhibition of the proangiogenic and vasodilatory effects of nitric oxide. Faseb J. 19, 602–604.

    PubMed  CAS  Google Scholar 

  75. Koga, T., Shimada, Y., Kuroda, M., Tsujita, Y., Hasegawa, K., and Yamazaki, M. (1990). Tissue-selective inhibition of cholesterol synthesis in vivo by pravastatin sodium, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. Biochim. Biophys. Acta 1045, 115–120.

    PubMed  CAS  Google Scholar 

  76. Siperstein, M. D. (1984). Role of cholesterogenesis and isoprenoid synthesis in DNA replication and cell growth. J. Lipid Res. 25, 1462–1468.

    PubMed  CAS  Google Scholar 

  77. Van Aelst, L. and D’Souza-Schorey, C. (1997). Rho GTPases and signaling networks. Genes Dev. 11, 2295–2322.

    PubMed  Google Scholar 

  78. Adamson, P., Marshall, C. J., Hall, A., and Tilbrook, P. A. (1992). Post-translational modifications of p21rho proteins. J. Biol. Chem. 267, 20,033–20,038.

    PubMed  CAS  Google Scholar 

  79. Armstrong, S. A., Hannah, V. C., Goldstein, J. L., and Brown, M. S. (1995). CAAX geranylgeranyl transferase transfers farnesyl as efficiently as geranylgeranyl to RhoB. J. Biol. Chem. 270, 7864–7868.

    PubMed  CAS  Google Scholar 

  80. Weitz-Schmidt, G. (2002). Statins as anti-inflammatory agents. Trends Pharmacol. Sci. 23, 482–486.

    PubMed  CAS  Google Scholar 

  81. Blanco-Colio, L. M., Tunon, J., Martin-Ventura, J. L., and Egido, J. (2003). Anti-inflammatory and immunomodulatory effects of statins. Kidney Int. 63, 12–23.

    PubMed  CAS  Google Scholar 

  82. Wong, W. W., Dimitroulakos, J., Minden, M. D., and Penn, L. Z. (2002). HMG-CoA reductase inhibitors and the malignant cell: the statin family of drugs as triggers of tumor-specific apoptosis. Leukemia 16, 508–519.

    PubMed  CAS  Google Scholar 

  83. Ghittoni, R., Patrussi, L., Pirozzi, K., et al. (2005). Simvastatin inhibits T-cell activation by selectively impairing the function of Ras superfamily GTPases. Faseb J. 19, 605–607

    PubMed  CAS  Google Scholar 

  84. DeClue, J. E., Vass, W. C., Papageorge, A. G., Lowy, D. R., and Willumsen, B. M. (1991). Inhibition of cell growth by lovastatin is independent of ras function. Cancer Res. 51, 712–717.

    Google Scholar 

  85. Agarwal, B., Halmos, B., Feoktistov, A. S., et al. (2002). Mechanism of lovastatin-induced apoptosis in intestinal epithelial cells. Carcinogenesis 23, 521–528.

    PubMed  CAS  Google Scholar 

  86. Pollack, I. F., Bredel, M., Erff, M., Hamilton, A. D., and Sebti, S. M. (1999). Inhibition of Ras and related guanosine triphosphate-dependent proteins as a therapeutic strategy for blocking malignant glioma growth: II-preclinical studies in a nude mouse model. Neurosurgery 45, 1208–1214; discussion 1214–1215.

    PubMed  CAS  Google Scholar 

  87. Sun, J., Qian, Y., Hamilton, A. D., and Sebti, S. M. (1998). Both farnesyltransferase and geranylgeranyltransferase I inhibitors are required for inhibition of oncogenic K-Ras prenylation but each alone is sufficient to suppress human tumor growth in nude mouse xenografts. Oncogene 16, 1467–1473.

    PubMed  CAS  Google Scholar 

  88. del Pozo, M. A., Alderson, N. B., Kiosses, W. B., Chiang, H. H., Anderson, R. G., and Schwartz, M. A. (2004). Integrins regulate Rac targeting by internalization of membrane domains. Science 303, 839–842.

    PubMed  Google Scholar 

  89. Rocks, O., Peyker, A., Kahms, M., et al. (2005). An acylation cycle regulates localization and activity of palmitoylated ras isoforms. Science. 307, 1746–1752.

    PubMed  CAS  Google Scholar 

  90. Roy, S., Luetterforst, R., Harding, A., et al. (1999). Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat. Cell Biol. 1, 98–105.

    PubMed  CAS  Google Scholar 

  91. Yeagle, P. L., Alderfer, J. L., and Albert, A. D. (1995). Structure of the carboxy-terminal domain of bovine rhodopsin. Nat. Struct. Biol. 2, 832–834.

    PubMed  CAS  Google Scholar 

  92. Mukherjee, S. and Maxfield, F. R. (2004). Membrane domains. Annu. Rev. Cell Dev. Biol. 20, 839–866.

    PubMed  CAS  Google Scholar 

  93. Simons, K. and Toomre, D. (2000). Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39.

    PubMed  CAS  Google Scholar 

  94. Simons, K. and Ikonen, E. (1997). Functional rafts in cell membranes. Nature 387, 569–572.

    PubMed  CAS  Google Scholar 

  95. Moffett, S., Brown, D. A., and Linder, M. E. (2000). Lipid-dependent targeting of G proteins into rafts. J. Biol. Chem. 275, 2191–2198.

    PubMed  CAS  Google Scholar 

  96. Rietveld, A., Neutz, S., Simons, K., and Eaton, S. (1999). Association of sterol-and glycosylphosphatidylinositollinked proteins with Drosophila raft lipid microdomains. J. Biol. Chem. 274, 12,049–12,054.

    PubMed  CAS  Google Scholar 

  97. Zacharias, D. A., Violin, J. D., Newton, A. C., and Tsien, R. Y. (2002). Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916.

    PubMed  CAS  Google Scholar 

  98. Bi, K., Tanaka, Y., Coudronniere, N., et al. (2001). Antigen-induced translocation of PKC-theta to membrane rafts is required for T cell activation. Nat. Immunol. 2, 556–563.

    PubMed  CAS  Google Scholar 

  99. Chun, M., Liyanage, U. K., Lisanti, M. P., and Lodish, H. F. (1994). Signal transduction of a G protein-coupled receptor in caveolae: colocalization of endothelin and its receptor with caveolin. Proc. Natl. Acad. Sci. USA 91, 11,728–11,732.

    PubMed  CAS  Google Scholar 

  100. Liu, J., Oh, P., Horner, T., Rogers, R. A., and Schnitzer, J. E. (1997a). Organized endothelial cell surface signal transduction in caveolae distinct from glycosylphosphatidylinositol-anchored protein microdomains. J. Biol. Chem. 272, 7211–7222.

    PubMed  CAS  Google Scholar 

  101. Liu, P., Ying, Y., and Anderson, R. G. (1997b). Platelet-derived growth factor activates mitogen-activated protein kinase in isolated caveolae. Proc. Natl. Acad. Sci. USA 94, 13,666–13,670.

    PubMed  CAS  Google Scholar 

  102. Couet, J., Sargiacomo, M., and Lisanti, M. P. (1997). Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J. Biol. Chem. 272, 30,429–30,438.

    PubMed  CAS  Google Scholar 

  103. Schnitzer, J. E., Oh, P., Pinney, E., and Allard, J. (1994). Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J. Cell. Biol. 127, 1217–1232.

    PubMed  CAS  Google Scholar 

  104. Mukherjee, A., Arnaud, L., and Cooper, J. A. (2003). Lipid-dependent recruitment of neuronal Src to lipid rafts in the brain. J. Biol. Chem. 278, 40,806–40,814.

    PubMed  CAS  Google Scholar 

  105. Hooper, N. M., Low, M. G., and Turner, A. J. (1987). Renal dipeptidase is one of the membrane proteins released by phosphatidylinositol-specific phospholipase C. Biochem. J. 244, 465–469.

    PubMed  CAS  Google Scholar 

  106. Hooper, N. M. and Turner, A. J. (1988). Ectoenzymes of the kidney microvillar membrane. Differential solubilization by detergents can predict a glycosyl-phosphatidylinositol membrane anchor. Biochem. J. 250, 865–869.

    PubMed  CAS  Google Scholar 

  107. Hooper, N. M. and Turner, A. J. (1988). Ectoenzymes of the kidney microvillar membrane. Aminopeptidase P is anchored by a glycosyl-phosphatidylinositol moiety. FEBS Lett. 229, 340–344.

    PubMed  CAS  Google Scholar 

  108. Shenoy-Scaria, A. M., Dietzen, D. J., Kwong, J., Link, D. C., and Lublin, D. M. (1994). Cysteine3 of Src family protein tyrosine kinase determines palmitoylation and localization in caveolae. J. Cell Biol. 126, 353–363.

    PubMed  CAS  Google Scholar 

  109. Stefanova, I., Horejsi, V., Ansotegui, I. J., Knapp, W., and Stockinger, H. (1991). GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science 254, 1016–1019.

    PubMed  CAS  Google Scholar 

  110. Solomon, K. R., Mallory, M. A., and Finberg, R. W. (1998). Determination of the non-ionic detergent insolubility and phosphoprotein associations of glycosylphosphatidylinositol-anchored proteins expressed on T cells. Biochem. J. 334(Pt 2), 325–333.

    PubMed  CAS  Google Scholar 

  111. Brown, D. A. and London, E. (1998). Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14, 111–136.

    PubMed  CAS  Google Scholar 

  112. van Deurs, B., Roepstorff, K., Hommelgaard, A. M., and Sandvig, K. (2003). Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol. 13, 92–100.

    PubMed  Google Scholar 

  113. Parton, R. G. (1996). Caveolae and caveolins. Curr. Opin. Cell Biol. 8, 542–548.

    PubMed  CAS  Google Scholar 

  114. Parton, R. G., Way, M., Zorzi, N., and Stang, E. (1997). Caveolin-3 associates with developing T-tubules during muscle differentiation. J. Cell Biol. 136, 137–154.

    PubMed  CAS  Google Scholar 

  115. Galbiati, F., Volonte, D., Liu, J., et al. (2001). Caveolin-1 expression negatively regulates cell cycle progression by inducing G(0)/G(1) arrest via a p53/p21(WAF1/Cip1)-dependent mechanism. Mol. Biol. Cell 12, 2229–2244.

    PubMed  CAS  Google Scholar 

  116. Razani, B. and Lisanti, M. P. (2001). Two distinct caveolin-1 domains mediate the functional interaction of caveolin-1 with protein kinase A. Am. J. Physiol. Cell Physiol. 281, C1241–1250.

    PubMed  CAS  Google Scholar 

  117. Tahir, S. A., Ren, C., Timme, T. L., et al. (2003). Development of an immunoassay for serum caveolin-1: a novel biomarker for prostate cancer. Clin. Cancer Res. 9, 3653–3659.

    PubMed  CAS  Google Scholar 

  118. Li, P., Lee, H., Guo, S., Unterman, T. G., Jenster, G., and Bai, W. (2003). AKT-independent protection of prostate cancer cells from apoptosis mediated through complex formation between the androgen receptor and FKHR. Mol. Cell Biol. 23, 104–118.

    PubMed  Google Scholar 

  119. Mouraviev, V., Li, L., Tahir, S. A., et al. (2002). The role of caveolin-1 in androgen insensitive prostate cancer. J. Urol. 168, 1589–1596.

    PubMed  CAS  Google Scholar 

  120. Li, L., Yang, G., Ebara, S., et al. (2001). Caveolin-1 mediates testosterone-stimulated survival/clonal growth and promotes metastatic activities in prostate cancer cells. Cancer Res. 61, 4386–4392.

    PubMed  CAS  Google Scholar 

  121. Li, L., Ittmann, M. M., Ayala, G., et al. (2005). The emerging role of the PI3-K-Akt pathway in prostate cancer progression. Prostate Cancer Prostatic Dis. 8, 108–118.

    PubMed  CAS  Google Scholar 

  122. Kim, J., Adam, R. M., Solomon, K. R., and Freeman, M. R. (2004). Involvement of cholesterol-rich lipid rafts in interleukin-6-induced neuroendocrine differentiation of LNCaP prostate cancer cells. Endocrinology 145, 613–619.

    PubMed  CAS  Google Scholar 

  123. Simons, K. and van Meer, G. (1988). Lipid sorting in epithelial cells. Biochemistry 27, 6197–6202.

    PubMed  CAS  Google Scholar 

  124. Simons, K. and Wandinger-Ness, A. (1990). Polarized sorting in epithelia. Cell 62, 207–210.

    PubMed  CAS  Google Scholar 

  125. Brown, D. A. and London, E. (1997). Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem. Biophys. Res. Commun. 240, 1–7.

    PubMed  CAS  Google Scholar 

  126. Varma, R. and Mayor, S. (1998). GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394, 798–801.

    PubMed  CAS  Google Scholar 

  127. Sheets, E. D., Holowka, D., and Baird, B. (1999). Membrane organization in immunoglobulin E receptor signaling. Curr. Opin. Chem. Biol. 3, 95–99.

    PubMed  CAS  Google Scholar 

  128. Pralle, A. and Florin, E. L. (2002). Cellular membranes studied by photonic force microscopy. Methods Cell Biol. 68, 193–212.

    PubMed  Google Scholar 

  129. Janes, P. W., Ley, S. C., Magee, A. I., and Kabouridis, P. S. (2000). The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin. Immunol. 12, 23–34.

    PubMed  CAS  Google Scholar 

  130. Edidin, M. (2003). The state of lipid rafts: from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257–283.

    PubMed  CAS  Google Scholar 

  131. Ruiz i Altaba, A., Sanchez, P., and Dahmane, N. (2002). Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat. Rev. Cancer 2, 361–372.

    PubMed  CAS  Google Scholar 

  132. Pasca di Magliano, M. and Hebrok, M. (2003). Hedgehog signalling in cancer formation and maintenance. Nat. Rev. Cancer 3, 903–911.

    Google Scholar 

  133. Karhadkar, S. S., Bova, G. S., Abdallah, N., et al. (2004). Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431, 707–712.

    PubMed  CAS  Google Scholar 

  134. Sanchez, P., Hernandez, A. M., Stecca, B., et al. (2004). Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc. Natl. Acad. Sci. USA 101, 12,561–12,566.

    PubMed  CAS  Google Scholar 

  135. Peters, C., Wolf, A., Wagner, M., Kuhlmann, J., and Waldmann, H. (2004). The cholesterol membrane anchor of the Hedgehog protein confers stable membrane association to lipid-modified proteins. Proc. Natl. Acad. Sci. USA 101, 8531–8536.

    PubMed  CAS  Google Scholar 

  136. Porter, J. A., Ekker, S. C., Park, W. J., et al. (1996). Hedgehog patterning activity: role of a lipophilic modification mediated by the carboxy-terminal autoprocessing domain. Cell 86, 21–34.

    PubMed  CAS  Google Scholar 

  137. Incardona, J. P. and Eaton, S. (2000). Cholesterol in signal transduction. Curr. Opin. Cell Biol. 12, 193–203.

    PubMed  CAS  Google Scholar 

  138. Easton, D. F., Schaid, D. J., Whittemore, A. S., and Isaacs, W. J. (2003). Where are the prostate cancer genes?-A summary of eight genome wide searches. Prostate 57, 261–269.

    PubMed  CAS  Google Scholar 

  139. Xu, J., Gillanders, E. M., Isaacs, S. D., et al. (2003). Genome-wide scan for prostate cancer susceptibility genes in the Johns Hopkins hereditary prostate cancer families. Prostate 57, 320–325.

    PubMed  CAS  Google Scholar 

  140. Dahmane, N., Sanchez, P., Gitton, Y., et al. (2001). The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development 128, 5201–5212.

    PubMed  CAS  Google Scholar 

  141. Fan, L., Pepicelli, C. V., Dibble, C. C., et al. (2004). Hedgehog signaling promotes prostate xenograft tumor growth. Endocrinology 145, 3961–3970.

    Google Scholar 

  142. Sheng, T., Li, C., Zhang, X., Chi, S., et al. (2004). Activation of the hedgehog pathway in advanced prostate cancer. Mol. Cancer 3, 29.

    PubMed  Google Scholar 

  143. Karpen, H. E., Bukowski, J. T., Hughes, T., Gratton, J. P., Sessa, W. C., and Gailani, M. R. (2001). The sonic hedgehog receptor patched associates with caveolin-1 in cholesterol-rich microdomains of the plasma membrane. J. Biol. Chem. 276, 19,503–19,511.

    PubMed  CAS  Google Scholar 

  144. Carstea, E. D., Morris, J. A., Coleman, K. G., et al. (1997). Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277, 228–231.

    PubMed  CAS  Google Scholar 

  145. Freeman, M. R. (2004). HER2/HER3 heterodimers in prostate cancer: Whither HER1/EGFR? Cancer Cell 6, 427–428.

    PubMed  CAS  Google Scholar 

  146. Culig, Z., Hobisch, A., Cronauer, M. V., et al. (1994). Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res. 54, 5474–5478.

    PubMed  CAS  Google Scholar 

  147. Craft, N., Chhor, C., Tran, C., et al. (1999). Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process. Cancer Res. 59, 5030–5036.

    PubMed  CAS  Google Scholar 

  148. Yeh, S., Lin, H. K., Kang, H. Y., Thin, T. H., Lin, M. F., and Chang, C. (1999). From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc. Natl. Acad. Sci. USA 96, 5458–5463.

    PubMed  CAS  Google Scholar 

  149. Mellinghoff, I. K., Tran, C., and Sawyers, C. L. (2002). Growth inhibitory effects of the dual ErbB1/ErbB2 tyrosine kinase inhibitor PKI-166 on human prostate cancer xenografts. Cancer Res. 62, 5254–5259.

    PubMed  CAS  Google Scholar 

  150. Okano, J., Gaslightwala, I., Birnbaum, M. J., Rustgi, A. K., and Nakagawa, H. (2000). Akt/protein kinase B isoforms are differentially regulated by epidermal growth factor stimulation. J. Biol. Chem. 275, 30,934–30,942.

    PubMed  CAS  Google Scholar 

  151. Lin, J., Adam, R. M., Santiestevan, E., and Freeman, M. R. (1999). The phosphatidylinositol 3’-kinase pathway is a dominant growth factor-activated cell survival pathway in LNCaP human prostate carcinoma cells. Cancer Res. 59, 2891–2897.

    PubMed  CAS  Google Scholar 

  152. Friedl, P. and Wolf, K. (2003). Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374.

    PubMed  CAS  Google Scholar 

  153. Pollard, T. D. and Borisy, G. G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465.

    PubMed  CAS  Google Scholar 

  154. MacLellan, D. L., Steen, H., Adam, R.M., et al. (2005). A quantitative proteomic analysis of growth factor-induced compositional changes in lipid rafts of human smooth muscle cells. Proteomics. 5, 4733–4742.

    PubMed  CAS  Google Scholar 

  155. Papayannopoulos, V., Co, C., Prehoda, K. E., Snapper, S., Taunton, J., and Lim, W. A. (2005). A polybasic motif allows N-WASP to act as a sensor of PIP(2) density. Mol. Cell 17, 181–191.

    PubMed  CAS  Google Scholar 

  156. Schafer, D. A. (2002). Coupling actin dynamics and membrane dynamics during endocytosis. Curr. Opin. Cell Biol. 14, 76–81.

    PubMed  CAS  Google Scholar 

  157. Yamaguchi, H., Lorenz, M., Kempiak, S., et al. (2005). Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J. Cell Biol. 168, 441–452.

    PubMed  CAS  Google Scholar 

  158. Evangelista, M., Zigmond, S., and Boone, C. (2003). Formins: signaling effectors for assembly and polarization of actin filaments. J. Cell Sci. 116, 2603–2611.

    PubMed  CAS  Google Scholar 

  159. Palazzo, A. F., Eng, C. H., Schlaepfer, D. D., Marcantonio, E. E., and Gundersen, G. G. (2004). Localized stabilization of microtubules by integrin-and FAK-facilitated Rho signaling. Science 303, 836–839.

    PubMed  CAS  Google Scholar 

  160. Flynn, P., Mellor, H., Casamassima, A., and Parker, P. J. (2000). Rho GTPase control of protein kinase C-related protein kinase activation by 3-phosphoinositide-dependent protein kinase. J. Biol. Chem. 275, 11,064–11,070.

    PubMed  CAS  Google Scholar 

  161. Adini, I., Rabinovitz, I., Sun, J. F., Prendergast, G. C., and Benjamin, L. E. (2003). RhoB controls Akt trafficking and stage-specific survival of endothelial cells during vascular development. Genes Dev. 17, 2721–2732.

    PubMed  CAS  Google Scholar 

  162. Sandilands, E., Cans, C., Fincham, V. J., et al. (2004). RhoB and actin polymerization coordinate Src activation with endosome-mediated delivery to the membrane. Dev. Cell 7, 855–869.

    PubMed  CAS  Google Scholar 

  163. Conner, E. R. and Saini, S. S. (2005). The immunoglobulin e receptor: expression and regulation. Curr. Allergy Asthma Rep. 5, 191–196.

    PubMed  CAS  Google Scholar 

  164. He, H. T., Lellouch, A., and Marguet, D. (2005). Lipid rafts and the initiation of T cell receptor signaling. Semin. Immunol. 17, 23–33.

    PubMed  CAS  Google Scholar 

  165. Cheng, P. C., Dykstra, M. L., Mitchell, R. N., and Pierce, S. K. (1999). A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J. Exp. Med. 190, 1549–1560.

    PubMed  CAS  Google Scholar 

  166. Janas, E., Priest, R., and Malhotra, R. (2005). Functional role of lipid rafts in CD20 activity? Biochem. Soc. Symp. 165–175.

    Google Scholar 

  167. Waugh, M. G., Lawson, D., and Hsuan, J. J. (1999). Epidermal growth factor receptor activation is localized within low-buoyant density, non-caveolar membrane domains. Biochem. J. 337(Pt 3), 591–597.

    PubMed  CAS  Google Scholar 

  168. Puri, C., Tosoni, D., Comai, R., et al. (2005). Relationships between EGFR signaling-competent and endocytosiscompetent membrane microdomains. Mol. Biol. Cell. 16, 2704–2718.

    PubMed  CAS  Google Scholar 

  169. Heldin, C. H., Ostman, A., and Ronnstrand, L. (1998). Signal transduction via platelet-derived growth factor receptors. Biochim. Biophys. Acta. 1378, F79–F113.

    PubMed  CAS  Google Scholar 

  170. Pike, L. J. (2003). Lipid rafts: bringing order to chaos. J. Lipid Res. 44, 655–667.

    PubMed  CAS  Google Scholar 

  171. Mastick, C. C., Brady, M. J., Printen, J. A., Ribon, V., and Saltiel, A. R. (1998). Spatial determinants of specificity in insulin action. Mol. Cell Biochem. 182, 65–71.

    PubMed  CAS  Google Scholar 

  172. Gauthier, L. R. and Robbins, S. M. (2003). Ephrin signaling: One raft to rule them all? One raft to sort them? One raft to spread their call and in signaling bind them? Life Sci. 74, 207–216.

    PubMed  CAS  Google Scholar 

  173. Bruckner, K., Pablo Labrador, J., Scheiffele, P., Herb, A., Seeburg, P. H., and Klein, R. (1999). EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains. Neuron 22, 511–524.

    PubMed  CAS  Google Scholar 

  174. Yu, W., Guo, W., and Feng, L. (2004). Segregation of Nogo66 receptors into lipid rafts in rat brain and inhibition of Nogo66 signaling by cholesterol depletion. FEBS Lett. 577, 87–92.

    PubMed  CAS  Google Scholar 

  175. Bilderback, T. R., Gazula, V. R., Lisanti, M. P., and Dobrowsky, R. T. (1999). Caveolin interacts with Trk A and p75(NTR) and regulates neurotrophin signaling pathways. J. Biol. Chem. 274, 257–263.

    PubMed  CAS  Google Scholar 

  176. Tansey, M. G., Baloh, R. H., Milbrandt, J., and Johnson, E. M., Jr. (2000). GFRalpha-mediated localization of RET to lipid rafts is required for effective downstream signaling, differentiation, and neuronal survival. Neuron 25, 611–623.

    PubMed  CAS  Google Scholar 

  177. Prior, I. A., Muncke, C., Parton, R. G., and Hancock, J. F. (2003). Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J. Cell Biol. 160, 165–170.

    PubMed  CAS  Google Scholar 

  178. Roy, S., Wyse, B., and Hancock, J. F. (2002). H-Ras signaling and K-Ras signaling are differentially dependent on endocytosis. Mol. Cell Biol. 22, 5128–5140.

    PubMed  CAS  Google Scholar 

  179. Wary, K. K., Mariotti, A., Zurzolo, C., and Giancotti, F. G. (1998). A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 94, 625–634.

    PubMed  CAS  Google Scholar 

  180. Shaul, P. W., Smart, E. J., Robinson, L. J., et al. (1996). Acylation targets endothelial nitric-oxide synthase to plasmalemmal caveolae. J. Biol. Chem. 271, 6518–6522.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Lutchman, M., Solomon, K.R., Freeman, M.R. (2007). Cholesterol, Cell Signaling, and Prostate Cancer. In: Chung, L.W.K., Isaacs, W.B., Simons, J.W. (eds) Prostate Cancer. Contemporary Cancer Research. Humana Press. https://doi.org/10.1007/978-1-59745-224-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-224-3_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-696-2

  • Online ISBN: 978-1-59745-224-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics