Skip to main content

Imaging Genes for Viral and Adoptive Therapies

  • Chapter
In Vivo Imaging of Cancer Therapy

Abstract

The concept of using gene therapy for cancer treatment was initially met with enthusiasm. The possibility of replacing or altering damaged genes, the introduction of suicide genes into cancer cells, and the alteration of cell function as a consequence of exogenous gene expression were advocated. Therapeutic genes can be transferred to patients through a variety of vehicles. These include retroviruses, herpes viruses, adenoviruses, adeno-associated viruses, lentiviruses, baculoviruses, liposomes, bacterial hosts, naked DNA, DNA precipitates, and protein-DNA conjugates (Table 1) (1,2). However, the practical application of gene therapy to treat cancer has been somewhat disappointing so far. Major obstacles remain, including the inability to target appropriate tissues and deliver therapeutic genes to a sufficient number of target cells, the inability to monitor the level of expression of the therapeutic gene, the loss of therapeutic gene expression over time, and the inability to correlate the level and duration of gene expression with therapeutic outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buchsbaum DJ, Curiel DT. Gene therapy for the treatment of cancer. Cancer Biother Radiopharm 2001;16(4):275–288.

    Article  PubMed  CAS  Google Scholar 

  2. Somia N, Verma IM. Gene therapy: Trials and tribulations. Nature Rev 2000;1:91–99.

    CAS  Google Scholar 

  3. Blasberg R, Tjuvajev J. In vivo monitoring of gene therapy by radiotracer imaging. In: Ernst Shering Research Foundation Workshop 22: Impact of Molecular Biology and New Technical Developments on Diagnostic Imaging. Berlin-Heidelberg: Springer-Verlag, 1997.

    Google Scholar 

  4. Gambhir SS, Herschman HR, Cherry SR, Barrio JR, Satyamurthy N, Toyokuni T, Phelps ME, Larson SM, Balatoni J, Finn R, Sadelain M, Tjuvajev J, Blasberg R. Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2000;2:118–138.

    Article  PubMed  CAS  Google Scholar 

  5. Tavitian B. In vivo antisense imaging. Quart J Nucl Med 2000;3:236–255.

    Google Scholar 

  6. Ray P, Bauer E, Iyer M, Barrio JR, Satyamurthy N, Phelps ME, Herschman HR, Gambhir SS. Monitoring gene therapy with reporter gene imaging. Semin Nuclear Med 2001;312–320.

    Google Scholar 

  7. Blasberg RG, Gelovani J. Molecular-genetic imaging: A nuclear medicine-based perspective. Mol Imaging 2002;3:280–300.

    Article  Google Scholar 

  8. Luker GD, Sharma V, Piwnica Worms D. Visualizing protein-protein interactions in living animals. Methods 2003;1:110–122.

    Article  Google Scholar 

  9. Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nature Med 2003;1:123–128.

    Google Scholar 

  10. Gelovani Tjuvajev J, Blasberg RG. In vivo imaging of molecular-genetic targets for cancer therapy. Cancer Cell 2003;4:327–332.

    Article  Google Scholar 

  11. Berger F, Gambhir SS. Recent advances in imaging endogenous or transferred gene expression utilizing radionuclide technologies in living subjects: Applications to breast cancer. Breast Cancer Res 2001;1:28–35.

    Google Scholar 

  12. Contag CH, Ross BD. It’s not just about anatomy: In vivo bioluminescence imaging as an eyepiece into biology. J Magn Reson Imaging 2002;16:378–387.

    Article  PubMed  Google Scholar 

  13. Gambhir SS. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2002;2:683–693.

    Article  PubMed  CAS  Google Scholar 

  14. Blasberg RG, Tjuvajev JG. Molecular-genetic imaging: Current and future perspectives. J Clin Invest 2003;11:1620–1629.

    Article  CAS  Google Scholar 

  15. Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nature Med 2003;9:123–128.

    Article  PubMed  CAS  Google Scholar 

  16. Min JJ, Gambhir SS. Gene therapy progress and prospects: Noninvasive imaging of gene therapy in living subjects. Gene Ther 2004;2:115–125.

    Google Scholar 

  17. Shah K, Jacobs A, Breakefield XO, Weissleder R. Molecular imaging of gene therapy for cancer. Gene Ther 2004;11:1175–1187.

    Article  PubMed  CAS  Google Scholar 

  18. Dehdashti F, Mortimer JE, Siegel BA, Griffeth LK, Bonasera TJ, Fusselman MJ, Detert DD, Cutler PD, Katzenellenbogen JA, Welch MJ. Positron tomographic assessment of estrogen receptors in breast cancer: Comparison with FDG-PET and in vitro receptor assays. J Nucl Med 1995;10:1766–1774.

    Google Scholar 

  19. Larson SM, Morris M, Gunther I, Beattie B, Humm JL, Akhurst TA, Finn RD, Erdi Y, Pentlow K, Dyke J, Squire O, Bornmann W, McCarthy T, Welch M, Scher H. Tumor localization of 16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med 2004;3:366–373.

    Google Scholar 

  20. Jaffer FA, Tung CH, Gerszten RE, Weissleder, R. In vivo imaging of thrombin activity in experimental thrombi with thrombin-sensitive near-infrared molecular probe. Arterioscler Thromb Vasc Biol 2002;22:1929–1935.

    Article  PubMed  CAS  Google Scholar 

  21. Contag CH, Spilman SD, Contag PR, Oshiro M, Eames B, Dennery P, Stevenson DK, Benaron DA. Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol 1997;4:523–531.

    Google Scholar 

  22. Contag PR, Olomu IN, Stevenson DK, Contag CH. Bioluminescent indicators in living mammals. Nature Med 1998;2:245–247.

    Google Scholar 

  23. Rehemtulla A, Stegman LD, Cardozo SJ, Gupta S, Hall DE, Contag CH, Ross BD. Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia 2000;6:491–495.

    Article  Google Scholar 

  24. Tjuvajev JG, Stockhammer G, Desai R, Uehara H, Watanabe H, Gansbacher B, Blasberg RG. Imaging the expression of transfected genes in vivo. Cancer Res 1995;55:6126–6132.

    PubMed  CAS  Google Scholar 

  25. Tjuvajev JG, Finn R, Watanabe K, Joshi R, Oku T, Kennedy J, Beattie B, Koutcher J, Larson S, Blasberg RG. Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: A potential method for monitoring clinical gene therapy. Cancer Res 1996;56:4087–4095.

    PubMed  CAS  Google Scholar 

  26. Tjuvajev JG, Avril N, Oku T, Sasajima T, Miyagawa T, Joshi R, Safer M, Beattie B, DiResta G, Daghighian F, Augensen F, Koutcher J, Zweit J, Humm J, Larson SM, Finn R, Blasberg R. Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res 1998;58:4333–4341.

    PubMed  CAS  Google Scholar 

  27. Gambhir SS, Barrio JR, Wu L, Iyer M, Namavari M, Satyamurthy N, Bauer E, Parrish C, MacLaren DC, Borghei AR, Green LA, Sharfstein S, Berk AJ, Cherry SR, Phelps ME, Herschman HR. Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J Nucl Med 1998;11:2003–2011.

    Google Scholar 

  28. Gambhir SS, Barrio JR, Phelps ME, Iyer M, Namavari M, Satyamurthy N, Wu L, Green LA, Bauer E, MacLaren DC, Nguyen K, Berk AJ, Cherry SR, Herschman HR. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci USA 1999;5:2333–2338.

    Article  Google Scholar 

  29. Weissleder R, Simonova M, Bogdanova A, Bredow S, Enochs WS, Bogdanov A. MR imaging and scintigraphy of gene expression through melanin induction. Radiology 1997;2:425–429.

    Google Scholar 

  30. Louie AY, Huber MM, Ahrens ET, Rothbacher U, Moats R, Jacobs RE, Fraser SE, Meade TJ. In vivo visualization of gene expression using magnetic resonance imaging. Nature Biotechnol 2000;3:321–325.

    Google Scholar 

  31. Overbeek PA, Chepelinsky AB, Khillan JS, Piatigorsky J, Westphal H. Lens-specific expression and developmental regulation of the bacterial chloramphenicol acetyltransferase gene driven by the murine alpha A-crystallin promoter in transgenic mice. Proc Natl Acad Sci USA 1985;82:7815–7819.

    Article  PubMed  CAS  Google Scholar 

  32. Forss-Petter S, Danielson PE, Catsicas S, Battenberg E, Price J, Nerenberg M, Sutcliffe JG. Transgenic mice expressing beta-galactosidase in mature neurons under neuron-specific enolase promoter control. Neuron 1990;5:187–197.

    Article  PubMed  CAS  Google Scholar 

  33. Balaban RS, Hampshire VA. Challenges in small animal noninvasive imaging. Review. ILAR J 2001;42:248–262.

    PubMed  CAS  Google Scholar 

  34. March JC, Rao G, Bentley WE. Biotechnological applications of green fluorescent protein. Appl Microbiol Biotechnol 2003;62:303–315.

    Article  PubMed  CAS  Google Scholar 

  35. Hoffman RM. In vivo imaging with fluorescent proteins: The new cell biology. Acta Histochem 2004;106:77–87.

    Article  PubMed  CAS  Google Scholar 

  36. Fyfe JA, Keller PM, Furman PA, Miller RL, Elion GB. Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound, 9-(2-hydroxyethoxymethyl)guanine. J Biol Chem 1978;253:8721–8727.

    PubMed  CAS  Google Scholar 

  37. Oldfield EH, Ram Z, Culver KW, Blaese RM, DeVroom HL, Anderson WF. Gene therapy for the treatment of brain tumors using intra-tumoral transduction with the thymidine kinase gene and intravenous ganciclovir. Hum Gene Ther 1993;4:39–69.

    Article  PubMed  CAS  Google Scholar 

  38. Saito Y, Price RW, Rottenberg DA, Fox JJ, Su TL, Watanabe KA, Philips FS. Quantitative autoradiographic mapping of herpes simplex virus encephalitis with a radiolabeled antiviral drug. Science 1982;217:1151–1153.

    Article  PubMed  CAS  Google Scholar 

  39. Iyer M, Barrio JR, Namavari M, Bauer E, Satyamurthy N, Nguyen K, Toyokuni T, Phelps ME, Herschman HR, Gambhir SS. 8-[18F]Fluoropenciclovir: An improved reporter probe for imaging HSV1-tk reporter gene expression in vivo using PET. J Nucl Med 2001;42:96–105.

    PubMed  CAS  Google Scholar 

  40. Gambhir SS, Bauer E, Black ME, Liang Q, Kokoris MS, Barrio JR, Iyer M, Namavari M, Phelps ME, Herschman HR. A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci USA 2000;97:2785–2790.

    Article  PubMed  CAS  Google Scholar 

  41. Alauddin MM, Conti PS. Synthesis and preliminary evaluation of 9-(4-[18F]-fluoro-3-hydroxymethy lbutyl)guanine ([18F]FHBG): A new potential imaging agent for viral infection and gene therapy using PET. Nucl Med Biol 1998;25:175–180.

    Article  PubMed  CAS  Google Scholar 

  42. Yaghoubi SS, Barrio JR, Namavari M, Satyamurthy N, Phelps ME, Herschman HR, Gambhir SS. Imaging progress of herpes simplex virus type 1 thymidine kinase suicide gene therapy in living subjects with positron emission tomography. Cancer Gene Ther 2005;12:329–339.

    Article  PubMed  CAS  Google Scholar 

  43. Jacobs A, Voges J, Reszka R, Lercher M, Gossmann A, Kracht L, Kaestle C, Wagner R, Wienhard K, Heiss WD. Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 2001;358:727–729.

    Article  PubMed  CAS  Google Scholar 

  44. Doubrovin M, Ponomarev V, Beresten T, Balatoni J, Bornmann W, Finn R, Humm J, Larson S, Sadelain M, Blasberg R, Gelovani Tjuvajev J. Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc Natl Acad Sci USA 2001;98:9300–9305.

    Article  PubMed  CAS  Google Scholar 

  45. Serganova I, Doubrovin M, Vider J, Ponomarev V, Soghomonyan S, Beresten T, Ageyeva L, Serganov A, Cai S, Balatoni J, Blasberg R, Gelovani J. Molecular imaging of temporal dynamics and spatial heterogeneity of hypoxia-inducible factor-1 signal transduction activity in tumors in living mice. Cancer Res 2004;64:6101–6108.

    Article  PubMed  CAS  Google Scholar 

  46. Zhang L, Adams JY, Billick E, Ilagan R, Iyer M, Le K, Smallwood A, Gambhir SS, Carey M, Wu L. Molecular engineering of a two-step transcription amplification (TSTA) system for transgene delivery in prostate cancer. Mol Ther 2002;5:223–232.

    Article  PubMed  CAS  Google Scholar 

  47. Qiao J, Doubrovin M, Sauter BV, Huang Y, Guo ZS, Balatoni J, Akhurst T, Blasberg RG, Tjuvajev JG, Chen SH, Woo SL. Tumor-specific transcriptional targeting of suicide gene therapy. Gene Ther 2002;9:168–175.

    Article  PubMed  CAS  Google Scholar 

  48. Mayer-Kuckuk P, Banerjee D, Malhotra S, Doubrovin M, Iwamoto M, Akhurst T, Balatoni J, Bornmann W, Finn R, Larson S, Fong Y, Gelovani Tjuvajev J, Blasberg R, Bertino JR. Cells exposed to antifolates show increased cellular levels of proteins fused to dihydrofolate reductase: A method to modulate gene expression. Proc Natl Acad Sci USA 2002;99:3400–3405.

    Article  PubMed  CAS  Google Scholar 

  49. Dai G, Levy O, Carrasco N. Cloning and characterization of the thyroid iodide transporter. Nature 1996;379:458–460.

    Article  PubMed  CAS  Google Scholar 

  50. Selmi-Ruby S, Watrin C, Trouttet-Masson S, et al. The porcine sodium/iodide symporter gene exhibits an uncommon expression pattern related to the use of alternative splice sites not present in the human or murine species. Endocrinology 2003;144:1074–1085.

    Article  PubMed  CAS  Google Scholar 

  51. Tazebay UH, Wapnir IL, Levy O, Dohan O, Zuckier LS, Zhao QH, Deng HF, Amenta PS, Fineberg S, Pestell RG, Carrasco N. The mammary gland iodide transporter is expressed during lactation and in breast cancer. Nat Med 2000;6:871–878.

    Article  PubMed  CAS  Google Scholar 

  52. Eskandari S, Loo DDF, Day G, Levy O, Wright EW, Carrasco N. Thyroid Na+/I− symporter: Mechanism, stoichiometry, and specificity. J Biol Chem 1997;272:27230–27238.

    Article  PubMed  CAS  Google Scholar 

  53. Van Sande J, Massart C, Beauwens R, Schoutens A, Costagliol S, Dumon JE, Wolff J. Anion selectivity by the sodium iodide symporter. Endocrinology 2003;144:247–252.

    Article  PubMed  CAS  Google Scholar 

  54. Boland A, Ricard M, Opolon P, Bidart JM, Yeh P, Filetti S, Schlumberger M, Perricaudet M. Adenovirus-mediated transfer of the thyroid sodium/iodide symporter gene into tumors for a targeted radiotherapy. Cancer Res 2000;60:3484–3492.

    PubMed  CAS  Google Scholar 

  55. Kakinuma H, Bergert ER, Spitzweg C, Cheville JC, Lieber MM, Morris JC. Probasin promoter (ARR(2)PB)-driven, prostate-specific expression of the human sodium iodide symporter (h-NIS) for targeted radioiodine therapy of prostate cancer. Cancer Res 2003;63:7840–7844.

    PubMed  CAS  Google Scholar 

  56. Schipper ML, Weber A, Behe M, Goke R, Joba W, Schmidt H, Bert T, Simon B, Arnold R, Heufelder AE, Behr TM. Radioiodide treatment after sodium iodide symporter gene transfer is a highly effective therapy in neuroendocrine tumor cells. Cancer Res 2003;63:1333–1338.

    PubMed  CAS  Google Scholar 

  57. Dingli D, Peng KW, Harvey ME, Greipp PR, O’Connor MK, Cattaneo R, Morris JC, Russell SJ. Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood 2004;103:1641–1646.

    Article  PubMed  CAS  Google Scholar 

  58. Spitzweg C, O’Connor MK, Bergert ER, Tindall DJ, Young CY, Morris JC. Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter. Cancer Res 2000;60:6526–6530.

    PubMed  CAS  Google Scholar 

  59. Huang M, Batra RK, Kogai T, Lin YQ, Hershman JM, Lichtenstein A, Sharma S, Zhu LX, Brent GA, Dubinett SM. Ectopic expression of the thyroperoxidase gene augments radioiodide uptake and retention mediated by the sodium iodide symporter in non-small cell lung cancer. Cancer Gene Ther 2001;8:612–618.

    Article  PubMed  CAS  Google Scholar 

  60. Moon DH, Lee SJ, Park KY, Park KK, Ahn SH, Pai MS, Chang H, Lee HK, Ahn IM. Correlation between 99mTc-pertechnetate uptakes and expressions of human sodium iodide symporter gene in breast tumor tissues. Nucl Med Biol 2001;28:829–834.

    Article  PubMed  CAS  Google Scholar 

  61. Groot-Wassink T, Aboagye EO, Glaser M, Lemoine NR, Vassaux G. Adenovirus biodistribution and noninvasive imaging of gene expression in vivo by positron emission tomography using human sodium/iodide symporter as reporter gene. Hum Gene Ther 2002;13:1723–1735.

    Article  PubMed  CAS  Google Scholar 

  62. Dingli D, Diaz RM, Bergert ER, O’Connor MK, Morris JC, Russell SJ. Genetically targeted radiotherapy for multiple myeloma. Blood 2003;102:489–496.

    Article  PubMed  CAS  Google Scholar 

  63. Buchsbaum DJ, Chaudhuri TR, Zinn KR. Radiotargeted gene therapy. J Nucl Med 2005;46:179S–186S.

    PubMed  CAS  Google Scholar 

  64. Miyagawa M, Beyer M, Wagner B, Anton M, Spitzweg C, Gansbacher B, Schwaiger M, Bengel FM. Cardiac reporter gene imaging using the human sodium/iodide symporter gene. Cardiovasc Res 2005;65:195–202.

    Article  PubMed  CAS  Google Scholar 

  65. Kim KI, Chung JK, Kang JH, Lee YJ, Shin JH, Oh HJ, Jeong JM, Lee DS, Lee MC. Visualization of endogenous p53-mediated transcription in vivo using sodium iodide symporter. Clin Cancer Res 2005;11:123–128.

    PubMed  Google Scholar 

  66. Faivre J, Clerc J, Gerolami R, Herve J, Longuet M, Liu B, Roux J, Moal F, Perricaudet M, Brechot C. Long-term radioiodine retention and regression of liver cancer after sodium iodide symporter gene transfer in wistar rats. Cancer Res 2004;64:8045–8051.

    Article  PubMed  CAS  Google Scholar 

  67. So MK, Kang JH, Chung JK, Lee YJ, Shin JH, Kim KI, Jeong JM, Lee DS, Lee MC. In vivo imaging of retinoic acid receptor activity using a sodium/iodide symporter and luciferase dual imaging reporter gene. Mol Imaging 2004;3:163–171.

    Article  PubMed  CAS  Google Scholar 

  68. Che J, Doubrovin M, Serganova I, Ageyeva L, Zanzonico P, Blasberg R. hNIS-IRES-eGFP dual reporter gene imaging. Mol Imaging 2005;4:128–136.

    PubMed  Google Scholar 

  69. Krulich L, Dhariwal AP, McCann SM. Stimulatory and inhibitory effects of purified hypothalamic extracts on growth hormone release from rat pituitary in vitro. Endocrinology 1968;83:783–790.

    Article  PubMed  CAS  Google Scholar 

  70. Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 1973;179:77–79.

    Article  PubMed  CAS  Google Scholar 

  71. Reichlin S. Somatostatin. N Engl J Med 1983;309:1495–1501.

    Article  PubMed  CAS  Google Scholar 

  72. Reubi JC, Kvols L, Krenning E, Lamberts SW. Distribution of somatostatin receptors in normal and tumor tissue. Metabolism 1990;39:78–81.

    Article  PubMed  CAS  Google Scholar 

  73. Bauer W, Briner U, Doepfner W, Haller R, Huguenin R, Marbach P, Petcher TJ, Pless. SMS 201-995: A very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci 1981;31:1133–1140.

    Article  Google Scholar 

  74. Forssell-Aronsson EB, Nilsson O, Bejegard SA, Kolby L, Bernhardt P, Molne J, Hashemi SH, Wangberg B, Tisell LE, Ahlman H. 111In-DTPA-D-Phe1-octreotide binding and somatostatin receptor subtypes in thyroid tumors. J Nucl Med 2000;41:636–642.

    PubMed  CAS  Google Scholar 

  75. Zinn KR, Buchsbaum DJ, Chaudhuri TR, Mountz JM, Grizzle WE, Rogers BE. Noninvasive monitoring of gene transfer using a reporter receptor imaged with a high-affinity peptide radiolabeled with 99mTc or 188Re. J Nucl Med 2000;41:887–895.

    PubMed  CAS  Google Scholar 

  76. Kundra V, Mannting F, Jones AG, Kassis AI. Noninvasive monitoring of somatostatin receptor type 2 chimeric gene transfer. J Nucl Med 2002;43:406–412.

    PubMed  CAS  Google Scholar 

  77. Rogers BE, Zinn KR, Lin CY, Chaudhuri TR, Buchsbaum DJ. Targeted radiotherapy with [(90)Y]-SMT 487 in mice bearing human nonsmall cell lung tumor xenografts induced to express human somatostatin receptor subtype 2 with an adenoviral vector. Cancer 2002;94:1298–1305.

    Article  PubMed  CAS  Google Scholar 

  78. Lewis JS, Lewis MR, Cutler PD, et al. Radiotherapy and dosimetry of 64Cu-TETA-Tyr3-octreotate in a somatostatin receptor-positive, tumor-bearing rat model. Clin Cancer Res 1999;5:3608–3616.

    PubMed  CAS  Google Scholar 

  79. de Jong M, Breeman WA, Bernard BF, Bakker WH, Schaar M, van Gameren A, Bugaj JE, Erion J, Schmidt M, Srinivasan A, Krenning EP. [177Lu-DOTA0,Tyr3] octreotate for somatostatin receptortargeted radionuclide therapy. Int J Cancer 2001;92:628–633.

    Article  PubMed  Google Scholar 

  80. Paganelli G, Zoboli S, Cremonesi M, Macke HR, Chinol M. Receptor-mediated radionuclide therapy with 90Y-DOTA-D-Phe1-Tyr3-octreotide: Preliminary report in cancer patients. Cancer Biother Radiopharm 1999;14:477–483.

    PubMed  CAS  Google Scholar 

  81. Kwekkeboom DJ, Bakker WH, Kooij PP, Konijnenberg MW, Srinivasan A, Erion JL, Schmidt MA, Bugaj JL, de Jong M, Krenning EP. [177Lu-DOTA0,Tyr3]octreotate: Comparison with [111In-DTPA0]octreotide in patients. Eur J Nucl Med 2001;28:1319–1325.

    Article  PubMed  CAS  Google Scholar 

  82. de Jong M, Kwekkeboom D, Valkema R, Krenning EP. Radiolabelled peptides for tumour therapy: Current status and future directions—plenary lecture at the EANM 2002. Eur J Nucl Med Mol Imaging 2003;30:463–469.

    Article  PubMed  CAS  Google Scholar 

  83. Sibley DR, Monsma FJ Jr. Molecular biology of dopamine receptors. Trends Pharmacol Sci 1992;13:61–69.

    Article  PubMed  CAS  Google Scholar 

  84. Bunzow JR, Van Tol HH, Grandy DK, Albert P, Salon J, Christie M, Machida CA, Neve KA, Civelli O. Cloning and expression of a rat D2 dopamine receptor cDNA. Nature 1988;367:783–787.

    Article  Google Scholar 

  85. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: From structure to function. Physiol Rev 1998;78:189–225.

    PubMed  CAS  Google Scholar 

  86. Satyamurthy N, Barrio JR, Bida GT, Huang SC, Mazziotta JC, Phelps ME. 3-(2′-[188F]Fluoroethyl)s piperone, a potent dopamine antagonist: Synthesis, structural analysis and in-vivo utilization in humans. Int J Rad Appl Instrum [A] 1990;41:113–129.

    Article  CAS  Google Scholar 

  87. Barrio JR, Satyamurthy N, Huang SC, Keen RE, Nissenson CH, Hoffman JM, Ackermann RF, Bahn MM, Mazziotta JC, Phelps ME. 3-(2′-[188F]Fluoroethyl)spiperone: In vivo biochemical and kinetic characterization in rodents, nonhuman primates, and humans. J Cereb Blood Flow Metab 1989;9:830–839.

    PubMed  CAS  Google Scholar 

  88. MacLaren DC, Gambhir SS, Satyamurthy N, Barrio JR, Sharfstein S, Toyokuni T, Wu L, Berk AJ, Cherry SR, Phelps ME, Herschman HR. Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 1999;6:785–791.

    Article  PubMed  CAS  Google Scholar 

  89. Liang Q, Satyamurthy N, Barrio JR, Toyokuni T, Phelps MP, Gambhir SS, Herschman HR. Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther 2001;8:1490–1498.

    Article  PubMed  CAS  Google Scholar 

  90. Chen IY, Wu JC, Min JJ, Sundaresan G, Lewis X, Liang Q, Herschman HR, Gambhir SS. Micropositron emission tomography imaging of cardiac gene expression in rats using bicistronic adenoviral vector-mediated gene delivery. Circulation 2004;109:1415–1420.

    Article  PubMed  Google Scholar 

  91. Gross S, Piwnica-Worms D. Spying on cancer; molecular imaging in vivo with genetically encoded reporters. Cancer Cell 2005;7:5–15.

    PubMed  CAS  Google Scholar 

  92. Yu YA, Timiryasova T, Zhang Q, Beltz R, Szalay AA. Optical imaging: Bacteria, viruses, and mammalian cells encoding light-emitting proteins reveal the locations of primary tumors and metastases in animals. Anal Bioanal Chem 2003;377:964–972.

    Article  PubMed  CAS  Google Scholar 

  93. Wilson T, Hastings JW. Bioluminescence. Annu Rev Cell Dev Biol 1998;14:197–230.

    Article  PubMed  CAS  Google Scholar 

  94. Contag CH, Spilman SD, Contag PR, Oshiro M, Eames B, Dennery P, Stevenson DK, Benaron DA. Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol 1997;4:523–531.

    Google Scholar 

  95. Bhaumik S, Gambhir S. Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci USA 2002;99:377–382.

    Article  PubMed  CAS  Google Scholar 

  96. Pichler A, Prior JL, Piwnica-Worms D. Imaging reversal of multidrug resistance in living mice with bioluminescence: MDR1 P-glycoprotein transports coelenterazine. Proc Natl Acad Sci USA 2004;6;702–1707.

    Google Scholar 

  97. Ponomarev V, Doubrovin M, Serganova I, Beresten T, Vider J, Shavrin A, Ageyeva L, Balatoni J, Blasberg R, Tjuvajev JG. Cytoplasmically retargeted HSV1-tk/GFP reporter gene mutants for optimization of noninvasive molecular-genetic imaging. Neoplasia 2003;5:245–254.

    PubMed  CAS  Google Scholar 

  98. Ponomarev V, Doubrovin M, Serganova I, Vider J, Shavrin A, Beresten T, Ivanova A, Ageyeva L, Tourkova V, Balatoni J, Bornmann W, Blasberg R, Gelovani Tjuvajev J. A novel triple modality reporter gene for whole body fluorescent, bioluminescent and nuclear noninvasive imaging. Eur J Nucl Med 2004;5:740–751.

    Article  CAS  Google Scholar 

  99. Levy JP, Muldoon RR, Zolotukhin S, Link CJ Jr. Retroviral transfer and expression of a humanized, red-shifted green fluorescent protein gene into human tumor cells. Nat Biotechnol 1996;14:610–614.

    Article  PubMed  CAS  Google Scholar 

  100. Lalwani AK, Han JJ, Walsh BJ, Zolotukhin S, Muzyczka N, Mhatre AN. Green fluorescent protein as a reporter for gene transfer studies in the cochlea. Hear Res 1997;114:139–147.

    Article  PubMed  CAS  Google Scholar 

  101. Ellenberg J, Lippincott Schwartz J, Presley JF. Dual-colour imaging with GFP variants. Trends Cell Biol 1999;9:52–56.

    Article  PubMed  CAS  Google Scholar 

  102. Matz M, Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 1999;17:969–973.

    Article  PubMed  CAS  Google Scholar 

  103. Falk MM, Lauf U. High resolution, fluorescence deconvolution microscopy and tagging with the autofluorescent tracers CFP, GFP, and YFP to study the structural composition of gap junctions in living cells. Microsc Res Technol 2001;52:251–262.

    Article  CAS  Google Scholar 

  104. Hadjantonakis AK, Nagy A. The color of mice: In the light of GFP-variant reporters. Histochem Cell Biol 2001;115:49–58.

    PubMed  CAS  Google Scholar 

  105. Labas YA, Gurskaya NG, Yanushevich YG, Fradkov AF, Lukyanov KA, Lukyanov SA, Matz MV. Diversity and evolution of the green fluorescent protein family. Proc Natl Acad Sci USA 2002;99:4256–4261.

    Article  PubMed  CAS  Google Scholar 

  106. Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY. A monomeric red fluorescent protein. Proc Natl Acad Sci USA 2002;99:7877–7882.

    Article  PubMed  CAS  Google Scholar 

  107. Mathieu S, El-Battari A. Monitoring E-selectin-mediated adhesion using green and red fluorescent proteins. J Immunol Methods 2003;272:81–92.

    Article  PubMed  CAS  Google Scholar 

  108. Gurskaya NG, Fradkov AF, Terskikh A, Matz MV, Labas YA, Martynov VI, Yanushevich YG, Lukyanov KA, Lukyanov SA. GFP-like chromoproteins as a source of far-red fluorescent proteins. FEBS Lett 2001;507:16–20.

    Article  PubMed  CAS  Google Scholar 

  109. Yang M, Baranov E, Jiang P, Sun F, Li XM, Li LN, Hasegawa S, Bouvet M, Al Tuwaijri M, Chishima T, Shimada H, Moossa AR, Penman S, Hoffman RM. Whole-body optical imaging of green fluorescent protein expressing tumors and metastases. Proc Natl Acad Sci USA 2000;97:1206–1211.

    Article  PubMed  CAS  Google Scholar 

  110. Kolb VA, Makeyev EV, Spirin AS. Co-translational folding of an eukaryotic multidomain protein in a prokaryotic translation system. J Biol Chem 2000;275;16597–16601.

    Article  PubMed  CAS  Google Scholar 

  111. Thompson JF, Hayes LS, Lloyd DB. Modulation of firefly luciferase stability and impact on studies of gene regulation. Gene 1991;103:171–177.

    Article  PubMed  CAS  Google Scholar 

  112. Day RN, Kawecki M, Berry D. Dual function reporter protein for analysis of gene expression in living cells. Biotechnology 1998;25:852–854.

    Google Scholar 

  113. Loimas S, Wahlfors J, Janne J. Herpes simplex virus thymidine kinase-green fluorescent protein fusion gene: New tool for gene transfer studies and gene therapy. Biotechniques 1998;24:614–618.

    PubMed  CAS  Google Scholar 

  114. Jacobs A, Dubrovin M, Hewett J, Sena-Esteves M, Tan CW, Slack M, Sadelain M, Breakefield XO, Tjuvajev JG. Functional coexpression of HSV-1 thymidine kinase and green fluorescent protein: Implications for noninvasive imaging of transgene expression. Neoplasia 1999;1:154–161.

    Article  PubMed  CAS  Google Scholar 

  115. Strathdee CA, McLeod MR, Underhill TM. Dominant positive and negative selection using luciferase, green fluorescent protein and beta-galactosidase reporter gene fusions. Biotechniques 2000;28:210–214.

    PubMed  CAS  Google Scholar 

  116. Ray P, De A, Min JJ, Tsien RY, Gambhir SS. Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 2004;64(4):1323–1330.

    Article  PubMed  CAS  Google Scholar 

  117. Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 1992;89:5547–5551.

    Article  PubMed  CAS  Google Scholar 

  118. Baron U, Gossen M, Bujard H. Tetracycline-controlled transcription in eukaryotes: Novel transactivators with graded transactivation potential. Nucleic Acids Res 1997;25:2723–2729.

    Article  PubMed  CAS  Google Scholar 

  119. Sun X, Annala AJ, Yaghoubi SS, Barrio JR, Nguyen KN, Toyokuni T, Satyamurthy N, Namavari M, Phelps ME, Herschman HR, Gambhir SS. Quantitative imaging of gene induction in living animals. Gene Ther 2001;8:1572–1579.

    Article  PubMed  CAS  Google Scholar 

  120. Martinez-Salas E. Internal ribosome entry site biology and its use in expression vectors. Curr Opin Biotechnol 1999;10:458–464.

    Article  PubMed  CAS  Google Scholar 

  121. Tjuvajev JG, Joshi A, Callegari J, Lindsley L, Joshi R, Balatoni J, Finn R, Larson SM, Sadelain M, Blasberg RG. A general approach to the non-invasive imaging of transgenes using cis-linked herpes simplex virus thymidine kinase. Neoplasia 1999;1:315–320.

    Article  PubMed  CAS  Google Scholar 

  122. Gobuty AHRR, Barth RF. Organ distribution of 99mTc-and 51Cr-labeled autologous peripheral blood lymphocytes in rabbits. J Nucl Med 1977;18:141–146.

    PubMed  CAS  Google Scholar 

  123. Papierniak CKBR, Kretschmer RR, Gotoff SP, Colombetti LG. Technetium-99m labeling of human monocytes for chemotactic studies. J Nucl Med 1976;17:988–992.

    PubMed  CAS  Google Scholar 

  124. Korf JV-DL, Brinkman-Medema R, Niemarkt A, de Leij LF. Divalent cobalt as a label to study lymphocyte distribution using PET and SPECT. J Nucl Med 1998;39:836–841.

    PubMed  CAS  Google Scholar 

  125. Rannie GH TM, Ford WL. An experimental comparison of radioactive labels with potential application to lymphocyte migration studies in patients. Clin Exp Immunol 1977;29:509–514.

    PubMed  CAS  Google Scholar 

  126. Adonai N NK, Walsh J, Iyer M, Toyokuni T, Phelps ME, McCarthy T, McCarthy DW, Gambhir SS. Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci USA 2002;99:3030–3035.

    Article  PubMed  CAS  Google Scholar 

  127. Kasi LP LL, Saranti S, Podoloff DA, Freedman RS. Indium-111 labeled leukocytes in evaluation of active specific immunotherapy responses. Int J Gynecol Cancer 1995;5:226–232.

    Article  PubMed  Google Scholar 

  128. Dillman ROHS, Schiltz PM, Barth NM, Beutel LD, Nayak SK, O’Connor AA. Tumor localization by tumor infiltrating lymphocytes labeled with indium-111 in patients with metastatic renal cell carcinoma, melanoma, and colorectal cancer. Cancer Biother Radiopharm 1997;12:65–71.

    PubMed  CAS  Google Scholar 

  129. Jacobs REAE, Meade TJ, Fraser SE. Looking deeper into vertebrate development. Trends Cell Biol 1999;9:73–76.

    Article  PubMed  CAS  Google Scholar 

  130. Johnson GABH, Black RD, Hedlund LW, Maronpot RR, Smith BR. Histology by magnetic resonance microscopy. Magn Reson Q 1993;9:1–30.

    PubMed  CAS  Google Scholar 

  131. Weissleder RCH, Bogdanova A, Bogdanov A Jr. Magnetically labeled cells can be detected by MR imaging. J Magn Reson Imaging 1997;7:258–263.

    Article  PubMed  CAS  Google Scholar 

  132. Schoepf UME, Melder RJ, Jain RK, Weissleder R. Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies. Biotechniques 1998;24:642–646.

    PubMed  CAS  Google Scholar 

  133. Dodd SJWM, Suhan JP, Williams DS, Koretsky AP, Ho C. Detection of single mammalian cells by high-resolution magnetic resonance imaging. Biophys J 1999;76:103–109.

    PubMed  CAS  Google Scholar 

  134. Hawrylak NGP, Broadus J, Schlueter C, Greenough WT, Lauterbur PC. Nuclear magnetic resonance (NMR) imaging of iron oxide-labeled neural transplants. Exp Neurol 1993;121:181–192.

    Article  PubMed  CAS  Google Scholar 

  135. Weissleder RMA, Mahmood U, Bhorade R, Benveniste H, Chiocca EA, Basilion JP. In vivo magnetic resonance imaging of transgene expression. Nat Med 2000;6:351–355.

    Article  PubMed  CAS  Google Scholar 

  136. Dodd CH, Chu WJ, Yang P, Zhang HG, Mountz JD Jr, Zinn K, Forder J, Josephson L, Weissleder R, Mountz JM, Mountz JD. Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J Immunol Methods 2001;256:89–105.

    Article  PubMed  CAS  Google Scholar 

  137. Kircher MFAJ, Graves EE, Love V, Josephson L, Lichtman AH, Weissleder R. In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res 2003;63:6838–6846.

    PubMed  CAS  Google Scholar 

  138. Hagani ABRI, Tan C, Krause A, Sadelain M. Activation conditions determine susceptibility of murine primary T-lymphocytes to retroviral infection. J Gene Med 1999;1:341–351.

    Article  PubMed  CAS  Google Scholar 

  139. Gallardo HF, Tan C, Ory D, Sadelain M. Recombinant retroviruses pseudotyped with the vesicular stomatitis virus G glycoprotein mediate both stable gene transfer and pseudotransduction in human peripheral blood lymphocytes. Blood 1997;90:952–957.

    PubMed  CAS  Google Scholar 

  140. Rooney CM, Ng CY, Loftin S, Li C, Krance RA, Brenner MK, Heslop HE. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet 1995;345:9–13.

    Article  PubMed  CAS  Google Scholar 

  141. Verzeletti SBC, Marktel S, Nobili N, Ciceri F, Traversari C, Bordignon C. Herpes simplex virus thymidine kinase gene transfer for controlled graft-versus-host disease and graft-versus-leukemia: Clinical follow-up and improved new vectors. Hum Gene Ther 1998;9:2243–2251.

    PubMed  CAS  Google Scholar 

  142. Bonini CFG, Verzeletti S, Servida P, Zappone E, Ruggieri L, Ponzoni M, Rossini S, Mavilio F, Traversari C, Bordignon C. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 1997;276:1719–1724.

    Article  PubMed  CAS  Google Scholar 

  143. Hardy JEM, Bachmann MH, Negrin RS, Fathman CG, Contag CH. Bioluminescence imaging of lymphocyte trafficking in vivo. Exp Hematol 2001;29:1353–1360.

    Article  PubMed  CAS  Google Scholar 

  144. Zhang W FJ, Harris SE, Contag PR, Stevenson DK, Contag CH. Rapid in vivo functional analysis of transgenes in mice using whole body imaging of luciferase expression. Transgenic Res 2001;10:423–434.

    Article  PubMed  CAS  Google Scholar 

  145. Costa GLSM, Nakajima A, Nguyen EV, Taylor-Edwards C, Slavin AJ, Contag CH, Fathman CG, Benson JM. Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T cell delivery of the IL-12 p40 subunit. J Immunol 2001;167:2379–2387.

    PubMed  CAS  Google Scholar 

  146. Koehne G, Doubrovin M, Doubrovina E, Zanzonico P, Gallardo HF, Ivanova A, Balatoni J, Teruya-Feldstein J, Heller G, May C, Ponomarev V, Ruan S, Finn R, Blasberg RG, Bornmann W, Riviere I, Sadelain M, O’Reilly RJ, Larson SM, Gelovani Tjuvajev JG. Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat Biotechnol 2003;21:405–413.

    Article  PubMed  CAS  Google Scholar 

  147. Doubrovina ES, Doubrovin M, Lee S, Shieh JH, Heller G, Pamer E, O’Reilly RJ. In vitro stimulation with WT1 peptide-loaded Epstein-Barr virus-positive B cells elicits high frequencies of WT1 peptidespecific T cells with in vitro and in vivo tumoricidal activity. Clin Cancer Res 2004;10:7207–7219.

    Article  PubMed  CAS  Google Scholar 

  148. Dubey SH, Adonai N, Du S, Rosato A, Braun J, Gambhir SS, Witte ON. Quantitative imaging of the T cell antitumor response by positron-emission tomography. Proc Natl Acad Sci USA 2003;100:1232–1237.

    Article  PubMed  CAS  Google Scholar 

  149. Kim YJDP, Ray P, Gambhir SS, Witte ON. Multimodality imaging of lymphocytic migration using lentiviral-based transduction of a tri-fusion reporter gene. Mol Imaging Biol 2004;6:331–340.

    Article  PubMed  Google Scholar 

  150. Su H, Gambhir SS, Braun J. Quantitation of cell number by a positron emission tomography reporter gene strategy. Mol Imaging Biol 2004;6:139–148.

    Article  PubMed  Google Scholar 

  151. Ponomarev V, Doubrovin M, Lyddane C, Beresten T, Balatoni J, Bornman W, Finn R, Akhurst T, Larson S, Blasberg R, Sadelain M, Tjuvajev JG. Imaging TCR-dependent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia 2001;3:480–488.

    Article  PubMed  CAS  Google Scholar 

  152. Li W HR. Regulation of the nuclear factor of activated T cells in stably transfected Jurkat cell clones. Biochem Biophys Res Commun 1996;219:96–99.

    Article  PubMed  CAS  Google Scholar 

  153. Kiani ARA, Aramburu J. Manipulating immune responses with immunosuppressive agents that target NFAT. Immunity 2000;12:359–372.

    Article  PubMed  CAS  Google Scholar 

  154. McDonald DM, Choyke PL. Imaging of angiogenesis: From microscope to clinic. Nat Med 2003;9:713–725.

    Article  PubMed  CAS  Google Scholar 

  155. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore MA, Hajjar KA, Manova K, Benezra R, Rafii S. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001;7:1194–1201.

    Article  PubMed  CAS  Google Scholar 

  156. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore MA, Hajjar KA, Manova K, Benezra R, Rafii S. Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood 2005;105:420–425.

    Article  CAS  Google Scholar 

  157. Anderson SA, Glod J, Arbab AS, Noel M, Ashari P, Fine HA, Frank JA. Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood 2005;105:420–425.

    Article  PubMed  CAS  Google Scholar 

  158. Bulte JW, Arbab AS, Douglas T, Frank JA. Preparation of magnetically labeled cells for cell tracking by magnetic resonance imaging. Methods Enzymol 2004;386:275–299.

    PubMed  CAS  Google Scholar 

  159. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002;62:3603–3608.

    PubMed  CAS  Google Scholar 

  160. Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, Champlin RE, Andreeff M. Mesenchymal stem cells: Potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 2004;96:1593–1603.

    Article  PubMed  CAS  Google Scholar 

  161. Zhang Z, Jiang Q, Jiang F, Ding G, Zhang R, Wang L, Zhang L, Robin AM, Katakowski M, Chopp M. In vivo magnetic resonance imaging tracks adult neural progenitor cell targeting of brain tumor. Neuroimage 2004;23:281–287.

    Article  PubMed  CAS  Google Scholar 

  162. Banerjee D, Bertino JR. Myeloprotection with drug-resistance genes. Lancet Oncol 2002;3:154–158.

    Article  PubMed  CAS  Google Scholar 

  163. Wang X, Rosol M, Ge S, Peterson D, McNamara G, Pollack H, Kohn DB, Nelson MD, Crooks GM. Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. Blood 2003;102:3478–3482.

    Article  PubMed  CAS  Google Scholar 

  164. Cao YA, Wagers AJ, Beilhack A, Dusich J, Bachmann MH, Negrin RS, Weissman IL, Contag CH. Shifting foci of hematopoiesis during reconstitution from single stem cells. Proc Natl Acad Sci USA 2004;101:221–226.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Serganova, I., Ponomarev, V., Mayer-Kuckuk, P., Doubrovina, E., Doubrovin, M., Blasberg, R.G. (2007). Imaging Genes for Viral and Adoptive Therapies. In: Shields, A.F., Price, P. (eds) In Vivo Imaging of Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-341-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-341-7_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-633-7

  • Online ISBN: 978-1-59745-341-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics