Skip to main content

Targeted Therapy For Breast Cancer

  • Chapter
Molecular Targeting in Oncology

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1461 Accesses

Summary

With the completion of human genome project, the confluence of information on drivers of cell proliferation and the emergence of technology to define and produce therapeutics, molecularly targeted therapies are beginning to be integrated into the overall treatment of patients with cancer. This chapter focuses on the development, mechanism of action, and clinical utility of these agents in breast cancer. Monoclonal antibodies (trastuzumab, bevacizumab, and cetiximab), small molecule tyrosine kinase and farnesyl transferase inhibitors (gefitinib, erlotinib, lapatinib, and tipifarnib), mammalian target of rapamycin and Raf kinase inhibitors (temsirolimus, everolimus, and sorafenib), and other novel agents (ZD 6474, SU 11248) are discussed. In addition, the use of molecular taxonomy and microarray analysis in predicting outcomes and response to therapy are reviewed. Key Words: Breast cancer; targeted therapy; trastuzumab; HER-2; microarray; bevacizumab; VEGF; lapatinib; monoclonal antibody; tyrosine kinase inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

references

  1. Jemal A, Murray T, Ward E, et al. Cancer statistics, 2005. CA Cancer J Clin 2005; 55:10–30.

    PubMed  Google Scholar 

  2. Cancer IUA. Global Action Against Cancer: Cancer Statistics. http://www.iucc.org, 2005.

    Google Scholar 

  3. Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98:10869–74.

    PubMed  CAS  Google Scholar 

  4. Sorlie T, Tibshirani R, Parker J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 2003; 100:8418–23.

    PubMed  CAS  Google Scholar 

  5. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000; 406:747–52.

    PubMed  CAS  Google Scholar 

  6. van de Vijver MJ, He YD, van’t Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002; 347:1999–2009.

    PubMed  Google Scholar 

  7. van’t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415:530–6.

    CAS  Google Scholar 

  8. Perou CM, Jeffrey SS, van de Rijn M, et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci USA 1999; 96:9212–7.

    PubMed  CAS  Google Scholar 

  9. Carey LA, Perou CM, Dressler LG, et al. Race and poor prognosis basal breast tumor (BBT) phenotype in the population-based Caroline Breast Cancer Study (CBCS). Proc Am Soc Clin Oncol 2004; 23:833: Abstract 9510.

    Google Scholar 

  10. Rouzier R, Anderson K, Hess KR, et al. Basal and luminal types of breast cancer defined by gene expression patterns respond differenty to neoadjuvant chemotherapy. Breast Cancer Res Treat 2004; 88:S24: Abstract 201.

    Google Scholar 

  11. Sartor CI, Zhou H, Perou CM, Ethier SP. Basal-like breast tumor-derrived cell lines are growth inhibited and radiosensitized by epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors. Breast Cancer Res Treat 2004; 88:S34: Abstract 311.

    Google Scholar 

  12. Nielsen TO, Hsu FD, Jensen K, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 2004; 10:5367–74.

    PubMed  CAS  Google Scholar 

  13. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005; 365:1687–717.

    Google Scholar 

  14. Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286:531–7.

    PubMed  CAS  Google Scholar 

  15. Davis RE, Staudt LM. Molecular diagnosis of lymphoid malignancies by gene expression profiling. Curr Opin Hematol 2002; 9:333–8.

    PubMed  Google Scholar 

  16. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004; 351:2817–26.

    PubMed  CAS  Google Scholar 

  17. Paik S, Shak S, Tang G, et al. Multi-gene RT-PCR assay for predicting recurrence in node negative breast cancer patients - NSABP studies B-20 and B-14. Breast Cancer Res Treat 2003; 82:S10: Abstract 16.

    Google Scholar 

  18. Esteban J, Baker J, Cronin M, et al. Tumor gene expression and prognosis in breast cancer: multi-gene RT-PCR assay of paraffin-embedded tissue. Proc Am Soc Clin Oncol 2003; 22:850: Abstract 3416.

    Google Scholar 

  19. Cobleigh MA, Bitterman P, Baker J, et al. Tumor gene expression predicts distant disease-free survival (DDFS) in breast cancer patients with 10 or more positive nodes: high throughout RT-PCR assay of paraffin-embedded tumor tissues. Proc Am Soc Clin Oncol 2003; 22:850: Abstract 3415.

    Google Scholar 

  20. Laskin JJ, Sandler AB. Epidermal growth factor receptor: a promising target in solid tumours. Cancer Treat Rev 2004; 30:1–17.

    PubMed  CAS  Google Scholar 

  21. Riese DJ, II, Stern DF. Specificity within the EGF family/ErbB receptor family signaling network. Bioessays 1998; 20:41–8.

    PubMed  Google Scholar 

  22. Harris M. Monoclonal antibodies as therapeutic agents for cancer. Lancet Oncol 2004; 5:292–302.

    PubMed  CAS  Google Scholar 

  23. Emens LA, Davidson NE. Trastuzumab in breast cancer. Oncology (Huntingt) 2004; 18:1117–28; discussion 1131–2, 1137–8.

    Google Scholar 

  24. Karunagaran D, Tzahar E, Beerli RR, et al. ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J 1996; 15:254–64.

    PubMed  CAS  Google Scholar 

  25. Graves TA. Trastuzumab. Macintosh-PhotoShop, 2005.

    Google Scholar 

  26. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235:177–82.

    PubMed  CAS  Google Scholar 

  27. Volpi A, Nanni O, De Paola F, et al. HER-2 expression and cell proliferation: prognostic markers in patients with node-negative breast cancer. J Clin Oncol 2003; 21:2708–12.

    PubMed  CAS  Google Scholar 

  28. Ross JS, Fletcher JA. The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Stem Cells 1998; 16:413–28.

    PubMed  CAS  Google Scholar 

  29. Hudziak RM, Schlessinger J, Ullrich A. Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells. Proc Natl Acad Sci USA 1987; 84:7159–63.

    PubMed  CAS  Google Scholar 

  30. Chazin VR, Kaleko M, Miller AD, Slamon DJ. Transformation mediated by the human HER-2 gene independent of the epidermal growth factor receptor. Oncogene 1992; 7:1859–66.

    PubMed  CAS  Google Scholar 

  31. Fendly BM, Winget M, Hudziak RM, Lipari MT, Napier MA, Ullrich A. Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. Cancer Res 1990; 50:1550–8.

    PubMed  CAS  Google Scholar 

  32. Hudziak RM, Lewis GD, Winget M, Fendly BM, Shepard HM, Ullrich A. p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell Biol 1989; 9:1165–72.

    PubMed  CAS  Google Scholar 

  33. Carter P, Presta L, Gorman CM, et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA 1992; 89:4285–9.

    PubMed  CAS  Google Scholar 

  34. Sliwkowski MX, Lofgren JA, Lewis GD, Hotaling TE, Fendly BM, Fox JA. Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin Oncol 1999; 26:60–70.

    PubMed  CAS  Google Scholar 

  35. Nahta R, Esteva FJ. HER-2-targeted therapy: lessons learned and future directions. Clin Cancer Res 2003; 9:5078–84.

    PubMed  CAS  Google Scholar 

  36. Baselga J, Albanell J, Molina MA, Arribas J. Mechanism of action of trastuzumab and scientific update. Semin Oncol 2001; 28:4–11.

    PubMed  CAS  Google Scholar 

  37. Arteaga CL. Trastuzumab, an appropriate first-line single-agent therapy for HER2-overexpressing metastatic breast cancer. Breast Cancer Res 2003; 5:96–100.

    PubMed  CAS  Google Scholar 

  38. Yakes FM, Chinratanalab W, Ritter CA, King W, Seelig S, Arteaga CL. Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt1 is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res 2002; 62:4132–41.

    PubMed  CAS  Google Scholar 

  39. Gennari R, Menard S, Fagnoni F, et al. Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res 2004; 10:5650–5.

    PubMed  CAS  Google Scholar 

  40. zum Buschenfelde CM, Hermann C, Schmidt B, Peschel C, Bernhard H. Antihuman epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab enhances cytolytic activity of class I-restricted HER2-specific T lymphocytes against HER2-overexpressing tumor cells. Cancer Res 2002; 62:2244–7.

    PubMed  Google Scholar 

  41. Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 2000; 6:443–6.

    PubMed  CAS  Google Scholar 

  42. Kumar R, Yarmand-Bagheri R. The role of HER2 in angiogenesis. Semin Oncol 2001; 28:27–32.

    PubMed  CAS  Google Scholar 

  43. Izumi Y, Xu L, di Tomaso E, Fukumura D, Jain RK. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature 2002; 416:279–80.

    PubMed  CAS  Google Scholar 

  44. Mayfield S, Vaughn JP, Kute TE. DNA strand breaks and cell cycle perturbation in herceptin treated breast cancer cell lines. Breast Cancer Res Treat 2001; 70:123–9.

    PubMed  CAS  Google Scholar 

  45. Pietras RJ, Poen JC, Gallardo D, Wongvipat PN, Lee HJ, Slamon DJ. Monoclonal antibody to HER-2/neureceptor modulates repair of radiation-induced DNA damage and enhances radiosensitivity of human breast cancer cells overexpressing this oncogene. Cancer Res 1999; 59:1347–55.

    PubMed  CAS  Google Scholar 

  46. Nagata Y, Lan KH, Zhou X, et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 2004; 6:117–27.

    PubMed  CAS  Google Scholar 

  47. Pandolfi PP. Breast cancer – loss of PTEN predicts resistance to treatment. N Engl J Med 2004; 351:2337–8.

    PubMed  CAS  Google Scholar 

  48. Barnes DM, Bartkova J, Camplejohn RS, Gullick WJ, Smith PJ, Millis RR. Overexpression of the c-erbB-2 oncoprotein: why does this occur more frequently in ductal carcinoma in situ than in invasive mammary carcinoma and is this of prognostic significance? Eur J Cancer 1992; 28:644–8.

    PubMed  CAS  Google Scholar 

  49. Mohsin SK, Weiss HL, Gutierrez MC, et al. Neoadjuvant trastuzumab induces apoptosis in primary breast cancers. J Clin Oncol 2005; 23:2460–8.

    PubMed  CAS  Google Scholar 

  50. Pegram MD, Konecny GE, O’Callaghan C, Beryt M, Pietras R, Slamon DJ. Rational combinations of trastuzumab with chemotherapeutic drugs used in the treatment of breast cancer. J Natl Cancer Inst 2004; 96:739–49.

    PubMed  CAS  Google Scholar 

  51. Slamon D, Pegram M. Rationale for trastuzumab (Herceptin) in adjuvant breast cancer trials. Semin Oncol 2001; 28:13–9.

    PubMed  CAS  Google Scholar 

  52. Pegram M, Hsu S, Lewis G, et al. Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers. Oncogene 1999; 18:2241–51.

    PubMed  CAS  Google Scholar 

  53. Baselga J, Tripathy D, Mendelsohn J, et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 1996; 14:737–44.

    PubMed  CAS  Google Scholar 

  54. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344:783–92.

    PubMed  CAS  Google Scholar 

  55. Harris KA, Carla B Washington GL, Jian-feng Lu, Robert Mass, Rene Bruno. A population pharmacokinetic (PK) model for trastuzumab (Herceptin) and implications for clinical dosing. Proc Am Soc Clin Oncol 2002; 21:123: Abstract 488.

    Google Scholar 

  56. Leyland-Jones B, Gelmon K, Ayoub JP, et al. Pharmacokinetics, safety, and efficacy of trastuzumab administered every three weeks in combination with paclitaxel. J Clin Oncol 2003; 21:3965–71.

    PubMed  CAS  Google Scholar 

  57. Baselga J, Carbonell X, Castaneda-Soto NJ, et al. Phase II study of efficacy, safety, and pharmacokinetics of trastuzumab monotherapy administered on a 3-weekly schedule. J Clin Oncol 2005; 23:2162–71.

    PubMed  CAS  Google Scholar 

  58. Stewart J, Fehrenbacher L, Blanchard R, Rodriguez G, Vogel C, Anavekar P. Phase II trial of trastuzumab and paclitaxel or docetaxel administered every 3 weeks to patients receiving a first treatment for HER2+ metastatic breast cancer. Proc Am Soc Clin Oncol 2004; 22:78: Abstract 806.

    Google Scholar 

  59. NCCN. Breast Cancer. Clinical Practice Guidelines in Oncology: Version 2005.

    Google Scholar 

  60. Bast RC, Jr., Ravdin P, Hayes DF, et al. 2000 update of recommendations for the use of tumor markers in breast and colorectal cancer: clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol 2001; 19:1865–78.

    PubMed  Google Scholar 

  61. O’Malley F, Thomson T, Julian J, et al. HER2 status: A Canadian experience of concordance between central and local testing laboratories. Breast Cancer Res Treat 2003; 82:S70: Abstract 305.

    Google Scholar 

  62. Anderson S, Reddy JC, Rai S, Lieberman G, Klein P. Concordance between central and local lab IHC and FISH HER2 testing in a community-based trial of first line trastuzumab plus a taxane in HER2+ metastatic breast cancer (MBC). Proc Am Soc Clin Oncol 2004; 23:851: Abstract 9580.

    Google Scholar 

  63. Tubbs RR, Pettay JD, Roche PC, Stoler MH, Jenkins RB, Grogan TM. Discrepancies in clinical laboratory testing of eligibility for trastuzumab therapy: apparent immunohistochemical false-positives do not get the message. J Clin Oncol 2001; 19:2714–21.

    PubMed  CAS  Google Scholar 

  64. Bilous M, Dowsett M, Hanna W, et al. Current perspectives on HER2 testing: a review of national testing guidelines. Mod Pathol 2003; 16:173–82.

    PubMed  Google Scholar 

  65. Zarbo RJ, Hammond ME. Conference summary, Strategic Science Symposium. Her-2/neu testing of breast cancer patients in clinical practice. Arch Pathol Lab Med 2003; 127:549–53.

    PubMed  Google Scholar 

  66. Paik S, Bryant J, Tan-Chiu E, et al. Real-world performance of HER2 testing – National Surgical Adjuvant Breast and Bowel Project experience. J Natl Cancer Inst 2002; 94:852–4.

    PubMed  Google Scholar 

  67. Roche PC, Suman VJ, Jenkins RB, et al. Concordance between local and central laboratory HER2 testing in the breast intergroup trial N9831. J Natl Cancer Inst 2002; 94:855–7.

    PubMed  Google Scholar 

  68. Perez EA, Suman VJ, Davidson NE, et al. Effect of doxorubicin plus cyclophosphamide on left ventricular ejection fraction in patients with breast cancer in the North Central Cancer Treatment Group N9831 Intergroup Adjuvant Trial. J Clin Oncol 2004; 22:3700–4.

    PubMed  CAS  Google Scholar 

  69. Vogel CL, Cobleigh MA, Tripathy D, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 2002; 20:719–26.

    PubMed  CAS  Google Scholar 

  70. Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999; 17:2639–48.

    PubMed  CAS  Google Scholar 

  71. Mass RD, Press M, Anderson S, Murphy M, Slamon D. Improved survival benefit from herceptin (trastuzumab) in patients selected by fluorescence in situ hybridization (FISH). Proc Am Soc Clin Oncol 2001; 20:22: Abstract 85.

    Google Scholar 

  72. Lueftner DI, Schaller G, Henschke P, et al. Complex formation between the shed antigen of HER-2/neu and the monoclonal anti-HER-2/neu antibody trastuzumab. Breast Cancer Res Treat 2003; 82:S49: Abstract 222.

    Google Scholar 

  73. Ghahramani P, Baselga J, Leyland-Jones B, Gianni L, Gatzemeier U. Meta-analysis of the relationship between serum trastuzumab concentrations and shed HER2 extracellular domain (ECD). Breast Cancer Res Treat 2002; 76:S31: Abstract 10.

    Google Scholar 

  74. Ross JS, Fletcher JA, Linette GP, et al. The Her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy. Oncologist 2003; 8:307–25.

    PubMed  CAS  Google Scholar 

  75. Seidman AD, Broadwater G, Carney W, et al. Serum HER2 extracellular domain (ECD) levels and efficacy of weekly (W) or every 3-weekly (q3W) paclitaxel (P) with or without trastuzumab (T) in patients (pts) with metastatic breast cancer (MBC): CALGB 150002/9840. Proc Am Soc Clin Oncol 2005; 23:18s: Abstract 558.

    Google Scholar 

  76. Kallab V, Benz CC, Kirpotin D, Marks JD, Park JW. HER2/EGFR internalization: a novel biomarker for ErbB-targeted theraputics. Breast Cancer Res Treat 2004; 88:126–7: Abstract 3044.

    Google Scholar 

  77. Luftner DI, Possinger K, Henschke P, et al. Longitudinal HER-2/neu measurements during treatment with herceptin, epirubicin plus cyclophosphamide (HEC): interim serum results of a phase ii study in patients with metastatic breast cancer. Breast Cancer Res Treat 2002; 76:S109: Abstract 423.

    Google Scholar 

  78. Argiris A, Wang CX, Whalen SG, DiGiovanna MP. Synergistic interactions between tamoxifen and trastuzumab (Herceptin). Clin Cancer Res 2004; 10:1409–20.

    PubMed  CAS  Google Scholar 

  79. Raymond E, Faivre S, Armand JP. Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy. Drugs 2000; 60 Suppl 1:15–23; discussion 41–2.

    PubMed  CAS  Google Scholar 

  80. Seidman AD, Fornier MN, Esteva FJ, et al. Weekly trastuzumab and paclitaxel therapy for metastatic breast cancer with analysis of efficacy by HER2 immunophenotype and gene amplification. J Clin Oncol 2001; 19:2587–95.

    PubMed  CAS  Google Scholar 

  81. John M, Kriebel-Schmitt R, Stauch M, Wolf H, Mohr B, Klare P, Hinke R, Schlosser J. Weekly paclitaxel plus trastuzumab shows promising efficacy in advanced breast cancer. Breast Cancer Res Treat 2003; 82:S49: Abstract 221.

    Google Scholar 

  82. Tedesco KL, Thor AD, Johnson DH, et al. Docetaxel combined with trastuzumab is an active regimen in HER-2 3+ overexpressing and fluorescent in situ hybridization-positive metastatic breast cancer: a multi-institutional phase II trial. J Clin Oncol 2004; 22:1071–7.

    PubMed  CAS  Google Scholar 

  83. Esteva FJ, Valero V, Booser D, et al. Phase II study of weekly docetaxel and trastuzumab for patients with HER-2-overexpressing metastatic breast cancer. J Clin Oncol 2002; 20:1800–8.

    PubMed  CAS  Google Scholar 

  84. Burstein HJ, Kuter I, Campos SM, et al. Clinical activity of trastuzumab and vinorelbine in women with HER2-overexpressing metastatic breast cancer. J Clin Oncol 2001; 19:2722–30.

    PubMed  CAS  Google Scholar 

  85. Burstein HJ, Harris LN, Marcom PK, et al. Trastuzumab and vinorelbine as first-line therapy for HER2-overexpressing metastatic breast cancer: multicenter phase II trial with clinical outcomes, analysis of serum tumor markers as predictive factors, and cardiac surveillance algorithm. J Clin Oncol 2003; 21:2889–95.

    PubMed  CAS  Google Scholar 

  86. Jahanzeb M, Mortimer JE, Yunus F, et al. Phase II trial of weekly vinorelbine and trastuzumab as first-line therapy in patients with HER2(+) metastatic breast cancer. Oncologist 2002; 7:410–7.

    PubMed  CAS  Google Scholar 

  87. O’Shaughnessy J. Gemcitabine and trastuzumab in metastatic breast cancer. Semin Oncol 2003; 30:22–6.

    PubMed  CAS  Google Scholar 

  88. O’Shaughnessy JA, Vukelja S, Marsland T, Kimmel G, Ratnam S, Pippen JE. Phase II study of trastuzumab plus gemcitabine in chemotherapy-pretreated patients with metastatic breast cancer. Clin Breast Cancer 2004; 5:142–7.

    PubMed  CAS  Google Scholar 

  89. Xu L, Song S, Zhu J, et al. Capecitabine (Xeloda) combined with trastuzumab (Herceptin) as first-line therapy in patients with HER2-overexpressing metastatic breast cancer (MBC): an interim analysis. Breast Cancer Res Treat 2004; 88:S128: Abstract 3049.

    Google Scholar 

  90. Sledge GW, Jr. Gemcitabine combined with paclitaxel or paclitaxel/trastuzumab in metastatic breast cancer. Semin Oncol 2003; 30:19–21.

    PubMed  CAS  Google Scholar 

  91. Perez EA, Rowland KM, Suman VJ, et al. N98–32–52: efficacy and tolerability of two schedules of paclitaxel, carboplatin and trastuzumab in women with HER2 positive metastatic breast cancer: a North Central Cancer Treatment Group Randomized phase II trial. Breast Cancer Res Treat 2003; 82:S47:Abstract 216.

    Google Scholar 

  92. Pegram MD, Pienkowski T, Northfelt DW, et al. Results of two open-label, multicenter phase II studies of docetaxel, platinum salts, and trastuzumab in HER2-positive advanced breast cancer. J Natl Cancer Inst 2004; 96:759–69.

    PubMed  CAS  Google Scholar 

  93. Common Terminology Criteria for Adverse Events, Version 3.0, DCTD, NCI, NIH, DHHS. 2003: h7–10.

    Google Scholar 

  94. Pegram MD, Lipton A, Hayes DF, et al. Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J Clin Oncol 1998; 16:2659–71.

    PubMed  CAS  Google Scholar 

  95. Piccart M, Lohrisch C, Di Leo A, Larsimont D. The predictive value of HER2 in breast cancer. Oncology 2001; 61 Suppl 2:73–82.

    PubMed  CAS  Google Scholar 

  96. Yamauchi H, Stearns V, Hayes DF. When is a tumor marker ready for prime time? A case study of c-erbB-2 as a predictive factor in breast cancer. J Clin Oncol 2001; 19:2334–56.

    PubMed  CAS  Google Scholar 

  97. Theodoulou M, Hudis C. Cardiac profiles of liposomal anthracyclines: greater cardiac safety versus conventional doxorubicin? Cancer 2004; 100:2052–63.

    PubMed  CAS  Google Scholar 

  98. Theodoulou M, Campos SM, Batist G, Winer E, Norton L, Hudis C, Welles L. TLC D99 (D, Myocet) and Herceptin (H) is safe in advanced breast cancer (ABC): final cardiac safety and efficacy analysis. Proc Am Soc Clin Oncol 2002; 21:55: Abstract 216.

    Google Scholar 

  99. Wolff AC, Bonetti M, Sparano JA, Wang M, Davidson NE. Cardiac safety of trastuzumab (H) in combination with pegylated liposomal doxorubicin (D) and docetaxel (T) in HER2-positive metastatic breast cancer (MBC): preliminary results of the Eastern Cooperative Oncology Group trial E3198. Proc Am Soc Clin Oncol 2003; 22:18: Abstract 70.

    Google Scholar 

  100. Trigo J, Climent MA, Lluch A, Gascon P, Hornedo J, Gil M, Cirera L, Guillem V, Regueiro P, Baselga J. Liposomal doxorubicin Myocet in combination with Herceptin and paclitaxel is active and well tolerated in patients with HER2-positive locally advanced or metastatic breast cancer: a phase II study. Breast Cancer Res Treat 2003; 82:S83: Abstract 351.

    Google Scholar 

  101. Cortes J, Climent M, Lluch A, et al. Updated results of a phase II study (M77035) of Myocet combined with weekly Herceptin and paclitaxel in patients with HER2-positive locally advanced or metastatic breast cancer (LABC/MBC). Breast Cancer Res Treat 2004; 88:S125–6: Abstract 3041.

    Google Scholar 

  102. Thomssen CH, Eidtmann H, Untch M, et al. Cardiac saftey of epirubicin/cyclophosphamide (EC) alone and in combination with herceptin in women with metastatic breast cancer (MBC). Breast Cancer Res Treat 2002; 76:S111: Abstract 430.

    Google Scholar 

  103. Untch M, Eidtmann H, du Bois A, et al. Cardiac safety of trastuzumab in combination with epirubicin and cyclophosphamide in women with metastatic breast cancer: results of a phase I trial. Eur J Cancer 2004; 40:988–97.

    PubMed  CAS  Google Scholar 

  104. Marty M, Cognetti F, Maraninchi D, et al. Efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: results of a randomized phase II trial of the efficacy and sapiey of trastuzumab comsined with docetaxel in patients with HER2 positive metastatic breast cancer administration as first line treatment: the M77001 study group. J Clin Oncol 2005;19:19: 7/1/2005:4265–4274.

    Google Scholar 

  105. Gasparini G, Morabito A, Sio LD, et al. Preliminary clinical results of a randomized phase IIb study of weekly paclitaxel (PCT) +/– trastuzumab (T) as a first line therapy of patients (pts) with HER-2/neu positive metastatic breast cancer (MBC). Breast Cancer Res Treat 2003; 82:S51: Abstract 227.

    Google Scholar 

  106. Romond E. Joint Analysis of NSABP-B-31 and NCCTG-N9831. American Society of Clinical Oncololgy Annual Meeting, Orlando, FL, 2005.

    Google Scholar 

  107. Perez E. Further analysis of NCCTG-N9831. American Society of Clinical Oncology Annual Meeting, Orlando, FL, 2005.

    Google Scholar 

  108. Piccart-Gebhart M. HERA Trial. American Society of Clinical Oncology Annual Meeting, Orlando, FL, 2005.

    Google Scholar 

  109. Hunt SA; American College of Cardiology; American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure). ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure). J Am Coll Cardiol. 2005 Sep 20;46(6):e1–82.

    Google Scholar 

  110. Perez EA, Suman VJ, Davidson NE, et al. Interim cardiac safety analysis of NCCTG N9831 Intergroup adjuvant trastuzumab trial. Proc Am Soc Clin Oncol 2005; 23:17s: Abstract 556.

    Google Scholar 

  111. Buzdar AU, Ibrahim NK, Francis D, et al. Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. J Clin Oncol 2005; 23:3676–85.

    PubMed  CAS  Google Scholar 

  112. Burstein HJ, Harris LN, Gelman R, Lester SC, Nunes RA, Kaelin CM, Parker LM, Ellisen LW, Kuter I, Gadd MA, Christian RL, Kennedy PR, Borges VF, Bunnell CA, Younger J, Smith BL, Winer EP. Preoperative therapy with trastuzumab and paclitaxel followed by sequential adjuvant doxorubicin/cyclophosphamide for HER2 overexpressing stage II or III breast cancer: a pilot study. J Clin Oncol. 2003 Jan 1;21(1):46–53.

    Google Scholar 

  113. Hurley J, Doliny P, Silva O et al. Neoadjuvant herceptin/taxotere/cisplatin in the treatment of locally advanced and inflammatory breast cancer. Proc Am Soc Clin Oncol 2002; 21: 50a (Abstr 196).

    Google Scholar 

  114. Bines J, Murad A, Lago S et al. Multicenter Brazilian study of weekly docetaxel and trastuzumab as primary therapy in stage III, HER-2 overexpressing breast cancer. Proc Am Soc Clin Oncol 2003; 22: 67 (Abstr 268).

    Google Scholar 

  115. Coudert BP, Arnould L, Moreau L, Chollet P, Weber B, Vanlemmens L, Moluçon C, Tubiana N, Causeret S, Misset JL, Feutray S, Mery-Mignard D, Garnier J, Fumoleau P. Pre-operative systemic (neo-adjuvant) therapy with trastuzumab and docetaxel for HER2-overexpressing stage II or III breast cancer: results of a multicenter phase II trial. Ann Oncol. 2006 Mar;17(3):409–14.

    Google Scholar 

  116. Limentani SA, Brufsky AM, Erban JK, Jahanzeb M, Lewis D.Phase II study of neoadjuvant docetaxel, vinorelbine, and trastuzumab followed by surgery and adjuvant doxorubicin plus cyclophosphamide in women with human epidermal growth factor receptor 2-overexpressing locally advanced breast cancer. J Clin Oncol. 2007 Apr 1;25(10):1232–8.

    Google Scholar 

  117. Harris LN, You F, Schnitt SJ, Witkiewicz A, Lu X, Sgroi D, Ryan PD, Come SE, Burstein HJ, Lesnikoski BA, Kamma M, Friedman PN, Gelman R, Iglehart JD, Winer EP. Predictors of resistance to preoperative trastuzumab and vinorelbine for HER2-positive early breast cancer. Clin Cancer Res. 2007 Feb 15;13(4):1198–207.

    Google Scholar 

  118. Wenzel C, Hussain D, Bartsch R et al. Preoperative therapy with epidoxorubicin and docetaxel plus trastuzumab in patients with primary breast cancer: a pilot study. J Cancer Res Clin Oncol 2004; 130: 400–404.

    PubMed  CAS  Google Scholar 

  119. Crone SA, Zhao YY, Fan L, et al. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 2002; 8:459–65.

    PubMed  CAS  Google Scholar 

  120. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 2004; 25:581–611.

    PubMed  CAS  Google Scholar 

  121. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285:1182–6.

    PubMed  CAS  Google Scholar 

  122. Carmeliet P. Angiogenesis in health and disease. Nat Med 2003; 9:653–60.

    PubMed  CAS  Google Scholar 

  123. Jain RK. Molecular regulation of vessel maturation. Nat Med 2003; 9:685–93.

    PubMed  CAS  Google Scholar 

  124. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 2000; 407:242–8.

    PubMed  CAS  Google Scholar 

  125. Liu Y, Cox SR, Morita T, Kourembanas S. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5’ enhancer. Circ Res 1995; 77:638–43.

    PubMed  CAS  Google Scholar 

  126. Levy AP, Levy NS, Wegner S, Goldberg MA. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem 1995; 270:13333–40.

    PubMed  CAS  Google Scholar 

  127. Frank S, Hubner G, Breier G, Longaker MT, Greenhalgh DG, Werner S. Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing. J Biol Chem 1995; 270:12607–13.

    PubMed  CAS  Google Scholar 

  128. Pertovaara L, Kaipainen A, Mustonen T, et al. Vascular endothelial growth factor is induced in response to transforming growth factor-beta in fibroblastic and epithelial cells. J Biol Chem 1994; 269:6271–4.

    PubMed  CAS  Google Scholar 

  129. Warren RS, Yuan H, Matli MR, Ferrara N, Donner DB. Induction of vascular endothelial growth factor by insulin-like growth factor 1 in colorectal carcinoma. J Biol Chem 1996; 271:29483–8.

    PubMed  CAS  Google Scholar 

  130. Soh EY, Sobhi SA, Wong MG, et al. Thyroid-stimulating hormone promotes the secretion of vascular endothelial growth factor in thyroid cancer cell lines. Surgery 1996; 120:944–7.

    PubMed  CAS  Google Scholar 

  131. Shifren JL, Mesiano S, Taylor RN, Ferrara N, Jaffe RB. Corticotropin regulates vascular endothelial growth factor expression in human fetal adrenal cortical cells. J Clin Endocrinol Metab 1998; 83:1342–7.

    PubMed  CAS  Google Scholar 

  132. Konecny GE, Meng YG, Untch M, et al. Association between HER-2/neu and vascular endothelial growth factor expression predicts clinical outcome in primary breast cancer patients. Clin Cancer Res 2004; 10:1706–16.

    PubMed  CAS  Google Scholar 

  133. Meunier-Carpentier S, Dales JP, Djemli A, et al. Comparison of the prognosis indication of VEGFR-1 and VEGFR-2 and Tie2 receptor expression in breast carcinoma. Int J Oncol 2005; 26:977–84.

    PubMed  CAS  Google Scholar 

  134. Bando H, Weich HA, Brokelmann M, et al. Association between intratumoral free and total VEGF, soluble VEGFR-1, VEGFR-2 and prognosis in breast cancer. Br J Cancer 2005; 92:553–61.

    PubMed  CAS  Google Scholar 

  135. Ignoffo RJ. Overview of bevacizumab: a new cancer therapeutic strategy targeting vascular endothelial growth factor. Am J Health Syst Pharm 2004; 61:S21–6.

    PubMed  CAS  Google Scholar 

  136. Cobleigh MA, Langmuir VK, Sledge GW, et al. A phase I/II dose-escalation trial of bevacizumab in previously treated metastatic breast cancer. Semin Oncol 2003; 30:117–24.

    PubMed  CAS  Google Scholar 

  137. Pegram MD, Reese DM. Combined biological therapy of breast cancer using monoclonal antibodies directed against HER2/neu protein and vascular endothelial growth factor. Semin Oncol 2002; 29:29–37.

    PubMed  CAS  Google Scholar 

  138. Pegram M, Yeon C, Durna L, et al. Phase I combined biologic therapy of breast cancer using two humanized monoclonal antibodies directed against HER2 proto-oncogene and vascular endothelial growth factor. Breast Cancer Res Treat 2004; 88:S124: Abstract 3039.

    Google Scholar 

  139. Petit AM, Rak J, Hung MC, et al. Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol 1997; 151:1523–30.

    PubMed  CAS  Google Scholar 

  140. Borgstrom P, Hillan KJ, Sriramarao P, Ferrara N. Complete inhibition of angiogenesis and growth of microtumors by anti-vascular endothelial growth factor neutralizing antibody: novel concepts of angiostatic therapy from intravital videomicroscopy. Cancer Res 1996; 56:4032–9.

    PubMed  CAS  Google Scholar 

  141. Ramaswamy B, Shapiro CL. Phase II trial of bevacizumab in combination with docetaxel in women with advanced breast cancer. Clin Breast Cancer 2003; 4:292–4.

    PubMed  CAS  Google Scholar 

  142. Rugo HS. Bevacizumab in the treatment of breast cancer: rationale and current data. Oncologist 2004; 9 Suppl 1:43–9.

    PubMed  Google Scholar 

  143. Dickler M, Rugo H, Caravelli J, et al. Phase II trial of erlotinib (OSI-774), an epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor, and bevacizumab, a recombinant humanized monoclonal antibody to vascular endothelial growth factor (VEGF) in patients with metastatic breast cancer. Proc Am Soc Clin Oncol 2004; 22:14S (July 15 supplement).

    Google Scholar 

  144. Miller KD, Chap LI, Holmes FA, et al. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 2005; 23:792–9.

    PubMed  CAS  Google Scholar 

  145. Miller K. ECOG 2100. Scientific symposium of the American Society of Clinical Oncology, Orlando, Florida, 2005.

    Google Scholar 

  146. Overmoyer B, Silverman P, Leeming R, et al. Phase II trial of neoadjuvant docetaxel with or without bevacizumab in patients with locally advanced breast cancer. Proc Amer Soc Clin Oncol 2004; 22:15S: Abstract 727.

    Google Scholar 

  147. Bacus SS, Zelnick CR, Plowman G, Yarden Y. Expression of the erbB-2 family of growth factor receptors and their ligands in breast cancers. Implication for tumor biology and clinical behavior. Am J Clin Pathol 1994; 102:S13–24.

    PubMed  CAS  Google Scholar 

  148. Slamon DJ. Studies of the HER-2/neu proto-oncogene in human breast cancer. Cancer Invest 1990; 8:253.

    PubMed  CAS  Google Scholar 

  149. Olayioye MA, Graus-Porta D, Beerli RR, Rohrer J, Gay B, Hynes NE. ErbB-1 and ErbB-2 acquire distinct signaling properties dependent upon their dimerization partner. Mol Cell Biol 1998; 18:5042–51.

    PubMed  CAS  Google Scholar 

  150. Fukazawa T, Miyake S, Band V, Band H. Tyrosine phosphorylation of Cbl upon epidermal growth factor (EGF) stimulation and its association with EGF receptor and downstream signaling proteins. J Biol Chem 1996; 271:14554–9.

    PubMed  CAS  Google Scholar 

  151. Hackel PO, Zwick E, Prenzel N, Ullrich A. Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr Opin Cell Biol 1999; 11:184–9.

    PubMed  CAS  Google Scholar 

  152. Tzahar E, Waterman H, Chen X, et al. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol 1996; 16:5276–87.

    PubMed  CAS  Google Scholar 

  153. Lange CA, Richer JK, Shen T, Horwitz KB. Convergence of progesterone and epidermal growth factor signaling in breast cancer. Potentiation of mitogen-activated protein kinase pathways. J Biol Chem 1998; 273:31308–16.

    PubMed  CAS  Google Scholar 

  154. Bacus SS, Altomare DA, Lyass L, et al. AKT2 is frequently upregulated in HER-2/neu-positive breast cancers and may contribute to tumor aggressiveness by enhancing cell survival. Oncogene 2002; 21:3532–40.

    PubMed  CAS  Google Scholar 

  155. Cockerill S, Stubberfield C, Stables J, et al. Indazolylamino quinazolines and pyridopyrimidines as inhibitors of the EGFr and C-erbB-2. Bioorg Med Chem Lett 2001; 11:1401–5.

    PubMed  CAS  Google Scholar 

  156. Rusnak DW, Lackey K, Affleck K, et al. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther 2001; 1:85–94.

    PubMed  CAS  Google Scholar 

  157. Rusnak DW, Affleck K, Cockerill SG, et al. The characterization of novel, dual ErbB-2/EGFR, tyrosine kinase inhibitors: potential therapy for cancer. Cancer Res 2001; 61:7196–203.

    PubMed  CAS  Google Scholar 

  158. Xia W, Mullin RJ, Keith BR, et al. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene 2002; 21:6255–63.

    PubMed  CAS  Google Scholar 

  159. Gomez H, Chavez M, Doval D, et al. A phase II, randomized trial using the small molecule tyrosine kinase inhibitor lapatinib as a fist-line treatment in patients with FISH positive advanced or metastatic breast cancer. Proc Am Soc Clin Oncol 2005; 24: Abstract 3046.

    Google Scholar 

  160. Konecny G, Venkatesan N, Beryt M, et al. Therapeutic advantage of a dual tyrosine kinase inhibitor (GW2016) in combination with chemotherapy drugs or trastuzumab against human breast cancer cells with HER2 overexpression. Proc Am Assoc Cancer Res 2002; 43:1003: Abstract 4974.

    Google Scholar 

  161. Storniolo A, Burris H, Pegram M, et al. A Phase I, open-label study of the safely, tolerability, and pharmacokinetics of lapatinib (GW572016) in combination with trastuzumab. Proc Am Soc Clin Oncol 2005; 44: Abstract 559.

    Google Scholar 

  162. Blackwell KL, Burnstein H, Pegram M, et al. Determining relevant biomarkers from tissue and serum that may predict response to single agent lapatinib in trastuzumab refractory metastatic breast cancer. Proc Am Soc Clin Oncol 2005: Abstract 3004.

    Google Scholar 

  163. Kato K, Cox AD, Hisaka MM, Graham SM, Buss JE, Der CJ. Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity. Proc Natl Acad Sci USA 1992; 89:6403–7.

    PubMed  CAS  Google Scholar 

  164. Clark GJ, Der CJ. Aberrant function of the Ras signal transduction pathway in human breast cancer. Breast Cancer Res Treat 1995; 35:133–44.

    PubMed  CAS  Google Scholar 

  165. Venet M, End D, Angibaud P. Farnesyl protein transferase inhibitor ZARNESTRA R115777–history of a discovery. Curr Top Med Chem 2003; 3:1095–102.

    PubMed  CAS  Google Scholar 

  166. End DW, Smets G, Todd AV, et al. Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res 2001; 61:131–7.

    PubMed  CAS  Google Scholar 

  167. Kelland LR, Smith V, Valenti M, et al. Preclinical antitumor activity and pharmacodynamic studies with the farnesyl protein transferase inhibitor R115777 in human breast cancer. Clin Cancer Res 2001; 7:3544–50.

    PubMed  CAS  Google Scholar 

  168. Zujewski J, Horak ID, Bol CJ, et al. Phase I and pharmacokinetic study of farnesyl protein transferase inhibitor R115777 in advanced cancer. J Clin Oncol 2000; 18:927–41.

    PubMed  CAS  Google Scholar 

  169. Johnston SR, Hickish T, Ellis P, et al. Phase II study of the efficacy and tolerability of two dosing regimens of the farnesyl transferase inhibitor, R115777, in advanced breast cancer. J Clin Oncol 2003; 21:2492–9.

    PubMed  CAS  Google Scholar 

  170. Holden S, Eckhardt S, Fisher S, et al. A phase I pharmacokinetic and biological study of the farnesyl transferse inhibitor R 115777 and capecitabine in patients with advanced solid malignancies. Proc Am Soc Clin Oncol 2001; 40:80a: Abstract 316.

    Google Scholar 

  171. Piccart-Gebhart M, Branle F, Valeriola D, et al. A phase I, clinical anad pharmacokinetic trial of the farnesyltransferase inhibitor R1155777 + docetaxel: a promising combination in patients with solid tumors. Proc Am Soc Clin Oncol 2001; 40:80a: Abstract 316.

    Google Scholar 

  172. Sparano JA, Vahdat L, Moulder S, Kazi A, Sebti S. Phase I-II trial of tipifarnib plus cyclophosphamide and doxorubicin in patients with metastatic and locally advanced breast cancer: clinical and molecular effects. Breast Cancer Res Treat 2004; 88:S64: Abstract 1067.

    Google Scholar 

  173. Long B, Liu G, CH M. Combining the farnesyl transferase inhibitor lonafarnib (SCH66336) with antiestrogens and aromatase inhibitors results in enhanced growth inhibition of hormon-dependent human breast cancer cells and tumor xenografts. Proc Am Assoc Cancer Res 2004; 45: Abstract 3868.

    Google Scholar 

  174. Lee F, Camuso M, Clark J, et al. The FT inhibitor BMS214662 selectively targets the non-proliferating cell subpopulation in solid tumors-implications for a synergistic therapeutic strategy. Proc Am Assoc Cancer Res 2001; 42:260: Abstract 1402.

    Google Scholar 

  175. Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995; 19:183–232.

    PubMed  CAS  Google Scholar 

  176. Fox SB, Harris AL. The epidermal growth factor receptor in breast cancer. J Mammary Gland Biol Neoplasia 1997; 2:131–41.

    PubMed  CAS  Google Scholar 

  177. Klijn JG, Berns PM, Schmitz PI, Foekens JA. The clinical significance of epidermal growth factor receptor (EGF-R) in human breast cancer: a review on 5232 patients. Endocr Rev 1992; 13:3–17.

    PubMed  CAS  Google Scholar 

  178. Massarweh S, Shou J, Dipietro M. Targeting the epidermal growth factor receptor pathway improves the anti-tumor effect of tamoxifen and delays acquired resistance in a xenograft model of breast cancer. Breast Cancer Res Treat 2002; 76:S33: Abstract 18.

    Google Scholar 

  179. Baselga J, Albanell J, Ruiz A, et al. Phase II and tumor pharmacodynamic study of gefitinib in patients with advanced breast cancer. J Clin Oncol 2005; 23:1–11.

    Google Scholar 

  180. von Minckwitz G, Jonat W, Fasching P, et al. A multicentre phase II study on gefitinib in taxane- and anthracycline-pretreated metastatic breast cancer. Breast Cancer Res Treat 2005; 89:165–72.

    CAS  Google Scholar 

  181. Albain K, Elledge R, Gradishar W, et al. Open label, phase II, multicenter trial of ZD 1839(Iressa) in patients with advanced breast cancer. Breast Cancer Res Treat 2002; 76:S33:December 2002.

    Google Scholar 

  182. Robertson J, Gutteridge E, Cheung K, Owens R, Koehler M, Hamilton L. A Phase II study of ZD1849 (Iressa) in tamoxifen-resistant ER positive and endocrine-insensitive breast cancer. Breast Cancer Res Treat 2002; 76:S96: Abstract 57 December 2002.

    Google Scholar 

  183. Tan AR, Yang X, Hewitt SM, et al. Evaluation of biologic end points and pharmacokinetics in patients with metastatic breast cancer after treatment with erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor. J Clin Oncol 2004; 22:3080–90.

    PubMed  CAS  Google Scholar 

  184. Polychronis A, Sinnett HD, Hadjiminas D, et al. Preoperative gefitinib versus gefitinib and anastrozole in postmenopausal patients with oestrogen-receptor positive and epidermal-growth-factor-receptor-positive primary breast cancer: a double-blind placebo-controlled phase II randomised trial. Lancet Oncol 2005; 6:383–91.

    PubMed  CAS  Google Scholar 

  185. Mita MM, Mita A, Rowinsky EK. Mammalian target of rapamycin: a new molecular target for breast cancer. Clin Breast Cancer 2003; 4:126–37.

    PubMed  CAS  Google Scholar 

  186. Chan S, Scheulen ME, Johnston S, et al. Phase II study of Temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J Clin Oncol 2005; 23:23: 8/10/05 5314-5322.

    Google Scholar 

  187. Rudoff J, Boulay A, Zumstein-Meckerr S. The mTOR pathway in estrogen response: a potential for combining the rapamycin derivative RAD001 with the aromatase inhibitor letrozole (Femara) in breast carcinoma. Proc Am Assoc Cancer Res 2004; 45: Abstract 5619.

    Google Scholar 

  188. Rivera V, Kreisberg J, Mita M, et al. Pharmacodynamic study of skin biopsy specimens in patients with refractory or advanced malignancies following administration of AO23573, an mTOR inhibitor. Proc Am Soc Clin Oncol 2005; 44: Abstract 3033.

    Google Scholar 

  189. Herrera R, Sebolt-Leopold JS. Unraveling the complexities of the Raf/MAP kinase pathway for pharmacological intervention. Trends Mol Med 2002; 8:S27–31.

    PubMed  CAS  Google Scholar 

  190. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417:949–54.

    PubMed  CAS  Google Scholar 

  191. Wilhelm SM, Carter C, Tang L, et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004; 64:7099–109.

    PubMed  CAS  Google Scholar 

  192. Wilhelm S, Chien DS. BAY 43–9006: preclinical data. Curr Pharm Des 2002; 8:2255–7.

    PubMed  CAS  Google Scholar 

  193. Lyons JF, Wilhelm S, Hibner B, Bollag G. Discovery of a novel Raf kinase inhibitor. Endocr Relat Cancer 2001; 8:219–25.

    PubMed  CAS  Google Scholar 

  194. Strumberg D, Voliotis D, Moeller JG, et al. Results of phase I pharmacokinetic and pharmacodynamic studies of the Raf kinase inhibitor BAY 43–9006 in patients with solid tumors. Int J Clin Pharmacol Ther 2002; 40:580–1.

    PubMed  CAS  Google Scholar 

  195. Miller K, Burstein H, Elias A, et al. Phase II study of SU11248, a multitargeted receptor tyrosine kinase inhibitor, in patients with previously treated metastatic breast cancer . Proc Am Soc Clin Oncol 2005; 24: Abstract 563.

    Google Scholar 

  196. Miller KD, Saphner TJ, Waterhouse DM, et al. A randomized phase II feasibility trial of BMS-275291 in patients with early stage breast cancer. Clin Cancer Res 2004; 10:1971–5.

    PubMed  CAS  Google Scholar 

  197. Miller KD, Gradishar W, Schuchter L, et al. A randomized phase II pilot trial of adjuvant marimastat in patients with early-stage breast cancer. Ann Oncol 2002; 13:1220–4.

    PubMed  CAS  Google Scholar 

  198. Miller KD, Trigo JM, Wheeler C, et al. A multicenter phase II trial of ZD6474, a vascular endothelial growth factor receptor-2 and epidermal growth factor receptor tyrosine kinase inhibitor, in patients with previously treated metastatic breast cancer. Clin Cancer Res 2005; 11:3369–76.

    PubMed  CAS  Google Scholar 

  199. De Placido S, De Laurentiis M, Carlomagno C, et al. Twenty-year results of the Naples GUN randomized trial: predictive factors of adjuvant tamoxifen efficacy in early breast cancer. Clin Cancer Res 2003; 9:1039–46.

    PubMed  Google Scholar 

  200. Ellis MJ, Coop A, Singh B, et al. Letrozole is more effective neoadjuvant endocrine therapy than tamoxifen for ErbB-1- and/or ErbB-2-positive, estrogen receptor-positive primary breast cancer: evidence from a phase III randomized trial. J Clin Oncol 2001; 19:3808–16.

    PubMed  CAS  Google Scholar 

  201. Schiff R, Massarweh S, Shou J, Osborne CK. Breast cancer endocrine resistance: how growth factor signaling and estrogen receptor coregulators modulate response. Clin Cancer Res 2003; 9:447S–54S.

    PubMed  CAS  Google Scholar 

  202. Schmid P, Wischnewsky MB, Sezer O, Bohm R, Possinger K. Prediction of response to hormonal treatment in metastatic breast cancer. Oncology 2002; 63:309–16.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Atieh, D.M., Vahdat, L.T. (2008). Targeted Therapy For Breast Cancer. In: Kaufman, H.L., Wadler, S., Antman, K. (eds) Molecular Targeting in Oncology. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-337-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-337-0_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-577-4

  • Online ISBN: 978-1-59745-337-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics