Skip to main content

Molecular Targeting of Colorectal Cancer

An Idea Whose Time Has Come

  • Chapter
Molecular Targeting in Oncology

Summary

Colorectal cancer is the fourth most common cancer worldwide and the fourth most common cause of cancer mortality, with approximately 529,000 deaths annually (1). The concept of molecular targeting in colorectal cancer is not new. After all, 5-fluorouracil (5-FU), the standard bearer of “old school” treatment and continued mainstay of colon cancer systemic therapy, was developed as a “targeted” agent. In this case, the primary target is thymidylate synthase, a key enzyme in DNA synthesis, and the mechanism of action is competitive inhibition by a false substrate. Whereas 5-FU is clearly targeted, it lacks specificity, and the therapeutic window is therefore narrow. In the past decade, advances in understanding of the biology of colorectal cancer as well as the technology of drug development have permitted the identification of new targets and inhibitory pharmaceuticals with high specificity and favorable toxicity profiles. It is this specificity with regard to both target and tissue that characterizes the current generation of targeted therapeutics.

In contrast to other tumors that are driven by a single transforming molecular event, colorectal cancers are characterized by their genetic diversity. This diversity presents challenges for treatment and suggests that molecular profiling of individual patients and tumors will ultimately be required if we are to optimize the matching of patients and treatments. In this chapter, we will review the landscape of colorectal cancer treatment, with a focus on the most promising molecular targets in development. The cancer cell as well as surrounding stroma will be considered. In addition, we will review mechanisms of colorectal cancer pathogenesis and their implications for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics,2002. CA Cancer J Clin 2005; 55(2):74–108.

    PubMed  Google Scholar 

  2. Wells A. EGF receptor. Int J Biochem Cell Biol 1999;31(6):637–43.

    Article  PubMed  CAS  Google Scholar 

  3. Davies DE, Chamberlin SG. Targeting the epidermal growth factorreceptor for therapy of carcinomas. Biochem Pharmacol 1996;51(9):1101–10.

    Article  PubMed  CAS  Google Scholar 

  4. Mendelsohn J. Targeting the epidermal growth factor receptor forcancer therapy. J Clin Oncol 2002;20(18 Suppl):1S–13.

    PubMed  CAS  Google Scholar 

  5. Hackel PO, Zwick E, Prenzel N, Ullrich A. Epidermal growth factorreceptors: critical mediators of multiple receptor pathways. CurrOpin Cell Biol 1999;11(2):184–9.

    Article  CAS  Google Scholar 

  6. Diermeier S, Horvath G, Knuechel-Clarke R, Hofstaedter F, SzollosiJ, Brockhoff G. Epidermal growth factor receptor coexpressionmodulates susceptibility to Herceptin in HER2/neu overexpressingbreast cancer cells via specific erbB-receptor interaction andactivation. Exp Cell Res 2005;304(2):604–19.

    Google Scholar 

  7. Arteaga CL. The epidermal growth factor receptor: from mutantoncogene in nonhuman cancers to therapeutic target in humanneoplasia. J Clin Oncol 2001;19(18 Suppl):32S–40S.

    PubMed  CAS  Google Scholar 

  8. Lawrence DS, Niu J. Protein kinase inhibitors: the tyrosine-specificprotein kinases. Pharmacol Ther 1998;77(2):81–114.

    Article  PubMed  CAS  Google Scholar 

  9. Goldstein NS, Armin M. Epidermal growth factor receptorimmunohistochemical reactivity in patients with American JointCommittee on Cancer Stage IV colon adenocarcinoma: implications fora standardized scoring system. Cancer 2001;92(5):1331–46.

    Article  PubMed  CAS  Google Scholar 

  10. Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growthfactor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995;19(3):183–232.

    Article  PubMed  CAS  Google Scholar 

  11. Mayer A, Takimoto M, Fritz E, Schellander G, Kofler K, Ludwig H. Theprognostic significance of proliferating cell nuclear antigen,epidermal growth factor receptor, and mdr gene expression incolorectal cancer. Cancer 1993;71(8):2454–60.

    Article  PubMed  CAS  Google Scholar 

  12. Hemming AW, Davis NL, Kluftinger A, et al. Prognostic markers ofcolorectal cancer: an evaluation of DNA content, epidermal growthfactor receptor, and Ki-67. J Surg Oncol 1992;51(3):147–52.

    Article  PubMed  CAS  Google Scholar 

  13. Ennis BW, Lippman ME, Dickson RB. The EGF receptor system as atarget for antitumor therapy. Cancer Invest 1991;9(5):553–62.

    Article  PubMed  CAS  Google Scholar 

  14. Prenzel N, Zwick E, Daub H, et al. EGF receptor transactivation byG-protein-coupled receptors requires metalloproteinase cleavage ofproHB-EGF. Nature 1999;402(6764):884–8.

    PubMed  CAS  Google Scholar 

  15. Cox G, Jones JL, O’Byrne KJ. Matrix metalloproteinase 9 and theepidermal growth factor signal pathway in operable non-small celllung cancer. Clin Cancer Res 2000;6(6):2349–55.

    PubMed  CAS  Google Scholar 

  16. Naramura M, Gillies SD, Mendelsohn J, Reisfeld RA, Mueller BM. Therapeutic potential of chimeric and murine anti-(epidermal growthfactor receptor) antibodies in a metastasis model for humanmelanoma. Cancer Immunol Immunother 1993;37(5):343–9.

    Article  PubMed  CAS  Google Scholar 

  17. Perrotte P, Matsumoto T, Inoue K, et al. Anti-epidermal growthfactor receptor antibody C225 inhibits angiogenesis in humantransitional cell carcinoma growing orthotopically in nude mice. Clin Cancer Res 1999;5(2):257–65.

    PubMed  CAS  Google Scholar 

  18. Viloria-Petit A, Crombet T, Jothy S, et al. Acquired resistance tothe antitumor effect of epidermal growth factor receptor-blockingantibodies in vivo: a role for altered tumor angiogenesis. CancerRes 2001;61(13):5090–101.

    CAS  Google Scholar 

  19. Ciardiello F, Bianco R, Damiano V, et al. Antiangiogenic andantitumor activity of anti-epidermal growth factor receptor C225monoclonal antibody in combination with vascular endothelial growthfactor antisense oligonucleotide in human GEO colon cancer cells. Clin Cancer Res 2000;6(9):3739–47.

    PubMed  CAS  Google Scholar 

  20. Moyer JD, Barbacci EG, Iwata KK, et al. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growthfactor receptor tyrosine kinase. Cancer Res 1997;57(21):4838–48.

    PubMed  CAS  Google Scholar 

  21. Wu X, Fan Z, Masui H, Rosen N, Mendelsohn J. Apoptosis induced by ananti-epidermal growth factor receptor monoclonal antibody in a humancolorectal carcinoma cell line and its delay by insulin. J ClinInvest 1995;95(4):1897–905.

    CAS  Google Scholar 

  22. Bruns CJ, Harbison MT, Davis DW, et al. Epidermal growth factorreceptor blockade with C225 plus gemcitabine results in regressionof human pancreatic carcinoma growing orthotopically in nude mice byantiangiogenic mechanisms. Clin Cancer Res 2000;6(5):1936–48.

    PubMed  CAS  Google Scholar 

  23. Fan Z, Baselga J, Masui H, Mendelsohn J. Antitumor effect ofanti-epidermal growth factor receptor monoclonal antibodies pluscis-diamminedichloroplatinum on well established A431 cellxenografts. Cancer Res 1993;53(19):4637–42.

    PubMed  CAS  Google Scholar 

  24. Bonner JA, Raisch KP, Trummell HQ, et al. Enhanced apoptosis withcombination C225/radiation treatment serves as the impetus forclinical investigation in head and neck cancers. J Clin Oncol2000;18(21 Suppl):47S–53S.

    PubMed  CAS  Google Scholar 

  25. Prewett MC, Hooper AT, Bassi R, Ellis LM, Waksal HW, Hicklin DJ. Enhanced antitumor activity of anti-epidermal growth factor receptormonoclonal antibody IMC-C225 in combination with irinotecan (CPT-11)against human colorectal tumor xenografts. Clin Cancer Res2002;8(5):994–1003.

    PubMed  CAS  Google Scholar 

  26. Saltz L, Rubin M, Hochster H, et al. Cetuximab (IMC-C225) plusirinotecan (CPT-11) is active in CPT-11-refractory colorectal cancer(CRC) that expresses epidermal growth factor receptor (EGFR). ProcAm Soc Clin Oncol 2001;20:3.

    Google Scholar 

  27. Saltz LB, Meropol NJ, Loehrer PJ, Sr., Needle MN, Kopit J, Mayer RJ. Phase II trial of cetuximab in patients with refractory colorectalcancer that expresses the epidermal growth factor receptor. J ClinOncol 2004;22(7):1201–8.

    Article  CAS  Google Scholar 

  28. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy andcetuximab plus irinotecan in irinotecan-refractory metastaticcolorectal cancer. N Engl J Med 2004;351(4):337–45.

    Article  PubMed  CAS  Google Scholar 

  29. Lenz HJ, Mayer RJ, Gold PJ, et al. Activity of cetuximab in patientswith colorectal cancer refractory to both irinotecan andoxaliplatin. Proc Am Soc Clin Oncol 2004;22:247.

    Google Scholar 

  30. Chung KY, Shia J, Kemeny NE, et al. Cetuximab shows activity incolorectal cancer patients with tumors that do not express theepidermal growth factor receptor by immunohistochemistry. J ClinOncol 2005;23(9):1803–10.

    Article  CAS  Google Scholar 

  31. Meropol NJ. Epidermal growth factor receptor inhibitors incolorectal cancer: it’s time to get back on target. J Clin Oncol2005;23(9):1791–3.

    Article  PubMed  CAS  Google Scholar 

  32. Malik I, Hecht JR, Patnaik A, et al. Safety and efficacy ofpanitumumab monotherapy in patients with metastatic colorectalcancer. Proc Am Soc Clin Oncol 2005;23:251.

    Google Scholar 

  33. Weiner LM, Belldegrun A, Rowinsky E, et al. Updated results from adose and schedule study of Panitumumab (ABX-EGF) monotherapy inpatients with advanced solid malignancies. Proc Am Soc Clin Oncol2005;23:206.

    Google Scholar 

  34. Trarbach T, Beyer T, Schleucher N, et al. A randomized phase I studyof the humanized anti-epidermal growth factor receptor (EGFR)monoclonal antibody EMD 72000 in subjects with advancedgastrointestinal cancers. Proc Am Soc Clin Oncol 2004;22:199.

    Google Scholar 

  35. Vanhoefer U, Tewes M, Rojo F, et al. Phase I study of the humanizedantiepidermal growth factor receptor monoclonal antibody EMD72000 inpatients with advanced solid tumors that express the epidermalgrowth factor receptor. J Clin Oncol 2004;22(1):175–84.

    Article  PubMed  CAS  Google Scholar 

  36. Erbitux, Package Insert. 2004. Accessed August 2, 2005, athttp://www.erbitux.com.

    Google Scholar 

  37. Busam KJ, Capodieci P, Motzer R, Kiehn T, Phelan D, Halpern AC. Cutaneous side-effects in cancer patients treated with theantiepidermal growth factor receptor antibody C225. Br J Dermatol2001;144(6):1169–76.

    Article  PubMed  CAS  Google Scholar 

  38. Damjanov N, Meropol NJ. Epidermal growth factor receptor inhibitorsfor the treatment of colorectal cancer: a promise fulfilled?Oncology (Williston Park) 2004;18(4):479–88; discussion 88, 93, 97passim.

    Google Scholar 

  39. Mackenzie MJ, Hirte HW, Glenwood G, et al. A phase II trial ofZD1839 (Iressa) 750 mg per day, an oral epidermal growth factorreceptor-tyrosine kinase inhibitor, in patients with metastaticcolorectal cancer. Invest New Drugs 2005;23(2):165–70.

    Article  PubMed  CAS  Google Scholar 

  40. Goss G, Hirte H, Miller WH, Jr., et al. A phase I study of oral ZD1839 given daily in patients with solid tumors: IND.122, a study ofthe Investigational New Drug Program of the National CancerInstitute of Canada Clinical Trials Group. Invest New Drugs2005;23(2):147–55.

    Article  PubMed  CAS  Google Scholar 

  41. Dorligschaw O, Kegel T, Jordan K, Harba A, Grothey A, Schmoll HJ. ZD1839 (Iressa)-based treatment as last-line therapy in patients withadvanced colorectal cancer. Proc Am Soc Clin Oncol 2003.

    Google Scholar 

  42. Fisher GA, Kuo T, Cho CD, et al. A phase II study of gefitinib incombination with FOLFOX-4 in patients with metastatic colorectalcancer. Proc Am Soc Clin Oncol 2004;22:248.

    Google Scholar 

  43. Townsley C, Major P, Siu LL, et al. Phase II study of OSI-774 inpatients with metastatic colorectal cancer. American Society ofClinical Oncology Gastrointestinal Symposium; 2004; San Francisco,California.

    Google Scholar 

  44. Weinstein IB. Cancer. Addiction to oncogenes–the Achilles heal ofcancer. Science 2002; 297(5578):63–4.

    Article  PubMed  CAS  Google Scholar 

  45. Albanell J, Rojo F, Averbuch S, et al. Pharmacodynamic studies ofthe epidermal growth factor receptor inhibitor ZD1839 in skin fromcancer patients: histopathologic and molecular consequences ofreceptor inhibition. J Clin Oncol 2002;20(1):110–24.

    Article  PubMed  CAS  Google Scholar 

  46. Malik SN, Siu LL, Rowinsky EK, et al. Pharmacodynamic evaluation ofthe epidermal growth factor receptor inhibitor OSI-774 in humanepidermis of cancer patients. Clin Cancer Res 2003;9(7):2478–86.

    PubMed  CAS  Google Scholar 

  47. Tabernero J, Rojo F, Jimenez E, et al. A phase I PK and serial tumorand skin pharmacodynamic study of weekly, every 2-week or every3-week 1-hour infusion EMD 72000, a humanized monoclonalanti-epidermal growth factor receptor antibody, in patients withadvanced tumors. Proc Am Soc Clin Oncol 2004;22:69.

    Google Scholar 

  48. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in theepidermal growth factor receptor underlying responsiveness ofnon-small-cell lung cancer to gefitinib. N Engl J Med2004;350(21):2129–39.

    Article  PubMed  CAS  Google Scholar 

  49. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer:correlation with clinical response to gefitinib therapy. Science2004;304(5676):1497–500.

    Article  PubMed  CAS  Google Scholar 

  50. Pao W, Miller VA. Epidermal growth factor receptor mutations,small-molecule kinase inhibitors, and non-small-cell lung cancer:current knowledge and future directions. J Clin Oncol2005;23(11):2556–68.

    Article  PubMed  CAS  Google Scholar 

  51. Tsao MS, Sakurada A, Cutz JC, et al. Erlotinib in lung cancer -molecular and clinical predictors of outcome. N Engl J Med2005;353(2):133–44.

    Article  PubMed  CAS  Google Scholar 

  52. Barber TD, Vogelstein B, Kinzler KW, Velculescu VE. Somaticmutations of EGFR in colorectal cancers and glioblastomas. N Engl JMed 2004;351(27):2883.

    Article  CAS  Google Scholar 

  53. Moroni M, Veronese S, Benvenuti S, et al. Gene copy number forepidermal growth factor receptor (EGFR) and clinical response toantiEGFR treatment in colorectal cancer: a cohort study. LancetOncol 2005;6(5):279–86.

    CAS  Google Scholar 

  54. Cappuzzo F, Hirsch FR, Rossi E, et al. Epidermal growth factorreceptor gene and protein and gefitinib sensitivity innon-small-cell lung cancer. J Natl Cancer Inst 2005;97(9):643–55.

    Article  PubMed  CAS  Google Scholar 

  55. Garrett C, Takimoto M, Wojtowicz M, et al. Identification of amolecular signature of radiographic response to cetuximab inpatients with advanced colorectal cancer. Proc Am Soc Clin Oncol2005;23:277.

    Google Scholar 

  56. Gregorc V, Cusatis G, Spreafico A, et al. Association of germlinemutations in EGFR and ABCG2 with gefitinib response in patients withnon-small cell lung cancer. Proc Am Soc Clin Oncol 2005;23:197.

    Google Scholar 

  57. Petley T, Graff K, Jiang W, Yang H, Florini J. Variation among celltypes in the signaling pathways by which IGF-I stimulates specificcellular responses. Horm Metab Res 1999;31(2–3):70–6.

    Article  PubMed  CAS  Google Scholar 

  58. D’Ercole AJ, Stiles AD, Underwood LE. Tissue concentrations ofsomatomedin C: further evidence for multiple sites of synthesis andparacrine or autocrine mechanisms of action. Proc Natl Acad Sci USA1984;81(3):935–9.

    Article  PubMed  CAS  Google Scholar 

  59. Bahr C, Groner B. The IGF-1 receptor and its contributions tometastatic tumor growth-novel approaches to the inhibition of IGF-1Rfunction. Growth Factors 2005;23(1):1–14.

    Article  PubMed  CAS  Google Scholar 

  60. Lambert S, Vivario J, Boniver J, Gol-Winkler R. Abnormal expressionand structural modification of the insulin-like growth-factor-IIgene in human colorectal tumors. Int J Cancer 1990;46(3):405–10.

    Article  PubMed  CAS  Google Scholar 

  61. Weber MM, Fottner C, Liu SB, Jung MC, Engelhardt D, Baretton GB.Overexpression of the insulin-like growth factor I receptor in humancolon carcinomas. Cancer 2002;95(10):2086–95.

    Article  PubMed  CAS  Google Scholar 

  62. Reinmuth N, Liu W, Fan F, et al. Blockade of insulin-like growthfactor I receptor function inhibits growth and angiogenesis of coloncancer. Clin Cancer Res 2002;8(10):3259–69.

    PubMed  CAS  Google Scholar 

  63. Wiley SR, Schooley K, Smolak PJ, et al. Identification andcharacterization of a new member of the TNF family that inducesapoptosis. Immunity 1995;3(6):673–82.

    Article  PubMed  CAS  Google Scholar 

  64. MacFarlane M, Ahmad M, Srinivasula SM, Fernandes-Alnemri T, CohenGM, Alnemri ES. Identification and molecular cloning of two novelreceptors for the cytotoxic ligand TRAIL. J Biol Chem1997;272(41):25417–20.

    Google Scholar 

  65. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediatesthe mitochondrial damage in the Fas pathway of apoptosis. Cell1998;94(4):491–501.

    Article  PubMed  CAS  Google Scholar 

  66. Pan G, O’Rourke K, Chinnaiyan AM, et al. The receptor for thecytotoxic ligand TRAIL. Science 1997;276(5309):111–3.

    Article  PubMed  CAS  Google Scholar 

  67. Koornstra JJ, Jalving M, Rijcken FE, et al. Expression of tumournecrosis factor-related apoptosis-inducing ligand death receptors insporadic and hereditary colorectal tumours: Potential targets forapoptosis induction. Eur J Cancer 2005;41(8):1195–202.

    Article  PubMed  CAS  Google Scholar 

  68. Kim YH, Park JW, Lee JY, Kwon TK. Sodium butyrate sensitizesTRAIL-mediated apoptosis by induction of transcription from the DR5gene promoter through Sp1 sites in colon cancer cells. Carcinogenesis 2004;25(10):1813–20.

    Article  PubMed  CAS  Google Scholar 

  69. Chapman HA, Wei Y, Simon DI, Waltz DA. Role of urokinase receptorand caveolin in regulation of integrin signaling. Thromb Haemost1999;82(2):291–7.

    PubMed  CAS  Google Scholar 

  70. Ahmed N, Oliva K, Wang Y, Quinn M, Rice G. Downregulation ofurokinase plasminogen activator receptor expression inhibits Erksignalling with concomitant suppression of invasiveness due to lossof uPAR-beta1 integrin complex in colon cancer cells. Br J Cancer2003;89(2):374–84.

    Article  PubMed  CAS  Google Scholar 

  71. Liu D, Aguirre Ghiso J, Estrada Y, Ossowski L. EGFR is a transducerof the urokinase receptor initiated signal that is required for invivo growth of a human carcinoma. Cancer Cell 2002;1(5):445–57.

    Article  PubMed  CAS  Google Scholar 

  72. de Bruin PA, Griffioen G, Verspaget HW, Verheijen JH, Lamers CB.Plasminogen activators and tumor development in the human colon:activity levels in normal mucosa, adenomatous polyps, andadenocarcinomas. Cancer Res 1987;47(17):4654–7.

    Google Scholar 

  73. Fujii T, Obara T, Tanno S, Ura H, Kohgo Y. Urokinase-typeplasminogen activator and plasminogen activator inhibitor-1 as aprognostic factor in human colorectal carcinomas. Hepatogastroenterology 1999;46(28):2299–308.

    PubMed  CAS  Google Scholar 

  74. Wang Y, Liang X, Wu S, Murrell GA, Doe WF. Inhibition of coloncancer metastasis by a 3’-end antisense urokinase receptor mRNAin a nude mouse model. Int J Cancer 2001;92(2):257–62.

    Article  PubMed  CAS  Google Scholar 

  75. Servomaa K, Kiuru A, Kosma VM, Hirvikoski P, Rytomaa T. p53 and K-ras gene mutations in carcinoma of the rectum among Finnish women. Mol Pathol 2000;53(1):24–30.

    Article  PubMed  CAS  Google Scholar 

  76. Bos JL. Ras oncogenes in human cancer: a review. Cancer Res1989;49(17):4682–9.

    PubMed  CAS  Google Scholar 

  77. Rao S, Cunningham D, de Gramont A, et al. Phase III double-blindplacebo-controlled study of farnesyl transferase inhibitor R115777in patients with refractory advanced colorectal cancer. J Clin Oncol2004;22(19):3950–7.

    Article  PubMed  CAS  Google Scholar 

  78. Sharma S, Kemeny N, Kelsen DP, et al. A phase II trial of farnesylprotein transferase inhibitor SCH 66336, given by twice-daily oraladministration, in patients with metastatic colorectal cancerrefractory to 5-fluorouracil and irinotecan. Ann Oncol2002;13(7):1067–71.

    Article  PubMed  CAS  Google Scholar 

  79. Saleh M, Posey J, Pleasant L, et al. A phase II trial of ISIS 2503,an antisense inhibitor of H-ras, as first line therapy for advancedcolorectal cancer. Proc Am Soc Clin Oncol 2000;19.

    Google Scholar 

  80. Cohen SJ, Gallo J, Lewis NL, et al. Phase I and pharmacokineticstudy of the farnesyltransferase inhibitor R115777 in combinationwith irinotecan in patients with advanced cancer. Cancer ChemotherPharmacol 2004;53(6):513–8.

    Article  CAS  Google Scholar 

  81. Whyte DB, Kirschmeier P, Hockenberry TN, et al. K- and N-Ras aregeranylgeranylated in cells treated with farnesyl proteintransferase inhibitors. J Biol Chem 1997;272(22):14459–64.

    Article  PubMed  CAS  Google Scholar 

  82. Tilkin-Mariame AF, Cormary C, Ferro N, et al. Geranylgeranyltransferase inhibition stimulates antimelanoma immune responsethrough MHC class I and costimulatory molecule expression. FASEB J2005;19(11):1513–1515.

    PubMed  CAS  Google Scholar 

  83. Wellbrock C, Karasarides M, Marais R. The RAF proteins take centrestage. Nat Rev Mol Cell Biol 2004;5(11):875–85.

    Article  PubMed  CAS  Google Scholar 

  84. Nagasaka T, Sasamoto H, Notohara K, et al. Colorectal cancer withmutation in BRAF, KRAS, and wild-type with respect to both oncogenesshowing different patterns of DNA methylation. J Clin Oncol2004;22(22):4584–94.

    Article  PubMed  CAS  Google Scholar 

  85. Cripps MC, Figueredo AT, Oza AM, et al. Phase II randomized study ofISIS 3521 and ISIS 5132 in patients with locally advanced ormetastatic colorectal cancer: a National Cancer Institute of Canadaclinical trials group study. Clin Cancer Res 2002;8(7):2188–92.

    PubMed  CAS  Google Scholar 

  86. Wilhelm SM, Carter C, Tang L, et al. BAY 43–9006 exhibits broadspectrum oral antitumor activity and targets the RAF/MEK/ERK pathwayand receptor tyrosine kinases involved in tumor progression andangiogenesis. Cancer Res 2004;64(19):7099–109.

    Article  PubMed  CAS  Google Scholar 

  87. Kupsch P, Passarge K, Richly H, et al. Results of a phase I trial ofBAY 43–9006 in combination with oxaliplatin in patients withrefractory solid tumors. Proc Am Soc Clin Oncol 2004;22:209.

    Google Scholar 

  88. Mross K, Steinbild S, Baas F, et al. Drug-drug interactionpharmacokinetic study with the Raf kinase inhibitor (RKI) BAY43–9006 administered in combination with irinotecan (CPT-11) inpatients with solid tumors. Int J Clin Pharmacol Ther2003;41(12):618–9.

    Google Scholar 

  89. Cobb MH, Goldsmith EJ. How MAP kinases are regulated. J Biol Chem1995;270(25):14843–6.

    Article  PubMed  CAS  Google Scholar 

  90. Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activatedprotein kinase cascade to treat cancer. Nat Rev Cancer2004;4(12):937–47.

    Article  PubMed  CAS  Google Scholar 

  91. Hoshino R, Chatani Y, Yamori T, et al. Constitutive activation ofthe 41-/43-kDa mitogen-activated protein kinase signaling pathway inhuman tumors. Oncogene 1999;18(3):813–22.

    Article  PubMed  CAS  Google Scholar 

  92. Sebolt-Leopold JS, Dudley DT, Herrera R, et al. Blockade of the MAPkinase pathway suppresses growth of colon tumors in vivo. Nat Med1999;5(7):810–6.

    Article  PubMed  CAS  Google Scholar 

  93. Meng XW, Chandra J, Loegering D, et al. Central role ofFas-associated death domain protein in apoptosis induction by themitogen-activated protein kinase kinase inhibitor CI-1040 (PD184352)in acute lymphocytic leukemia cells in vitro. J Biol Chem2003;278(47):47326–39.

    Article  PubMed  CAS  Google Scholar 

  94. Lorusso PM, Adjei AA, Varterasian M, et al. Phase I andpharmacodynamic study of the oral MEK inhibitor CI-1040 in patientswith advanced malignancies. J Clin Oncol 2005;23(24):5597–5604.

    Article  CAS  Google Scholar 

  95. Rinehart J, Adjei AA, Lorusso PM, et al. Multicenter phase II studyof the oral MEK inhibitor, CI-1040, in patients with advancednon-small-cell lung, breast, colon, and pancreatic cancer. J ClinOncol 2004;22(22):4456–62.

    Article  CAS  Google Scholar 

  96. Doyle MP, Yeh TC, Suzy B, et al. Validation and use of a biomarkerof clinical development of the MEK1/2 inhibitor ARRY-142886(AZD6244). Proc Am Soc Clin Oncol; 2005; Orlando, Florida.

    Google Scholar 

  97. Testa JR, Bellacosa A. AKT plays a central role in tumorigenesis.Proc Natl Acad Sci USA 2001;98(20):10983–5.

    Google Scholar 

  98. Semba S, Itoh N, Ito M, et al. Down-regulation of PIK3CG, acatalytic subunit of phosphatidylinositol 3-OH kinase, by CpGhypermethylation in human colorectal carcinoma. Clin Cancer Res2002;8(12):3824–31.

    Google Scholar 

  99. Meuillet EJ, Ihle N, Baker AF, et al. In vivo molecular pharmacologyand antitumor activity of the targeted Akt inhibitor PX-316. OncolRes 2004;14(10):513–27.

    CAS  Google Scholar 

  100. Van Ummersen L, Binger K, Volkman J, et al. A phase I trial ofperifosine (NSC 639966) on a loading dose/maintenance dose schedulein patients with advanced cancer. Clin Cancer Res2004;10(22):7450–6.

    Article  PubMed  Google Scholar 

  101. Atkins MB, Hidalgo M, Stadler WM, et al. Randomized phase II studyof multiple dose levels of CCI-779, a novel mammalian target ofrapamycin kinase inhibitor, in patients with advanced refractoryrenal cell carcinoma. J Clin Oncol 2004;22(5):909–18.

    Article  PubMed  CAS  Google Scholar 

  102. Punt CJ, Boni J, Bruntsch U, Peters M, Thielert C. Phase I andpharmacokinetic study of CCI-779, a novel cytostatic cell-cycleinhibitor, in combination with 5-fluorouracil and leucovorin inpatients with advanced solid tumors. Ann Oncol 2003;14(6):931–7.

    Article  PubMed  CAS  Google Scholar 

  103. Hara K, Yonezawa K, Kozlowski MT, et al. Regulation of eIF-4E BP1phosphorylation by mTOR. J Biol Chem 1997;272(42):26457–63.

    Article  PubMed  CAS  Google Scholar 

  104. Kumar V, Sabatini D, Pandey P, et al. Regulation of the rapamycinand FKBP-target 1/mammalian target of rapamycin and cap-dependentinitiation of translation by the c-Abl protein-tyrosine kinase. JBiol Chem 2000;275(15):10779–87.

    Article  CAS  Google Scholar 

  105. DeGraffenried LA, Fulcher L, Friedrichs WE, Grunwald V, Ray RB,Hidalgo M. Reduced PTEN expression in breast cancer cells conferssusceptibility to inhibitors of the PI3 kinase/Akt pathway. AnnOncol 2004;15(10):1510–6.

    Google Scholar 

  106. Desai AA, Janisch L, Berk LR, et al. A phase I trial of a novel mTORinhibitor AP23573 administered weekly in patients with refractory oradvanced malignancies: a pharmacokinetic and pharmacodynamicanalysis. Proc Am Soc Clin Oncol; 2005; Orlando, Florida.

    Google Scholar 

  107. Peralba JM, DeGraffenried L, Friedrichs W, et al. Pharmacodynamicevaluation of CCI-779, an inhibitor of mTOR, in cancer patients. Clin Cancer Res 2003;9(8):2887–92.

    PubMed  CAS  Google Scholar 

  108. Beuvink I, Boulay A, Fumagalli S, et al. The mTOR inhibitor RAD001sensitizes tumor cells to DNA-damaged induced apoptosis throughinhibition of p21 translation. Cell 2005;120(6):747–59.

    Article  PubMed  CAS  Google Scholar 

  109. Cao X, Tay A, Guy GR, Tan YH. Activation and association of Stat 3with Src in v-Src-transformed cell lines. Mol Cell Biol1996;16(4):1595–603.

    PubMed  CAS  Google Scholar 

  110. Muthuswamy SK, Muller WJ. Direct and specific interaction of c-Srcwith Neu is involved in signaling by the epidermal growth factorreceptor. Oncogene 1995;11(2):271–9.

    PubMed  CAS  Google Scholar 

  111. Aligayer H, Boyd DD, Heiss MM, Abdalla EK, Curley SA, Gallick GE. Activation of Src kinase in primary colorectal carcinoma: anindicator of poor clinical prognosis. Cancer 2002;94(2):344–51.

    Article  PubMed  CAS  Google Scholar 

  112. Doggrell SA. BMS-354825: a novel drug with potential for thetreatment of imatinib-resistant chronic myeloid leukaemia. ExpertOpin Investig Drugs 2005;14(1):89–91.

    Article  Google Scholar 

  113. Corbin AS, Demehri S, Griswold IJ, et al. In vitro and in vivoactivity of ATP-based kinase inhibitors AP23464 and AP23848 againstactivation-loop mutants of Kit. Blood 2005;106(1):227–34.

    Article  PubMed  CAS  Google Scholar 

  114. Corvinus FM, Orth C, Moriggl R, et al. Persistent STAT3 activationin colon cancer is associated with enhanced cell proliferation andtumor growth. Neoplasia 2005;7(6):545–55.

    Article  PubMed  CAS  Google Scholar 

  115. Rivat C, Rodrigues S, Bruyneel E, et al. Implication of STAT3signaling in human colonic cancer cells during intestinal trefoilfactor 3 (TFF3) – and vascular endothelial growth factor-mediatedcellular invasion and tumor growth. Cancer Res 2005;65(1):195–202.

    PubMed  Google Scholar 

  116. Adams RR, Maiato H, Earnshaw WC, Carmena M. Essential roles ofDrosophila inner centromere protein (INCENP) and aurora B in histoneH3 phosphorylation, metaphase chromosome alignment, kinetochoredisjunction, and chromosome segregation. J Cell Biol2001;153(4):865–80.

    Article  PubMed  CAS  Google Scholar 

  117. Giet R, Glover DM. Drosophila aurora B kinase is required forhistone H3 phosphorylation and condensin recruitment duringchromosome condensation and to organize the central spindle duringcytokinesis. J Cell Biol 2001;152(4):669–82.

    Article  PubMed  CAS  Google Scholar 

  118. Bischoff JR, Anderson L, Zhu Y, et al. A homologue of Drosophilaaurora kinase is oncogenic and amplified in human colorectalcancers. EMBO J 1998;17(11):3052–65.

    Article  PubMed  CAS  Google Scholar 

  119. Harrington EA, Bebbington D, Moore J, et al. VX-680, a potent andselective small-molecule inhibitor of the Aurora kinases, suppressestumor growth in vivo. Nat Med 2004;10(3):262–7.

    Article  PubMed  CAS  Google Scholar 

  120. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell2000;100(1):57–70.

    Article  PubMed  CAS  Google Scholar 

  121. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl JMed 1971;285(21):1182–6.

    Google Scholar 

  122. Folkman J. What is the evidence that tumors are angiogenesisdependent? J Natl Cancer Inst 1990;82(1):4–6.

    Article  PubMed  CAS  Google Scholar 

  123. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. NatRev Cancer 2003;3(6): 401–10.

    Article  CAS  Google Scholar 

  124. Longo R, Sarmiento R, Fanelli M, Capaccetti B, Gattuso D, GaspariniG. Anti-angiogenic therapy: rationale, challenges and clinicalstudies. Angiogenesis 2002;5(4):237–56.

    Article  PubMed  CAS  Google Scholar 

  125. Dor Y, Porat R, Keshet E. Vascular endothelial growth factor andvascular adjustments to perturbations in oxygen homeostasis. Am JPhysiol Cell Physiol 2001;280(6):C1367–74.

    CAS  Google Scholar 

  126. Acker T, Plate KH. Hypoxia and hypoxia inducible factors (HIF) asimportant regulators of tumor physiology. Cancer Treat Res2004;117:219–48.

    PubMed  CAS  Google Scholar 

  127. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and itsreceptors. Nat Med 2003;9(6): 669–76.

    Article  PubMed  CAS  Google Scholar 

  128. Tischer E, Mitchell R, Hartman T, et al. The human gene for vascularendothelial growth factor. Multiple protein forms are encodedthrough alternative exon splicing. J Biol Chem1991;266(18):11947–54.

    PubMed  CAS  Google Scholar 

  129. Shibuya M, Yamaguchi S, Yamane A, et al. Nucleotide sequence andexpression of a novel human receptor-type tyrosine kinase gene (flt)closely related to the fms family. Oncogene 1990;5(4):519–24.

    Google Scholar 

  130. Terman BI, Dougher-Vermazen M, Carrion ME, et al. Identification ofthe KDR tyrosine kinase as a receptor for vascular endothelial cellgrowth factor. Biochem Biophys Res Commun 1992;187(3):1579–86.

    Article  PubMed  CAS  Google Scholar 

  131. Matthews W, Jordan CT, Gavin M, Jenkins NA, Copeland NG, LemischkaIR. A receptor tyrosine kinase cDNA isolated from a population ofenriched primitive hematopoietic cells and exhibiting close geneticlinkage to c-kit. Proc Natl Acad Sci USA 1991;88(20):9026–30.

    Article  PubMed  CAS  Google Scholar 

  132. Pajusola K, Aprelikova O, Armstrong E, Morris S, Alitalo K. Twohuman FLT4 receptor tyrosine kinase isoforms with distinct carboxyterminal tails are produced by alternative processing of primarytranscripts. Oncogene 1993;8(11):2931–7.

    PubMed  CAS  Google Scholar 

  133. Galland F, Karamysheva A, Pebusque MJ, et al. The FLT4 gene encodesa transmembrane tyrosine kinase related to the vascular endothelialgrowth factor receptor. Oncogene 1993;8(5):1233–40.

    PubMed  CAS  Google Scholar 

  134. Hiratsuka S, Maru Y, Okada A, Seiki M, Noda T, Shibuya M.Involvement of Flt-1 tyrosine kinase (vascular endothelial growthfactor receptor-1) in pathological angiogenesis. Cancer Res2001;61(3):1207–13.

    PubMed  CAS  Google Scholar 

  135. Dvorak HF. Vascular permeability factor/vascular endothelial growthfactor: a critical cytokine in tumor angiogenesis and a potentialtarget for diagnosis and therapy. J Clin Oncol 2002;20(21):4368–80.

    Article  PubMed  CAS  Google Scholar 

  136. Zeng H, Dvorak HF, Mukhopadhyay D. Vascular permeability factor(VPF)/vascular endothelial growth factor (VEGF) peceptor-1down-modulates VPF/VEGF receptor-2-mediated endothelial cellproliferation, but not migration, through phosphatidylinositol3-kinase-dependent pathways. J Biol Chem 2001;276(29):26969–79.

    Article  PubMed  CAS  Google Scholar 

  137. Valtola R, Salven P, Heikkila P, et al. VEGFR-3 and its ligandVEGF-C are associated with angiogenesis in breast cancer. Am JPathol 1999;154(5):1381–90.

    CAS  Google Scholar 

  138. Kitsukawa T, Shimono A, Kawakami A, Kondoh H, Fujisawa H.Overexpression of a membrane protein, neuropilin, in chimeric micecauses anomalies in the cardiovascular system, nervous system andlimbs. Development 1995;121(12):4309–18.

    Google Scholar 

  139. Takashima S, Kitakaze M, Asakura M, et al. Targeting of both mouseneuropilin-1 and neuropilin-2 genes severely impairs developmentalyolk sac and embryonic angiogenesis. Proc Natl Acad Sci USA2002;99(6):3657–62.

    Article  PubMed  CAS  Google Scholar 

  140. Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E. Vascularendothelial growth factor acts as a survival factor for newly formedretinal vessels and has implications for retinopathy of prematurity. Nat Med 1995;1(10):1024–8.

    Article  PubMed  CAS  Google Scholar 

  141. Zachary I, Gliki G. Signaling transduction mechanisms mediatingbiological actions of the vascular endothelial growth factor family. Cardiovasc Res 2001;49(3):568–81.

    Article  PubMed  CAS  Google Scholar 

  142. Meadows KN, Bryant P, Pumiglia K. Vascular endothelial growth factorinduction of the angiogenic phenotype requires Ras activation. JBiol Chem 2001;276(52):49289–98.

    Article  CAS  Google Scholar 

  143. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growthfactor. Endocr Rev 1997;18(1):4–25.

    Article  PubMed  CAS  Google Scholar 

  144. Zachary I. Signaling mechanisms mediating vascular protectiveactions of vascular endothelial growth factor. Am J Physiol CellPhysiol 2001;280(6):C1375–86.

    CAS  Google Scholar 

  145. Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeabilityfactor/vascular endothelial growth factor, microvascularhyperpermeability, and angiogenesis. Am J Pathol 1995;146(5):1029–39.

    PubMed  CAS  Google Scholar 

  146. Takahashi Y, Kitadai Y, Bucana CD, Cleary KR, Ellis LM. Expressionof vascular endothelial growth factor and its receptor, KDR,correlates with vascularity, metastasis, and proliferation of humancolon cancer. Cancer Res 1995;55(18):3964–8.

    PubMed  CAS  Google Scholar 

  147. Fan F, Wey JS, McCarty MF, et al. Expression and function ofvascular endothelial growth factor receptor-1 on human colorectalcancer cells. Oncogene 2005;24(16):2647–53.

    Article  PubMed  CAS  Google Scholar 

  148. Lee JC, Chow NH, Wang ST, Huang SM. Prognostic value of vascularendothelial growth factor expression in colorectal cancer patients. Eur J Cancer 2000;36(6):748–53.

    Article  PubMed  CAS  Google Scholar 

  149. Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelialgrowth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993;362(6423):841–4.

    Article  PubMed  CAS  Google Scholar 

  150. Giantonio BJ, Catalano PJ, Meropol NJ, et al. High-dose bevacizumabimproves survival when combined with FOLFOX4 in patients withpreviously treated advanced colorectal cancer: results from theEastern Cooperative Oncology Group (ECOG) Study E3200. Proc Am SocClin Oncol 2005;23:1.

    Google Scholar 

  151. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plusirinotecan, fluorouracil, and leucovorin for metastatic colorectalcancer. N Engl J Med 2004;350(23):2335–42.

    Article  PubMed  CAS  Google Scholar 

  152. Margolin K, Gordon MS, Holmgren E, et al. Phase Ib trial ofintravenous recombinant humanized monoclonal antibody to vascularendothelial growth factor in combination with chemotherapy inpatients with advanced cancer: pharmacologic and long-term safetydata. J Clin Oncol 2001;19(3):851–6.

    PubMed  CAS  Google Scholar 

  153. Gordon MS, Margolin K, Talpaz M, et al. Phase I safety andpharmacokinetic study of recombinant human anti-vascular endothelialgrowth factor in patients with advanced cancer. J Clin Oncol2001;19(3):843–50.

    PubMed  CAS  Google Scholar 

  154. Kabbinavar F, Hurwitz HI, Fehrenbacher L, et al. Phase II,randomized trial comparing bevacizumab plus fluorouracil(FU)/leucovorin (LV) with FU/LV alone in patients with metastaticcolorectal cancer. J Clin Oncol 2003;21(1):60–5.

    Article  PubMed  CAS  Google Scholar 

  155. Hurwitz HI, Fehrenbacher L, Hainsworth JD, et al. Bevacizumab incombination with fluorouracil and leucovorin: an active regimen forfirst-line metastatic colorectal cancer. J Clin Oncol2005;23(15):3502–8.

    Article  PubMed  CAS  Google Scholar 

  156. Kabbinavar FF, Hambleton J, Mass RD, Hurwitz HI, Bergsland E, SarkarS. Combined analysis of efficacy: the addition of bevacizumab tofluorouracil/leucovorin improves survival for patients withmetastatic colorectal cancer. J Clin Oncol 2005;23(16):3706–12.

    Article  PubMed  CAS  Google Scholar 

  157. Kabbinavar FF, Schulz J, McCleod M, et al. Addition of bevacizumabto bolus fluorouracil and leucovorin in first-line metastaticcolorectal cancer: results of a randomized phase II trial. J ClinOncol 2005;23(16):3697–705.

    Article  CAS  Google Scholar 

  158. Saltz LB, Lenz H, Kindler H, et al. Randomized phase II trial ofcetuximab/bevacizumab/irinotecan (CBI) versus cetuximab/bevacizumab(CB) in irinotecan-refractory colorectal cancer. Proc Am Soc ClinOncol 2005;23:16S.

    Google Scholar 

  159. Jain RK. Normalization of tumor vasculature: an emerging concept inantiangiogenic therapy. Science 2005;307(5706):58–62.

    Article  PubMed  CAS  Google Scholar 

  160. Willett CG, Boucher Y, di Tomaso E, et al. Direct evidence that theVEGF-specific antibody bevacizumab has antivascular effects in humanrectal cancer. Nat Med 2004;10(2):145–7.

    Article  PubMed  CAS  Google Scholar 

  161. Skillings JR, Johnson DH, Miller K, et al. Arterial thromboembolicevents in a pooled analysis of 5 randomized, controlled trials ofbevacizumab with chemotherapy. J Clin Oncol 2005;23:16S.

    Google Scholar 

  162. Steward WP, Thomas A, Morgan B, et al. Expanded phase I/II study ofPTK787/ZK 222584 (PTK/ZK), a novel, oral angiogenesis inhibitor, incombination with FOLFOX-4 as first-line treatment for patients withmetastatic colorectal cancer. Proc Am Soc Clin Oncol 2004;22:259.

    Google Scholar 

  163. Schleucher N, Trarbach T, Junker U, et al. Phase I/II study ofPTK787/ZK 222584 (PTK/ZK), a novel, oral angiogenesis inhibitor incombination with FOLFIRI as first-line treatment for patients withmetastatic colorectal cancer. Proc Am Soc Clin Oncol 2004;22:259.

    Google Scholar 

  164. Morgan B, Thomas AL, Drevs J, et al. Dynamic contrast-enhancedmagnetic resonance imaging as a biomarker for the pharmacologicalresponse of PTK787/ZK 222584, an inhibitor of the vascularendothelial growth factor receptor tyrosine kinases, in patientswith advanced colorectal cancer and liver metastases: results fromtwo phase I studies. J Clin Oncol 2003;21(21):3955–64.

    Article  PubMed  CAS  Google Scholar 

  165. Hecht JR, Trarbach T, Jaeger E, et al. A randomized, double-blind,placebo-controlled, phase III study in patients with metastaticadenocarcinoma of the colon or recturm receiving first-linechemotherapy with oxaliplatin/5-fluorouracil/leucovorin andPTK787/ZK 222584 or placebo (CONFIRM-1). Proc Am Soc Clin Oncol2005;23:2.

    Google Scholar 

  166. Ellis LM. Anti-VEGF Therapy Goes Mainstream. Proc Am Soc Clin Oncol;2005; Orlando, Florida.

    Google Scholar 

  167. Wedge SR, Ogilvie DJ, Dukes M, et al. ZD6474 inhibits vascularendothelial growth factor signaling, angiogenesis, and tumor growthfollowing oral administration. Cancer Res 2002;62(16):4645–55.

    PubMed  CAS  Google Scholar 

  168. Hurwitz H, Holden SN, Eckhardt SG, et al. Clinical evaluation ofZD6474, an orally active inhibitor of VEGF signaling, in patientswith solid tumors. Proc Am Soc Clin Oncol 2002;21.

    Google Scholar 

  169. Holash J, Davis S, Papadopoulos N, et al. VEGF-Trap: a VEGF blockerwith potent antitumor effects. Proc Natl Acad Sci USA2002;99(17):11393–8.

    Article  PubMed  CAS  Google Scholar 

  170. Dupont J, Rothenberg ML, Spriggs DR, et al. Safety andpharmacokinetics of intravenous VEGF trap in a phase I clinicaltrial of patients with advanced solid tumors. Proc Am Soc Clin Oncol2005;23:199.

    Google Scholar 

  171. Heldin CH, Westermark B. Mechanism of action and in vivo role ofplatelet-derived growth factor. Physiol Rev 1999;79(4):1283–316.

    PubMed  CAS  Google Scholar 

  172. Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D. Benefitsof targeting both pericytes and endothelial cells in the tumorvasculature with kinase inhibitors. J Clin Invest 2003;111(9):1287–95.

    Article  PubMed  CAS  Google Scholar 

  173. Takahashi Y, Bucana CD, Liu W, et al. Platelet-derived endothelialcell growth factor in human colon cancer angiogenesis: role ofinfiltrating cells. J Natl Cancer Inst 1996;88(16):1146–51.

    Article  PubMed  CAS  Google Scholar 

  174. Hsu S, Huang F, Friedman E. Platelet-derived growth factor-Bincreases colon cancer cell growth in vivo by a paracrine effect. JCell Physiol 1995;165(2):239–45.

    Article  CAS  Google Scholar 

  175. Attoub S, Rivat C, Rodrigues S, et al. The c-kit tyrosine kinaseinhibitor STI571 for colorectal cancer therapy. Cancer Res2002;62(17):4879–83.

    PubMed  CAS  Google Scholar 

  176. Zhou L, An N, Haydon RC, et al. Tyrosine kinase inhibitorSTI-571/Gleevec down-regulates the beta-catenin signaling activity.Cancer Lett 2003;193(2):161–70.

    Google Scholar 

  177. Mendel DB, Laird AD, Xin X, et al. In vivo antitumor activity ofSU11248, a novel tyrosine kinase inhibitor targeting vascularendothelial growth factor and platelet-derived growth factorreceptors: determination of a pharmacokinetic/pharmacodynamicrelationship. Clin Cancer Res 2003;9(1):327–37.

    PubMed  CAS  Google Scholar 

  178. Vihinen P, Kahari VM. Matrix metalloproteinases in cancer:prognostic markers and therapeutic targets. Int J Cancer2002;99(2):157–66.

    Article  PubMed  CAS  Google Scholar 

  179. Zeng ZS, Huang Y, Cohen AM, Guillem JG. Prediction of colorectalcancer relapse and survival via tissue RNA levels of matrixmetalloproteinase-9. J Clin Oncol 1996;14(12):3133–40.

    PubMed  CAS  Google Scholar 

  180. Sunami E, Tsuno N, Osada T, et al. MMP-1 is a prognostic marker forhematogenous metastasis of colorectal cancer. Oncologist2000;5(2):108–14.

    Article  PubMed  CAS  Google Scholar 

  181. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM. Matrixmetalloproteinases: biologic activity and clinical implications. JClin Oncol 2000;18(5):1135–49.

    CAS  Google Scholar 

  182. Primrose JN, Bleiberg H, Daniel F, et al. Marimastat in recurrentcolorectal cancer: exploratory evaluation of biological activity bymeasurement of carcinoembryonic antigen. Br J Cancer1999;79(3–4):509–14.

    Article  PubMed  CAS  Google Scholar 

  183. Teronen O, Heikkila P, Konttinen YT, et al. MMP inhibition anddownregulation by bisphosphonates. Ann N Y Acad Sci1999;878:453–65.

    Article  PubMed  CAS  Google Scholar 

  184. Rigas JR, Denham CA, Rinaldi DA, et al. Randomizedplacebo-controlled trials of the matrix metalloproteinase inhibitor,BAY12–9566 as adjuvant therapy for patients with small cell andnon-small cell lung cancer. Proc Am Soc Clin Oncol 2003;22:628.

    Google Scholar 

  185. Rettig WJ, Garin-Chesa P, Beresford HR, Oettgen HF, Melamed MR, OldLJ. Cell-surface glycoproteins of human sarcomas: differentialexpression in normal and malignant tissues and cultured cells. ProcNatl Acad Sci USA 1988;85(9):3110–4.

    Article  CAS  Google Scholar 

  186. Aoyama A, Chen WT. A 170-kDa membrane-bound protease is associatedwith the expression of invasiveness by human malignant melanomacells. Proc Natl Acad Sci USA 1990;87(21):8296–300.

    Article  PubMed  CAS  Google Scholar 

  187. Sappino AP, Skalli O, Jackson B, Schurch W, Gabbiani G.Smooth-muscle differentiation in stromal cells of malignant andnon-malignant breast tissues. Int J Cancer 1988;41(5):707–12.

    Article  PubMed  CAS  Google Scholar 

  188. Cheng JD, Weiner LM. Tumors and their microenvironments: tilling thesoil. Commentary re: A. M. Scott et al., A Phase I dose-escalationstudy of sibrotuzumab in patients with advanced or metastaticfibroblast activation protein-positive cancer. Clin Cancer Res,9:1639–47, 2003. Clin Cancer Res 2003;9(5):1590–5.

    Google Scholar 

  189. Park JE, Lenter MC, Zimmermann RN, Garin-Chesa P, Old LJ, Rettig WJ.Fibroblast activation protein, a dual specificity serine proteaseexpressed in reactive human tumor stromal fibroblasts. J Biol Chem1999;274(51):36505–12.

    Article  PubMed  CAS  Google Scholar 

  190. Welt S, Divgi CR, Scott AM, et al. Antibody targeting in metastaticcolon cancer: a phase I study of monoclonal antibody F19 against acell-surface protein of reactive tumor stromal fibroblasts. J ClinOncol 1994;12(6):1193–203.

    CAS  Google Scholar 

  191. Kelly T. Fibroblast activation protein-alpha and dipeptidylpeptidase IV (CD26): cell-surface proteases that activate cellsignaling and are potential targets for cancer therapy. Drug ResistUpdat 2005;8(1–2):51–8.

    CAS  Google Scholar 

  192. Hofheinz RD, al-Batran SE, Hartmann F, et al. Stromal antigentargeting by a humanised monoclonal antibody: an early phase IItrial of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie 2003;26(1):44–8.

    Google Scholar 

  193. Adams S, Miller GT, Jesson MI, Watanabe T, Jones B, Wallner BP. PT-100, a small molecule dipeptidyl peptidase inhibitor, has potentantitumor effects and augments antibody-mediated cytotoxicity via anovel immune mechanism. Cancer Res 2004;64(15):5471–80.

    Article  PubMed  CAS  Google Scholar 

  194. Calderwood DA. Integrin activation. J Cell Sci 2004;117(Pt5):657–66.

    Article  PubMed  CAS  Google Scholar 

  195. Kinbara K, Goldfinger LE, Hansen M, Chou FL, Ginsberg MH. RasGTPases: integrins’ friends or foes? Nat Rev Mol Cell Biol2003;4(10):767–76.

    PubMed  CAS  Google Scholar 

  196. Varner JA. The role of vascular cell integrins alpha v beta 3 andalpha v beta 5 in angiogenesis. EXS 1997;79:361–90.

    PubMed  CAS  Google Scholar 

  197. Yang JT, Rayburn H, Hynes RO. Embryonic mesodermal defects in alpha5 integrin-deficient mice. Development 1993;119(4):1093–105.

    PubMed  CAS  Google Scholar 

  198. Galvez BG, Matias-Roman S, Yanez-Mo M, Sanchez-Madrid F, Arroyo AG. ECM regulates MT1-MMP localization with beta1 or alphavbeta3integrins at distinct cell compartments modulating itsinternalization and activity on human endothelial cells. J Cell Biol2002;159(3):509–21.

    Article  PubMed  CAS  Google Scholar 

  199. Stoeltzing O, Liu W, Reinmuth N, et al. Inhibition of integrinalpha5beta1 function with a small peptide (ATN-161) plus continuous5-FU infusion reduces colorectal liver metastases and improvessurvival in mice. Int J Cancer 2003;104(4):496–503.

    Article  PubMed  CAS  Google Scholar 

  200. Eskens FA, Dumez H, Hoekstra R, et al. Phase I and pharmacokineticstudy of continuous twice weekly intravenous administration ofCilengitide (EMD 121974), a novel inhibitor of the integrinsalphavbeta3 and alphavbeta5 in patients with advanced solid tumours. Eur J Cancer 2003;39(7):917–26.

    Article  PubMed  CAS  Google Scholar 

  201. Posey JA, Khazaeli MB, DelGrosso A, et al. A pilot trial of Vitaxin,a humanized anti-vitronectin receptor (anti alpha v beta 3) antibodyin patients with metastatic cancer. Cancer Biother Radiopharm 2001;16(2):125–32.

    Article  PubMed  CAS  Google Scholar 

  202. Armitage P, Doll R. The age distribution of cancer and a multistagetheory of carcinogenesis. Br J Cancer 1954;8:1–12.

    PubMed  CAS  Google Scholar 

  203. Fearon ER, Vogelstein B. A genetic model for colorectaltumorigenesis. Cell 1990;61:759–67.

    Article  PubMed  CAS  Google Scholar 

  204. Bellacosa A. Genetic hits and mutation rate in colorectaltumorigenesis: versatility of Knudson’s theory and implications forcancer prevention. Genes Chromosomes Cancer 2003;38(4):382–8.

    Google Scholar 

  205. van de Wetering M, Sancho E, Verweij C, et al. Thebeta-catenin/TCF-4 complex imposes a crypt progenitor phenotype oncolorectal cancer cells. Cell 2002;111(2):241–50.

    Article  PubMed  Google Scholar 

  206. Batlle E, Henderson JT, Beghtel H, et al. Beta-catenin and TCFmediate cell positioning in the intestinal epithelium by controllingthe expression of EphB/ephrinB. Cell 2002;111(2):251–63.

    Article  PubMed  CAS  Google Scholar 

  207. He TC, Sparks AB, Rago C, et al. Identification of c-MYC as a targetof the APC pathway. Science 1998;281(5382):1509–12.

    Article  PubMed  CAS  Google Scholar 

  208. Korinek V, Barker N, Morin PJ, et al. Constitutive transcriptionalactivation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 1997;275(5307):1784–7.

    Article  PubMed  CAS  Google Scholar 

  209. Morin PJ, Sparks AB, Korinek V, et al. Activation ofbeta-catenin-Tcf signaling in colon cancer by mutations inbeta-catenin or APC. Science 1997;275(5307):1787–90.

    Article  PubMed  CAS  Google Scholar 

  210. Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P. Stabilization of beta-catenin by genetic defects in melanoma celllines. Science 1997;275(5307):1790–2.

    Article  PubMed  CAS  Google Scholar 

  211. Clapper ML, Coudry J, Chang WC. Beta-catenin-mediated signaling: amolecular target for early chemopreventive intervention. Mutat Res2004;555(1–2):97–105.

    PubMed  CAS  Google Scholar 

  212. Fodde R, Smits R, Clevers H. APC, signal transduction and geneticinstability in colorectal cancer. Nat Rev Cancer 2001;1(1):55–67.

    Article  PubMed  CAS  Google Scholar 

  213. Muraoka-Cook RS, Dumont N, Arteaga CL. Dual role of transforminggrowth factor beta in mammary tumorigenesis and metastaticprogression. Clin Cancer Res 2005;11(2 Pt 2):937s-43s.

    PubMed  CAS  Google Scholar 

  214. Bhowmick NA, Ghiassi M, Bakin A, et al. Transforming growthfactor-beta1 mediates epithelial to mesenchymal transdifferentiationthrough a RhoA-dependent mechanism. Mol Biol Cell 2001;12(1):27–36.

    PubMed  CAS  Google Scholar 

  215. McCormick F. Cancer-specific viruses and the development ofONYX-015. Cancer Biol Ther 2003;2(4 Suppl 1):S157–60.

    PubMed  CAS  Google Scholar 

  216. Reid TR, Freeman S, Post L, McCormick F, Sze DY. Effects of Onyx-015among metastatic colorectal cancer patients that have failed priortreatment with 5-FU/leucovorin. Cancer Gene Ther 2005;12(8):673–81.

    Article  PubMed  CAS  Google Scholar 

  217. Foster BA, Coffey HA, Morin MJ, Rastinejad F. Pharmacological rescueof mutant p53 conformation and function. Science1999;286(5449):2507–10.

    Google Scholar 

  218. Loeb LA. Mutator phenotype may be required for multistagecarcinogenesis. Cancer Res 1991;51:3075–9.

    PubMed  CAS  Google Scholar 

  219. Lengauer C, Kinzler KW, Vogelstein B. Genetic instability incolorectal cancers. Nature 1997;386:623–7.

    Article  PubMed  CAS  Google Scholar 

  220. Jallepalli PV, Lengauer C. Chromosome segregation and cancer:cutting through the mystery. Nat Rev Cancer 2001;1(2):109–17.

    Article  PubMed  CAS  Google Scholar 

  221. Fishel R. Signaling mismatch repair in cancer. Nat Med1999;5(11):1239–41.

    Article  PubMed  CAS  Google Scholar 

  222. Kunkel TA, Erie DA. DNA mismatch repair. Annu Rev Biochem2005;74:681–710.

    Article  PubMed  CAS  Google Scholar 

  223. Modrich P. Mismatch repair, genetic stability, and cancer. Science1994;226:1959–60.

    Article  Google Scholar 

  224. Kolodner RD, Marsischky GT. Eukaryotic DNA mismatch repair. CurrOpin Genet Dev 1999;9(1):89–96.

    Article  CAS  Google Scholar 

  225. Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl JMed 2003;348(10):919–32.

    Article  CAS  Google Scholar 

  226. Cunningham JM, Christensen ER, Tester DJ, et al. Hypermethylation ofthe hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res 1998;58(15):3455–60.

    PubMed  CAS  Google Scholar 

  227. Herman JG, Umar A, Polyak K, et al. Incidence and functionalconsequences of hMLH1 promoter hypermethylation in colorectalcarcinoma. Proc Natl Acad Sci USA 1998;95(12):6870–5.

    Article  PubMed  CAS  Google Scholar 

  228. Bellacosa A. Functional interactions and signaling properties ofmammalian DNA mismatch repair proteins. Cell Death Differ2001;8:1076–92.

    Article  PubMed  CAS  Google Scholar 

  229. Karran P, Hampson R. Genomic instability and tolerance to alkylatingagents. Cancer Surv 1996;28:69–85.

    PubMed  CAS  Google Scholar 

  230. Stojic L, Brun R, Jiricny J. Mismatch repair and DNA damagesignalling. DNA Repair (Amst) 2004;3(8–9):1091–101.

    Article  CAS  Google Scholar 

  231. Ribic CM, Sargent DJ, Moore MJ, et al. Tumormicrosatellite-instability as a predictor of benefit fromfluorouracil-based adjuvant chemotherapy for colon cancer. N Engl JMed 2003;349: 247–57.

    Article  CAS  Google Scholar 

  232. Robinson BW, Im MM, Ljungman M, Praz F, Shewach DS. Enhancedradiosensitization with gemcitabine in mismatch repair-deficientHCT116 cells. Cancer Res 2003;63(20):6935–41.

    PubMed  CAS  Google Scholar 

  233. Berry SE, Kinsella TJ. Targeting DNA mismatch repair forradiosensitization. Semin Radiat Oncol 2001;11(4):300–15.

    Article  PubMed  CAS  Google Scholar 

  234. Chen WD, Eshleman JR, Aminoshariae MR, et al. Cytotoxicity andmutagenicity of frameshift-inducing agent ICR191 in mismatchrepair-deficient colon cancer cells. J Natl Cancer Inst2000;92(6):480–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Sundermeyer, M.L., Bellacosa, A., Meropol, N.J. (2008). Molecular Targeting of Colorectal Cancer. In: Kaufman, H.L., Wadler, S., Antman, K. (eds) Molecular Targeting in Oncology. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-337-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-337-0_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-577-4

  • Online ISBN: 978-1-59745-337-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics