Skip to main content

Photoreceptor—RPE Interactions

Physiology and Molecular Mechanisms

  • Chapter
Visual Transduction and Non-Visual Light Perception

Part of the book series: Ophthalmology Research ((OPHRES))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev 2005;85(3):845–881.

    Article  PubMed  CAS  Google Scholar 

  2. Pfeffer B, Wiggert B, Lee L, Zonnenberg B, Newsome D, Chader G. The presence of a soluble interphotoreceptor retinol-binding protein (IRBP) in the retinal interphotoreceptor space. J Cell Physiol 1983;117(3):333–341.

    Article  PubMed  CAS  Google Scholar 

  3. Johnson LV, Hageman GS. Structural and compositional analyses of isolated cone matrix sheaths. Invest Ophthalmol Vis Sci 1991;32(7):1951–1957.

    PubMed  CAS  Google Scholar 

  4. Johnson LV, Hageman GS, Blanks JC. Restricted extracellular matrix domains ensheath cone photoreceptors in vertebrate retinae. Prog Clin Biol Res 1985;190:33–44.

    PubMed  CAS  Google Scholar 

  5. Hollyfield JG, Rayborn ME, Landers RA, Myers KM. Insoluble interphotoreceptor matrix domains surround rod photoreceptors in the human retina. Exp Eye Res 1990;51(1):107–110.

    Article  PubMed  CAS  Google Scholar 

  6. Hollyfield JG. Hyaluronan and the functional organization of the interphotoreceptor matrix. Invest Ophthalmol Vis Sci 1999;40(12):2767–2769.

    PubMed  CAS  Google Scholar 

  7. Hollyfield JG, Varner HH, Rayborn ME. Regional variation within the interphotoreceptor matrix from fovea to the retinal periphery. Eye 1990;4(Pt 2):333–339.

    PubMed  Google Scholar 

  8. Johnson LV, Hageman GS, Blanks JC. Interphotoreceptor matrix domains ensheath vertebrate cone photoreceptor cells. Invest Ophthalmol Vis Sci 1986;27(2):129–135.

    PubMed  CAS  Google Scholar 

  9. Hollyfield JG, Varner HH, Rayborn ME, Osterfeld AM. Retinal attachment to the pigment epithelium. Retina 1989;9(1):59–68.

    Article  PubMed  CAS  Google Scholar 

  10. Steinberg RH. Interactions between the retinal pigment epithelium and the neural retina. Doc Ophthalmol 1985;60(4):327–346.

    Article  PubMed  CAS  Google Scholar 

  11. Uehara F, Matthes MT, Yasumura D, LaVail MM. Light-evoked changes in the interpho-toreceptor matrix. Science 1990;248(4963):1633–1636.

    Article  PubMed  CAS  Google Scholar 

  12. Uehara F, Yasumura D, LaVail MM. Rod- and cone-associated interphotoreceptor matrix in the rat retina. Differences in light-evoked distributional changes. Invest Ophthalmol Vis Sci 1991;32(2):285–292.

    PubMed  CAS  Google Scholar 

  13. Cook B, Lewis GP, Fisher SK, Adler R. Apoptotic photoreceptor degeneration in experimental retinal detachment. Invest Ophthalmol Vis Sci 1995;36(6):990–996.

    PubMed  CAS  Google Scholar 

  14. Fisher SK, Lewis GP, Linberg KA, Verardo MR. Cellular remodeling in mammalian retina: results from studies of experimental retinal detachment. Prog Retin Eye Res 2005;24(3):395–431.

    Article  PubMed  Google Scholar 

  15. Hageman GS, Marmor MF, Yao XY, Johnson LV. The interphotoreceptor matrix mediates primate retinal adhesion. Arch Ophthalmol 1995;113(5):655–660.

    PubMed  CAS  Google Scholar 

  16. Bonilha VL, Bhattacharya SK, West KA, et al. Support for a proposed retinoid-processing protein complex in apical retinal pigment epithelium. Exp Eye Res 2004;79(3):419–422.

    Article  PubMed  CAS  Google Scholar 

  17. Bonilha VL, Rayborn ME, Saotome I, McClatchey AI, Hollyfield JG. Microvilli defects in retinas of ezrin knockout mice. Exp Eye Res 2006;82(4):720–729.

    Article  PubMed  CAS  Google Scholar 

  18. Bonilha VL, Finnemann SC, Rodriguez-Boulan E. Ezrin promotes morphogenesis of apical microvilli and basal infoldings in retinal pigment epithelium. J Cell Biol 1999;147(7): 1533–1548.

    Article  PubMed  CAS  Google Scholar 

  19. Nandrot EF, Anand M, Sircar M, Finnemann SC. Novel role for αvβ5 integrin in retinal adhesion and its diurnal peak. Am J Physiol Cell Physiol 2006;290(4):C1256–C1262.

    Article  PubMed  CAS  Google Scholar 

  20. Defoe DM, Matsumoto B, Besharse JC. Cytochalasin D inhibits L-glutamate-induced disc shedding without altering L-glutamate-induced increase in adhesiveness. Exp Eye Res 1989;48(5):641–652.

    Article  PubMed  CAS  Google Scholar 

  21. Endo EG, Yao XY, Marmor MF. Pigment adherence as a measure of retinal adhesion: dependence on temperature. Invest Ophthalmol Vis Sci 1988;29(9):1390–1396.

    PubMed  CAS  Google Scholar 

  22. Yao X Y, Hageman GS, Marmor MF. Retinal adhesiveness is weakened by enzymatic modification of the interphotoreceptor matrix in vivo. Invest Ophthalmol Vis Sci 1990;31(10):2051–2058.

    PubMed  CAS  Google Scholar 

  23. Chiang RK, Yao XY, Takeuchi A, Dalal R, Marmor MF. Cytochalasin D reversibly weakens retinal adhesiveness. Curr Eye Res 1995;14(12):1109–1113.

    Article  PubMed  CAS  Google Scholar 

  24. Gundersen D, Powell SK, Rodriguez-Boulan E. Apical polarization of N-CAM in retinal pigment epithelium is dependent on contact with the neural retina. J Cell Biol 1993;121(2):335–343.

    Article  PubMed  CAS  Google Scholar 

  25. Lamoreux ML, Boissy RE, Womack JE, Nordlund JJ. The vit gene maps to the mi (micro-phthalmia) locus of the laboratory mouse. J Hered 1992;83(6):435–439.

    PubMed  CAS  Google Scholar 

  26. Bora N, Defoe D, Smith SB. Evidence of decreased adhesion between the neural retina and retinal pigmented epithelium of the Mitfvit (vitiligo) mutant mouse. Cell Tissue Res 1999;295(1):65–75.

    Article  PubMed  CAS  Google Scholar 

  27. Anderson DH, Johnson LV, Hageman GS. Vitronectin receptor expression and distribution at the photoreceptor-retinal pigment epithelial interface. J Comp Neurol 1995;360(1):1–16.

    Article  PubMed  CAS  Google Scholar 

  28. Finnemann SC, Bonilha VL, Marmorstein AD, Rodriguez-Boulan E. Phagocytosis of rod outer segments by retinal pigment epithelial cells requires αvβ5 integrin for binding but not for internalization. Proc Natl Acad Sci U S A 1997;94(24):12932–12937.

    Article  PubMed  CAS  Google Scholar 

  29. Clegg DO, Mullick LH, Wingerd KL, et al. Adhesive events in retinal development and function: the role of integrin receptors. Results Probl Cell Differ 2000;31:141–156.

    PubMed  CAS  Google Scholar 

  30. Machemer R, Norton EW. Experimental retinal detachment in the owl monkey. Am J Oph-thalmol 1968;66(3):396–427, 1075–1091.

    CAS  Google Scholar 

  31. Bairati A Jr, Orzalesi N. The ultrastructure of the pigment epithelium and of the photorecep-tor-pigment epithelium junction in the human retina. J Ultrastruct Res 1963;41:484–496.

    Article  PubMed  Google Scholar 

  32. Young RW. The renewal of photoreceptor cell outer segments. J Cell Biol 1967;33(1):61–72.

    Article  PubMed  CAS  Google Scholar 

  33. Hollyfield JG, Rayborn ME, Verner GE, Maude MB, Anderson RE. Membrane addition to rod photoreceptor outer segments: light stimulates membrane assembly in the absence of increased membrane biosynthesis. Invest Ophthalmol Vis Sci 1982;22(4):417–427.

    PubMed  CAS  Google Scholar 

  34. Papermaster DS, Converse CA, Siuss J. Membrane biosynthesis in the frog retina: opsin transport in the photoreceptor cell. Biochemistry 1975;14(7):1343–1352.

    Article  PubMed  CAS  Google Scholar 

  35. Young RW, Droz B. The renewal of protein in retinal rods and cones. J Cell Biol 1968;39(1):169–184.

    Article  PubMed  CAS  Google Scholar 

  36. Papermaster DS, Schneider BG, Besharse JC. Vesicular transport of newly synthesized opsin from the Golgi apparatus toward the rod outer segment. Ultrastructural immunocy-tochemical and autoradiographic evidence in Xenopus retinas. Invest Ophthalmol Vis Sci 1985;26(10):1386–1404.

    PubMed  CAS  Google Scholar 

  37. Steinberg RH, Fisher SK, Anderson DH. Disc morphogenesis in vertebrate photoreceptors. J Comp Neurol 1980;190(3):501–508.

    Article  PubMed  CAS  Google Scholar 

  38. Bok D, Young RW. The renewal of diffusely distributed protein in the outer segments of rods and cones. Vision Res 1972;12(2):161–168.

    Article  PubMed  CAS  Google Scholar 

  39. Poo M, Cone RA. Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature 1974;247(441):438–441.

    Article  PubMed  CAS  Google Scholar 

  40. Korenbrot JI, Fernald RD. Circadian rhythm and light regulate opsin mRNA in rod photore-ceptors. Nature 1989;337(6206):454–457.

    Article  PubMed  CAS  Google Scholar 

  41. Kamphuis W, Cailotto C, Dijk F, Bergen A, Buijs RM. Circadian expression of clock genes and clock-controlled genes in the rat retina. Biochem Biophys Res Commun 2005;330(1):18–26.

    Article  PubMed  CAS  Google Scholar 

  42. von Schantz M, Lucas RJ, Foster RG. Circadian oscillation of photopigment transcript levels in the mouse retina. Brain Res Mol Brain Res 1999;72(1):108–114.

    Article  Google Scholar 

  43. Pierce ME, Sheshberadaran H, Zhang Z, Fox LE, Applebury ML, Takahashi JS. Circadian regulation of iodopsin gene expression in embryonic photoreceptors in retinal cell culture. Neuron 1993;10(4):579–584.

    Article  PubMed  CAS  Google Scholar 

  44. Besharse JC, Hollyfield JG, Rayborn ME. Photoreceptor outer segments: accelerated membrane renewal in rods after exposure to light. Science 1977;196(4289):536–538.

    Article  PubMed  CAS  Google Scholar 

  45. Matsumoto B, Bok D. Diurnal variations in amino acid incorporation into inner segment opsin. Invest Ophthalmol Vis Sci 1984;25(1):1–9.

    PubMed  CAS  Google Scholar 

  46. Besharse JC, Hollyfield JG. Turnover of mouse photoreceptor outer segments in constant light and darkness. Invest Ophthalmol Vis Sci 1979;18(10):1019–1024.

    PubMed  CAS  Google Scholar 

  47. Young RW, Bok D. Participation of the retinal pigment epithelium in the rod outer segment renewal process. J Cell Biol 1969;42(2):392–403.

    Article  PubMed  CAS  Google Scholar 

  48. Steinberg RH, Wood I, Hogan MJ. Pigment epithelial ensheathment and phagocytosis of extrafoveal cones in human retina. Philos Trans R Soc Lond B Biol Sci 1977;277(958): 459–474.

    Article  PubMed  CAS  Google Scholar 

  49. Williams DS, Fisher SK. Prevention of rod disk shedding by detachment from the retinal pigment epithelium. Invest Ophthalmol Vis Sci 1987;28(1):184–187.

    PubMed  CAS  Google Scholar 

  50. LaVail MM. Circadian nature of rod outer segment disc shedding in the rat. Invest Ophthal-mol Vis Sci 1980;19(4):407–411.

    CAS  Google Scholar 

  51. LaVail MM. Rod outer segment disk shedding in rat retina: relationship to cyclic lighting. Science 1976;194(4269):1071–1074.

    Article  PubMed  CAS  Google Scholar 

  52. Basinger S, Hoffman R, Matthes M. Photoreceptor shedding is initiated by light in the frog retina. Science 1976;194(4269):1074–1076.

    Article  PubMed  CAS  Google Scholar 

  53. Besharse JC, Hollyfield JG, Rayborn ME. Turnover of rod photoreceptor outer segments. II. Membrane addition and loss in relationship to light. J Cell Biol 1977;75(2 Pt 1):507–527.

    Article  PubMed  CAS  Google Scholar 

  54. Young RW. An hypothesis to account for a basic distinction between rods and cones. Vision Res 1971;11(1):1–5.

    Article  PubMed  CAS  Google Scholar 

  55. Anderson DH, Fisher SK, Steinberg RH. Mammalian cones: disc shedding, phagocytosis, and renewal. Invest Ophthalmol Vis Sci 1978;17(2):117–133.

    PubMed  CAS  Google Scholar 

  56. O'Day WT, Young RW. Rhythmic daily shedding of outer-segment membranes by visual cells in the goldfish. J Cell Biol 1978;76(3):593–604.

    Article  PubMed  Google Scholar 

  57. Young RW. The daily rhythm of shedding and degradation of cone outer segment membranes in the lizard retina. J Ultrastruct Res 1977;61(2):172–185.

    Article  PubMed  CAS  Google Scholar 

  58. Young RW. The daily rhythm of shedding and degradation of rod and cone outer segment membranes in the chick retina. Invest Ophthalmol Vis Sci 1978;17(2):105–116.

    PubMed  CAS  Google Scholar 

  59. Long KO, Fisher SK, Fariss RN, Anderson DH. Disc shedding and autophagy in the cone-dominant ground squirrel retina. Exp Eye Res 1986;43(2):193–205.

    Article  PubMed  CAS  Google Scholar 

  60. Fisher SK, Pfeffer BA, Anderson DH. Both rod and cone disc shedding are related to light onset in the cat. Invest Ophthalmol Vis Sci 1983;24(7):844–856.

    PubMed  CAS  Google Scholar 

  61. Bobu C, Craft CM, Masson-Pevet M, Hicks D. Photoreceptor organization and rhythmic phagocytosis in the Nile rat Arvicanthis ansorgei: a novel diurnal rodent model for the study of cone pathophysiology. Invest Ophthalmol Vis Sci 2006;47(7):3109–3118.

    Article  PubMed  Google Scholar 

  62. Bourne MC, Campbell DA, Tansley K. Hereditary degeneration of the rat retina. Br J Oph-thalmol 1938;22:613–622.

    Article  CAS  Google Scholar 

  63. Mullen RJ, LaVail MM. Inherited retinal dystrophy: primary defect in pigment epithelium determined with experimental rat chimeras. Science 1976;192(4241):799–801.

    Article  PubMed  CAS  Google Scholar 

  64. Besharse J, Defoe D. The role of the retinal pigment epithelium in photoreceptor membrane turnover. In: Marmor MF, Wolfensberger TJ, eds. The retinal pigment epithelium. New York: Oxford University Press; 1998:152–172.

    Google Scholar 

  65. Bosch E, Horwitz J, Bok D. Phagocytosis of outer segments by retinal pigment epithelium: phagosome-lysosome interaction. J Histochem Cytochem 1993;41(2):253–263.

    PubMed  CAS  Google Scholar 

  66. Gibbs D, Kitamoto J, Williams DS. Abnormal phagocytosis by retinal pigmented epithelium that lacks myosin VIIa, the Usher syndrome 1B protein. Proc Natl Acad Sci U S A 2003;100:6481–6486.

    Article  PubMed  CAS  Google Scholar 

  67. Gordon WC, Bazan NG. Docosahexaenoic acid utilization during rod photoreceptor cell renewal. J Neurosci 1990;10(7):2190–2202.

    PubMed  CAS  Google Scholar 

  68. Rodriguez de Turco EB, Parkins N, Ershov AV, Bazan NG. Selective retinal pigment epithelial cell lipid metabolism and remodeling conserves photoreceptor docosahexaenoic acid following phagocytosis. J Neurosci Res 1999;57(4):479–486.

    Article  PubMed  CAS  Google Scholar 

  69. Gordon WC, Rodriguez de Turco EB, Bazan NG. Retinal pigment epithelial cells play a central role in the conservation of docosahexaenoic acid by photoreceptor cells after shedding and phagocytosis. Curr Eye Res 1992;11(1):73–83.

    Article  PubMed  CAS  Google Scholar 

  70. Stinson AM, Wiegand RD, Anderson RE. Recycling of docosahexaenoic acid in rat retinas during n-3 fatty acid deficiency. J Lipid Res 1991;32(12):2009–2017.

    PubMed  CAS  Google Scholar 

  71. Wiegand RD, Koutz CA, Stinson AM, Anderson RE. Conservation of docosahexaenoic acid in rod outer segments of rat retina during n-3 and n-6 fatty acid deficiency. J Neuro-chem 1991;57(5):1690–1699.

    CAS  Google Scholar 

  72. Fadeel B. Plasma membrane alterations during apoptosis: role in corpse clearance. Anti-oxid Redox Signal 2004;6(2):269–275.

    Article  CAS  Google Scholar 

  73. Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 2000;405(6782):85–90.

    Article  PubMed  CAS  Google Scholar 

  74. Ryeom SW, Silverstein RL, Scotto A, Sparrow JR. Binding of anionic phospholipids to retinal pigment epithelium may be mediated by the scavenger receptor CD36. J Biol Chem 1996;271(34):20536–20539.

    Article  PubMed  CAS  Google Scholar 

  75. Finnemann SC, Rodriguez-Boulan E. Macrophage and retinal pigment epithelium phagocytosis: apoptotic cells and photoreceptors compete for αvβ3 and αvβ5 integrins, and protein kinase C regulates αvβ5 binding and cytoskeletal linkage. J Exp Med 1999;190(6):861–874.

    Article  PubMed  CAS  Google Scholar 

  76. Scott RS, McMahon EJ, Pop SM, et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 2001;411(6834):207–211.

    Article  PubMed  CAS  Google Scholar 

  77. Boyle D, Tien LF, Cooper NG, Shepherd V, McLaughlin BJ. A mannose receptor is involved in retinal phagocytosis. Invest Ophthalmol Vis Sci 1991;32(5):1464–1470.

    PubMed  CAS  Google Scholar 

  78. Kindzelskii AL, Elner VM, Elner SG, Yang D, Hughes BA, Petty HR. Toll-like receptor 4 (TLR4) of retinal pigment epithelial cells participates in transmembrane signaling in response to photoreceptor outer segments. J Gen Physiol 2004;124(2):139–149.

    Article  PubMed  CAS  Google Scholar 

  79. Ren Y, Silverstein RL, Allen J, Savill J. CD36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis. J Exp Med 1995;181(5):1857–1862.

    Article  PubMed  CAS  Google Scholar 

  80. Jimenez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 2000;6(1):41–48.

    Article  PubMed  CAS  Google Scholar 

  81. Silverstein RL, Febbraio M. CD36 and atherosclerosis. Curr Opin Lipidol 2000;11(5): 483–491.

    Article  PubMed  CAS  Google Scholar 

  82. Podrez EA, Poliakov E, Shen Z, et al. A novel family of atherogenic oxidized phospholipids promotes macrophage foam cell formation via the scavenger receptor CD36 and is enriched in atherosclerotic lesions. J Biol Chem 2002;277(41):38517–38523.

    Article  PubMed  CAS  Google Scholar 

  83. Ryeom SW, Sparrow JR, Silverstein RL. CD36 participates in the phagocytosis of rod outer segments by retinal pigment epithelium. J Cell Sci 1996;109(Pt 2):387–395.

    PubMed  CAS  Google Scholar 

  84. Finnemann SC, Silverstein RL. Differential roles of CD36 and αvβ5 integrin in photorecep-tor phagocytosis by the retinal pigment epithelium. J Exp Med 2001;194(9):1289–1298.

    Article  PubMed  CAS  Google Scholar 

  85. Sun M, Finnemann SC, Febbraio M, et al. Light-induced oxidation of photoreceptor outer segment phospholipids generates ligands for CD36-mediated phagocytosis by retinal pigment epithelium: a potential mechanism for modulating outer segment phagocytosis under oxidant stress conditions. J Biol Chem 2006;281(7):4222–4230.

    Article  PubMed  CAS  Google Scholar 

  86. Li S, Lam TT, Fu J, Tso MO. Systemic hypertension exaggerates retinal photic injury. Arch Ophthalmol 1995;113(4):521–526.

    PubMed  CAS  Google Scholar 

  87. D'Cruz PM, Yasumura D, Weir J, et al. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 2000;9(4):645–651.

    Article  PubMed  Google Scholar 

  88. Nandrot E, Dufour EM, Provost AC, et al. Homozygous deletion in the coding sequence of the c-mer gene in RCS rats unravels general mechanisms of physiological cell adhesion and apoptosis. Neurobiol Dis 2000;7(6 Pt B):586–599.

    Article  PubMed  CAS  Google Scholar 

  89. Duncan JL, LaVail MM, Yasumura D, et al. An RCS-like retinal dystrophy phenotype in mer knockout mice. Invest Ophthalmol Vis Sci 2003;44(2):826–838.

    Article  PubMed  Google Scholar 

  90. Edwards RB, Szamier RB. Defective phagocytosis of isolated rod outer segments by RCS rat retinal pigment epithelium in culture. Science 1977;197(4307):1001–1003.

    Article  PubMed  CAS  Google Scholar 

  91. Chaitin MH, Hall MO. Defective ingestion of rod outer segments by cultured dystrophic rat pigment epithelial cells. Invest Ophthalmol Vis Sci 1983;24(7):812–820.

    PubMed  CAS  Google Scholar 

  92. Miceli M V, Newsome DA, Tate DJ, Jr. Vitronectin is responsible for serum-stimulated uptake of rod outer segments by cultured retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 1997;38(8):1588–1597.

    PubMed  CAS  Google Scholar 

  93. Lin H, Clegg DO. Integrin avb5 participates in the binding of photoreceptor rod outer segments during phagocytosis by cultured human retinal pigment epithelium. Invest Ophthal-mol Vis Sci 1998;39(9):1703–1712.

    CAS  Google Scholar 

  94. Finnemann SC, Leung LW, Rodriguez-Boulan E. The lipofuscin component A2E selectively inhibits phagolysosomal degradation of photoreceptor phospholipid by the retinal pigment epithelium. Proc Natl Acad Sci U S A 2002;99(6):3842–3847.

    Article  PubMed  CAS  Google Scholar 

  95. Nandrot EF, Kim Y, Brodie SE, Huang X, Sheppard D, Finnemann SC. Loss of synchronized retinal phagocytosis and age-related blindness in mice lacking αvβ5 integrin. J Exp Med 2004;200:1539–1545.

    Article  PubMed  CAS  Google Scholar 

  96. Finnemann SC. Focal adhesion kinase signaling promotes phagocytosis of integrin-bound photoreceptors. EMBO J 2003;22(16):4143–4154.

    Article  PubMed  CAS  Google Scholar 

  97. Parsons JT. Focal adhesion kinase: the first ten years. J Cell Sci 2003;116(Pt 8):1409–1416.

    Article  PubMed  CAS  Google Scholar 

  98. Dowling JE, Sidman RL. Inherited retinal dystrophy of the rat. J Cell Biol 1962;14:73–109.

    Article  PubMed  CAS  Google Scholar 

  99. Bok D, Hall MO. The role of the pigment epithelium in the etiology of inherited retinal dystrophy in the rat. J Cell Biol 1971;49:664–682.

    Article  PubMed  CAS  Google Scholar 

  100. Feeney L. Lipofuscin and melanin of human retinal pigment epithelium. Fluorescence, enzyme cytochemical, and ultrastructural studies. Invest Ophthalmol Vis Sci 1978;17(7): 583–600.

    PubMed  CAS  Google Scholar 

  101. Rakoczy PE, Zhang D, Robertson T, et al. Progressive age-related changes similar to age-related macular degeneration in a transgenic mouse model. Am J Pathol 2002;161(4): 1515–1524.

    Article  PubMed  CAS  Google Scholar 

  102. Sparrow JR, Parish CA, Hashimoto M, Nakanishi K. A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. Invest Ophthalmol Vis Sci 1999;40(12):2988– 2995.

    PubMed  CAS  Google Scholar 

  103. Gal A, Li Y, Thompson DA, et al. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet 2000;26(3):270–271.

    Article  PubMed  CAS  Google Scholar 

  104. Zareparsi S, Buraczynska M, Branham KE, et al. Toll-like receptor 4 variant D299G is associated with susceptibility to age-related macular degeneration. Hum Mol Genet 2005;14(11):1449–1455.

    Article  PubMed  CAS  Google Scholar 

  105. Adamus G, Zam ZS, Arendt A, Palczewski K, McDowell JH, Hargrave PA. Anti-rhodopsin monoclonal antibodies of defined specificity: characterization and application. Vision Res 1991;31(1):17–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to those colleagues whose work we did not cite due to space restrictions. This work was supported by National Institutes of Health grants EY13295 and EY17173. S.C.F. is the recipient of a William and Mary Greve Special Scholar Award by Research to Prevent Blindness and of an Irma T. Hirschl Career Award.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Finnemann, S.C., Chang, Y. (2008). Photoreceptor—RPE Interactions. In: Tombran-Tink, J., Barnstable, C.J. (eds) Visual Transduction and Non-Visual Light Perception. Ophthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-374-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-374-5_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-957-4

  • Online ISBN: 978-1-59745-374-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics