Skip to main content

Abstract

The zebrafish model has recently emerged as a significant experimental system for developmental biology studies. In this review, we provide an introduction to the zebrafish model system by overviewing set-up and husbandry requirements, the genome, and associated bioinformatics infrastructure. We then detail the utility of zebrafish for forward, reverse, and chemical genetic studies of development. We also discuss using zebrafish for live cell imaging experiments. Finally, we provide an overview of zebrafish community resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn 1995;203:253–310.

    PubMed  CAS  Google Scholar 

  2. Fishman MC. Genomics. Zebrafish—the canonical vertebrate. Science 2001;294(5545):1290–1291.

    Article  PubMed  CAS  Google Scholar 

  3. Postlethwait J, Amores A, Force A, Yan Y. The zebrafish genome. Methods Cell Biol 1999;60:149–156.

    PubMed  CAS  Google Scholar 

  4. Lyons LA, Raymond MM, O’Brien SJ. Comparative genomics: The next generation. Anim Biotech 1994;5:103–111.

    Article  CAS  Google Scholar 

  5. Postlethwait J, Amores A, Cresko W, Singer A, Yan Y. Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet 2004;20(10):481–490.

    Article  PubMed  CAS  Google Scholar 

  6. Haffter P, Odenthal J, Mullins MC, et al. Mutations affecting pigmentation and shape of the adult zebrafish. Dev Genes Evol 1996;206:260–276.

    Article  Google Scholar 

  7. Golling G, Amsterdam A, Sun Z, et al. Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat Genet 2002;31(2):135–140.

    Article  PubMed  CAS  Google Scholar 

  8. Amsterdam A, Hopkins N. Retroviral-mediated insertional mutagenesis in zebrafish. Methods Cell Biol 2004;77:3–20.

    PubMed  CAS  Google Scholar 

  9. Gross JM, Perkins BD, Amsterdam A, et al. Identification of zebrafish insertional mutants with defects in visual system development and function. Genetics 2005;170(1):245–261.

    Article  PubMed  CAS  Google Scholar 

  10. Neuhauss SC, Biehlmaier O, Seeliger MW, et al. Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. J Neurosci 1999;19(19):8603–8615.

    PubMed  CAS  Google Scholar 

  11. Sadler KC, Amsterdam A, Soroka C, Boyer J, Hopkins N. A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease. Development 2005;132(15):3561–3572.

    Article  PubMed  CAS  Google Scholar 

  12. Sun Z, Amsterdam A, Pazour GJ, Cole DG, Miller MS, Hopkins N. A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development 2004;131(16):4085–4093.

    Article  PubMed  CAS  Google Scholar 

  13. Mullins MC, Nusslein-Volhard C. Mutational approaches to studying embryonic pattern formation in the zebrafish. Curr Opin Genet Dev 1993;3(4):648–654.

    Article  PubMed  CAS  Google Scholar 

  14. van Eeden FJ, Granato M, Odenthal J, Haffter P. Developmental mutant screens in the zebrafish. Methods Cell Biol 1999;60:21–41.

    PubMed  Google Scholar 

  15. Amsterdam A. Insertional mutagenesis in zebrafish: Genes for development, genes for disease. Brief Funct Genomic Proteomic 2006;5(1): 19–23.

    Article  PubMed  CAS  Google Scholar 

  16. Peterson R, Link B, Dowling J, Schreiber S. Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc Natl Acad Sci USA 2000;97:12965–12969.

    Article  PubMed  CAS  Google Scholar 

  17. MacRae CA, Peterson RT. Zebrafish-based small molecule discovery. Chem Biol 2003;10(10):901–908.

    Article  PubMed  CAS  Google Scholar 

  18. Peterson RT, Fishman MC. Discovery and use of small molecules for probing biological processes in zebrafish. Methods Cell Biol 2004;76:569–591.

    PubMed  CAS  Google Scholar 

  19. Yeh JR, Crews CM. Chemical genetics: Adding to the developmental biology toolbox. Dev Cell 2003;5(1):11–19.

    Article  PubMed  CAS  Google Scholar 

  20. Kimmel CB, Law RD. Cell lineage of zebrafish blastomeres. III. Clonal analyses of the blastula and gastrula stages. Dev Biol 1985;108(1):94–101.

    Article  PubMed  CAS  Google Scholar 

  21. Kawakami K. Transposon tools and methods in zebrafish. Dev Dyn 2005;234(2):244–254.

    Article  PubMed  CAS  Google Scholar 

  22. Nasevicius A, Ekker SC. Effective targeted gene “knockdown” in zebrafish. Nat Genet 2000;26(2):216–220.

    Article  PubMed  CAS  Google Scholar 

  23. Oates AC, Bruce AE, Ho RK. Too much interference: Injection of double-stranded RNA has nonspecific effects in the zebrafish embryo. Dev Biol 2000;224(1):20–28.

    Article  PubMed  CAS  Google Scholar 

  24. Liu WY, Wang Y, Sun YH, et al. Efficient RNA interference in zebrafish embryos using siRNA synthesized with SP6 RNA polymerase. Dev Growth Differ 2005;47(5):323–331.

    Article  PubMed  CAS  Google Scholar 

  25. Kanungo J, Li BS, Goswami M, Zheng YL, Ramchandran R, Pant HC. Cloning and characterization of zebrafish (Danio rerio) cyclindependent kinase 5. Neurosci Lett 2006;412(3):233–238.

    Article  PubMed  CAS  Google Scholar 

  26. Megason S, Amsterdam A, Hopkins N, Lin S. Uses of GFP in transgenic vertebrates. Methods Biochem Anal 2006;47:285–303.

    PubMed  Google Scholar 

  27. Ivics Z, Kaufman CD, Zayed H, Miskey C, Walisko O, Izsvak Z. The Sleeping Beauty transposable element: Evolution, regulation and genetic applications. Curr Issues Mol Biol 2004;6(1):43–55.

    PubMed  CAS  Google Scholar 

  28. Grabher C, Joly JS, Wittbrodt J. Highly efficient zebrafish transgenesis mediated by the meganuclease I-SceI. Methods Cell Biol 2004;77:381–401.

    PubMed  CAS  Google Scholar 

  29. Halloran MC, Sato-Maeda M, Warren JT, et al. Laser-induced gene expression in specific cells of transgenic zebrafish. Development 2000;127(9):1953–1960.

    PubMed  CAS  Google Scholar 

  30. de Graaf M, Zivkovic D, Joore J. Hormone-inducible expression of secreted factors in zebrafish embryos. Dev Growth Differ 1998;40(6):577–582.

    Article  PubMed  Google Scholar 

  31. Scheer N, Campos-Ortega JA. Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mech Dev 1999;80(2): 153–158.

    Article  PubMed  CAS  Google Scholar 

  32. Dong J, Stuart GW. Transgene manipulation in zebrafish by using recombinases. Methods Cell Biol 2004;77:363–379.

    PubMed  CAS  Google Scholar 

  33. Wienholds E, van Eeden F, Kosters M, Mudde J, Plasterk RH, Cuppen E. Efficient target-selected mutagenesis in zebrafish. Genome Res 2003;13(12):2700–2707.

    Article  PubMed  CAS  Google Scholar 

  34. Draper BW, McCallum CM, Stout JL, Slade AJ, Moens CB. A highthroughput method for identifying N-ethyl-N-nitrosourea (ENU)-induced point mutations in zebrafish. Methods Cell Biol 2004;77: 91–112.

    Article  PubMed  CAS  Google Scholar 

  35. Sood R, English MA, Jones M, et al. Methods for reverse genetic screening in zebrafish by resequencing and TILLING. Methods 2006;39(3):220–227.

    Article  PubMed  CAS  Google Scholar 

  36. Lee KY, Huang H, Ju B, Yang Z, Lin S. Cloned zebrafish by nuclear transfer from long-term-cultured cells. Nat Biotechnol 2002;20(8):795–799.

    PubMed  CAS  Google Scholar 

  37. Ma C, Fan L, Ganassin R, Bols N, Collodi P. Production of zebrafish germ-line chimeras from embryo cell cultures. Proc Natl Acad Sci USA 2001;98(5):2461–2466.

    Article  PubMed  CAS  Google Scholar 

  38. Fan L, Moon J, Crodian J, Collodi P. Homologous recombination in zebrafish ES cells. Transgenic Res 2006;15(1):21–30.

    Article  PubMed  CAS  Google Scholar 

  39. Bayer TA, Campos-Ortega JA. A transgene containing lacZ is expressed in primary sensory neurons in zebrafish. Development 1992;115(2):421–426.

    PubMed  CAS  Google Scholar 

  40. Cooper MS, Szeto DP, Sommers-Herivel G, et al. Visualizing morphogenesis in transgenic zebrafish embryos using BODIPY TR methyl ester dye as a vital counterstain for GFP. Dev Dyn 2005;232(2):359–368.

    Article  PubMed  CAS  Google Scholar 

  41. O’Malley DM, Zhou Q, Gahtan E. Probing neural circuits in the zebrafish: A suite of optical techniques. Methods 2003;30(1):49–63.

    Article  PubMed  CAS  Google Scholar 

  42. Miesenbock G, De Angelis DA, Rothman JE. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 1998;394(6689):192–195.

    Article  PubMed  CAS  Google Scholar 

  43. Miyawaki A, Griesbeck O, Heim R, Tsien RY. Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci USA 1999;96(5):2135–2140.

    Article  PubMed  CAS  Google Scholar 

  44. Sakai R, Repunte-Canonigo V, Raj CD, Knopfel T. Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur J Neurosci 2001;13(12):2314–2318.

    Article  PubMed  CAS  Google Scholar 

  45. Siegel RM, Chan FK, Zacharias DA, et al. Measurement of molecular interactions in living cells by fluorescence resonance energy transfer between variants of the green fluorescent protein. Sci STKE 2000;2000(38):PL1.

    Google Scholar 

  46. Hu CD, Chinenov Y, Kerppola TK. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 2002;9(4):789–798.

    Article  PubMed  CAS  Google Scholar 

  47. Collodi P, Kamei Y, Ernst T, Miranda C, Buhler DR, Barnes DW. Culture of cells from zebrafish (Brachydanio rerio) embryo and adult tissues. Cell Biol Toxicol 1992;8(1):43–61.

    Article  PubMed  CAS  Google Scholar 

  48. Helmrich A, Barnes D. Zebrafish embryonal cell culture. Methods Cell Biol 1999;59:29–37.

    Article  PubMed  CAS  Google Scholar 

  49. Sun L, Bradford CS, Ghosh C, Collodi P, Barnes DW. ES-like cell cultures derived from early zebrafish embryos. Mol Mar Biol Biotechnol 1995;4(3):193–199.

    PubMed  CAS  Google Scholar 

  50. Fan L, Alestrom A, Alestrom P, Collodi P. Development of cell cultures with competency for contributing to the zebrafish germ line. Crit Rev Eukaryot Gene Expr 2004;14(1–2):43–51.

    Article  PubMed  Google Scholar 

  51. Grinblat Y, Lane ME, Sagerstrom C, Sive H. Analysis of zebrafish development using explant culture assays. In: Detrich HW, Westerfield M, Zon LI, Eds. The Zebrafish: Biology. San Diego, CA: Academic Press, 1999:128–155.

    Google Scholar 

  52. Langenberg T, Brand M, Cooper MS. Imaging brain development and organogenesis in zebrafish using immobilized embryonic explants. Dev Dyn 2003;228(3):464–474.

    Article  PubMed  CAS  Google Scholar 

  53. Kozlowski DJ, Murakami T, Ho RK, Weinberg ES. Regional cell movement and tissue patterning in the zebrafish embryo revealed by fate mapping with caged fluorescein. Biochem Cell Biol 1997;75(5):551–562.

    Article  PubMed  CAS  Google Scholar 

  54. Thummel R, Burket CT, Brewer JL, et al. Cre-mediated site-specific recombination in zebrafish embryos. Dev Dyn 2005;233(4):1366–1377.

    Article  PubMed  CAS  Google Scholar 

  55. Haas K, Sin WC, Javaherian A, Li Z, Cline HT. Single-cell electroporation for gene transfer in vivo. Neuron 2001;29(3):583–591.

    Article  PubMed  CAS  Google Scholar 

  56. Cerda GA, Thomas JE, Allende ML, Karlstrom RO, Palma V. Electroporation of DNA, RNA, and morpholinos into zebrafish embryos. Methods 2006;39(3):207–211.

    Article  PubMed  CAS  Google Scholar 

  57. Helde KA, Wilson ET, Cretekos CJ, Grunwald DJ. Contribution of early cells to the fate map of the zebrafish gastrula. Science 1994;265(5171):517–520.

    Article  PubMed  CAS  Google Scholar 

  58. Kimmel CB, Warga RM, Schilling TF. Origin and organization of the zebrafish fate map. Development 1990;108(4):581–594.

    PubMed  CAS  Google Scholar 

  59. Woo K, Shih J, Fraser SE. Fate maps of the zebrafish embryo. Curr Opin Genet Dev 1995;5(4):439–443.

    Article  PubMed  CAS  Google Scholar 

  60. Stainier DY, Lee RK, Fishman MC. Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development 1993;119(1):31–40.

    PubMed  CAS  Google Scholar 

  61. Mizuno T, Shinya M, Takeda H. Cell and tissue transplantation in zebrafish embryos. Methods Mol Biol 1999;127:15–28.

    Article  PubMed  CAS  Google Scholar 

  62. Hutson LD, Campbell DS, Chien CB. Analyzing axon guidance in the zebrafish retinotectal system. Methods Cell Biol 2004;76:13–35.

    PubMed  Google Scholar 

  63. Yamamoto Y, Jeffery WR. Probing teleost eye development by lens transplantation. Methods 2002;28(4):420–426.

    Article  PubMed  CAS  Google Scholar 

  64. Ho R, Kane D. Cell-autonomous action of zebrafish spt-1 mutation in specific mesodermal precursors. Nature 1990;348:728–730.

    Article  PubMed  CAS  Google Scholar 

  65. Ho RK, Kimmel CB. Commitment of cell fate in the early zebrafish embryo. Science 1993;261(5117):109–111.

    Article  PubMed  CAS  Google Scholar 

  66. Moens CB, Fritz A. Techniques in neural development. In: Detrich HW, Westerfield M, Zon LI, Eds. The Zebrafish: Biology. San Diego, CA: Academic Press, 1999:133–147.

    Google Scholar 

  67. Rossant J, Spence A. Chimeras and mosaics in mouse mutant analysis. Trends Genet 1998;14:358–363.

    Article  PubMed  CAS  Google Scholar 

  68. Hill AJ, Teraoka H, Heideman W, Peterson RE. Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 2005; 86(1):6–19.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Link, B.A., Megason, S.G. (2008). Zebrafish as a Model for Development. In: Conn, P.M. (eds) Sourcebook of Models for Biomedical Research. Humana Press. https://doi.org/10.1007/978-1-59745-285-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-285-4_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-933-8

  • Online ISBN: 978-1-59745-285-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics