Skip to main content

Proteomics of Amniotic Fluid

  • Chapter
Proteomics of Human Body Fluids

Abstract

Amniotic fluid is fundamental for the development of the fetus. Many proteins detected in the amniotic fluid are already present at a very early stage of gestation, whereas other proteins are detected only at the end of the pregnancy. The concentration of a given protein in amniotic fluid is governed not only by fetal, placental, or maternal synthesis and degradation, but also by exchanges between the mother and the fetus through the placenta. Maternofetal transfer of proteins involves several different mechanisms such as first-order process or active transport. Consequently, the concentration of each amniotic fluid protein results from a balance between opposing dynamic metabolic and physiological processes, which proceed simultaneously. Thus, proteomics that allows simultaneous study of a multitude of proteins may be of importance to gain insight into the physiology of amniotic fluid as well as to identify potential markers of diseases during pregnancy. Here we present a review of proteomic studies of normal amniotic fluid and describe alterations in the amniotic fluid proteome that occur during pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Drohse H, Christensen H, Myrhoj V, Sorensen S. Characterisation of nonmaternal serum proteins in amniotic fluid at weeks 16 to 18 of gestation. Clin ChimActa 1998;276:109–120.

    Article  CAS  Google Scholar 

  2. Yamada H, Kishida T, Negishi H, et al. Comparison of an improved AFP kit with the intra-amniotic PSP dye-injection method in equivocal cases of preterm premature rupture of the fetal membranes. J Obstet Gynaecol Res 1997;23:307–311.

    PubMed  CAS  Google Scholar 

  3. Vuadens F, Benay C, Crettaz D, et al. Identification of biologic markers of the premature rupture of fetal membranes: proteomic approach. Proteomics 2003;3: 1521–1525.

    Article  PubMed  CAS  Google Scholar 

  4. Ramsay SL, Maire I, Bindloss C, et al. Determination of oligosaccharides and glycolipids in amniotic fluid by electrospray ionisation tandem mass spectrometry: in utero indicators of lysosomal storage diseases. Mol Genet Metab 2004; 83:231–238.

    Article  PubMed  CAS  Google Scholar 

  5. Gravett MG, Novy MJ, Rosenfeld RG, et al. Diagnosis of intra-amniotic infection by proteomic profiling and identification of novel biomarkers. JAMA 2004;292:462–469.

    Article  PubMed  CAS  Google Scholar 

  6. Buhimschi IA, Christner R, Buhimschi CS. Proteomic biomarker analysis of amniotic fluid for identification of intra-amniotic inflammation. Br J Obstet Gynaecol 2005;112:173–181.

    CAS  Google Scholar 

  7. Brace RA. Physiology of amniotic fluid volume regulation. Clin Obstet Gynecol 1997;40:280–289.

    Article  PubMed  CAS  Google Scholar 

  8. Sohaey R. Amniotic fluid and the umbilical cord: the fetal milieu and lifeline. Semin Ultrasound CT MR 1998; 19:355–369.

    Article  PubMed  CAS  Google Scholar 

  9. Sherer DM. A review of amniotic fluid dynamics and the enigma of isolated oligohydramnios. Am J Perinatol 2002;19:253–266.

    Article  PubMed  Google Scholar 

  10. Hohlfeld P, Marty F, DeGrandi P, Tissot JD, Bossart H, Gerber S. Pathologies du liquide amniotique. In Le Livre de l’Interne Obstétrique. Paris: Flammarion, 2004:255–258.

    Google Scholar 

  11. Illsley NP. Glucose transporters in the human placenta. Placenta 2000;21:14–22.

    Article  PubMed  CAS  Google Scholar 

  12. Bajoria R, Fisk NM. Maternofetal transfer of thyrotrophin-releasing hormone: effect of concentration and mode of administration. Pediatr Res 1997;41: 674–681.

    Article  PubMed  CAS  Google Scholar 

  13. Firan M, Bawdon R, Radu C, et al. The MHC class I-related receptor, FcRn, plays an essential role in the maternofetal transfer of gamma-globulin in humans. Int Immunol 2001; 13:993–1002.

    Article  PubMed  CAS  Google Scholar 

  14. Simister NE. Placental transport of immunoglobulin G. Vaccine 2003;21: 3365–3369.

    Article  PubMed  CAS  Google Scholar 

  15. Tissot JD, Schneider P, Hohlfeld P, Tolsa JF, Calame A, Hochstrasser DF. Monoclonal gammopathy in a 30 weeks old premature infant. Appl Theor Electroph 1992;3:67–68.

    CAS  Google Scholar 

  16. Dolfin T, Pomeranz A, Korzets Z, et al. Acute renal failure in a neonate caused by the transplacental transfer of a nephrotoxic paraprotein: successful resolution by exchange transfusion. Am J Kidney Dis 1999;34:1129–1131.

    PubMed  CAS  Google Scholar 

  17. Quan CP, Forestier F, Bouvet JP. Immunoglobulins of the human amniotic fluid. Am J Reprod Immunol 1999;42:219–225.

    PubMed  CAS  Google Scholar 

  18. Jauniaux E, Jurkovic D, Gulbis B, Liesnard C, Lees C, Campbell S. Materno-fetal immunoglobulin transfer and passive immunity during the first trimester of human pregnancy. Hum Reprod 1995; 10:3297–3300.

    Article  PubMed  CAS  Google Scholar 

  19. Malek A, Sager R, Schneider H. Transport of proteins across the human placenta. Am J Reprod Immunol 1998;40:347–351.

    PubMed  CAS  Google Scholar 

  20. Tisi DK, Emard JJ, Koski KG. Total protein concentration in human amniotic fluid is negatively associated with infant birth weight. J Nutr 2004; 134: 1754–1758.

    PubMed  CAS  Google Scholar 

  21. Kimble RM, Trudenger B, Cass D. Fetal defaecation: is it a normal physiological process? J Paediatr Child Health 1999;35:116–119.

    Article  PubMed  CAS  Google Scholar 

  22. Magi B, Bini L, Perari MG, et al. Bronchoalveolar lavage fluid protein composition in patients with sarcoidosis and idiopathic pulmonary fibrosis: a two dimensional electrophoretic study. Electrophoresis 2002;23:3434–3444.

    Article  PubMed  CAS  Google Scholar 

  23. Sabounchi-Schutt F, Astrom J, Hellman U, Eklund A, Grunewald J. Changes in bronchoalveolar lavage fluid proteins in sarcoidosis: a proteomics approach. Eur Respir J 2003;21:414–420.

    Article  PubMed  CAS  Google Scholar 

  24. Bai Y, Galetskiy D, Damoc E, et al. High resolution mass spectrometric alveolar proteomics: identification of surfactant protein SP-A and SP-D modifications in proteinosis and cystic fibrosis patients. Proteomics 2004;4:2300–2309.

    Article  PubMed  CAS  Google Scholar 

  25. Pieper R, Gatlin CL, McGrath AM, et al. Characterization of the human urinary proteome: a method for high-resolution display of urinary proteins on two dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics 2004;4:1159–1174.

    Article  PubMed  CAS  Google Scholar 

  26. Thongboonkerd V, Malasit P. Renal and urinary proteomics: current applications and challenges. Proteomics 2005;5:1033–1042.

    Article  PubMed  CAS  Google Scholar 

  27. Roberts GC, Smith CW. Alternative splicing: combinatorial output from the genome. Curr Opin Chem Biol 2002;6:375–383.

    Article  PubMed  CAS  Google Scholar 

  28. Wilkins MR, Gasteiger E, Gooley AA, et al. High-throughput mass spectrometric discovery of protein post-translational modifications. J Mol Biol 1999; 289:645–657.

    Article  PubMed  CAS  Google Scholar 

  29. Yan JX, Sanchez JC, Binz PA, Williams KL, Hochstrasser DF. Method for identification and quantitative analysis of protein lysine methylation using matrixassisted laser desorption ionization time-of-flight mass spectrometry and amino acid analysis. Electrophoresis 1999;20:749–754.

    Article  PubMed  CAS  Google Scholar 

  30. Banks RE, Dunn MJ, Hochstrasser DF, et al. Proteomics: new perspectives, new biomedical opportunities. Lancet 2000;356:1749–1756.

    Article  PubMed  CAS  Google Scholar 

  31. Sarioglu H, Lottspeich F, Walk T, Jung G, Eckerskorn C. Deamidation as a wide spread phenomenon in two-dimensional polyacrylamide gel electrophoresis of human blood plasma proteins. Electrophoresis 2000;21:2209–2218.

    Article  PubMed  CAS  Google Scholar 

  32. Imam-Sghiouar N, Laude-Lemaire I, Labas V, et al. Subproteomics analysis of phosphorylated proteins: application to the study of B-lymphoblasts from a patient with Scott syndrome. Proteomics 2002;2:828–838.

    Article  PubMed  CAS  Google Scholar 

  33. Devaux F, Marc P, Jacq C. Transcriptomes, transcription activators and microarrays. FEBS Lett 2001;498:140–144.

    Article  PubMed  CAS  Google Scholar 

  34. Strausberg RL, Riggins GJ. Navigating the human transcriptome. Proc NatlAcad Sci USA 2001;98:11837–11838.

    Article  CAS  Google Scholar 

  35. Kettman JR, Frey JR, Lefkovits I. Proteome, transcriptome and genome: top down or bottom up analysis? Biomol Eng 2001;18:207–212.

    Article  PubMed  CAS  Google Scholar 

  36. Oliver DJ, Nikolau B, Wurtele ES. Functional genomics: high-throughput mRNA, protein, and metabolite analyses. Metab Eng 2002;4:98–106.

    Article  PubMed  CAS  Google Scholar 

  37. Anderson NL, Anderson NG. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 1998;19:1853–1861.

    Article  PubMed  CAS  Google Scholar 

  38. Fields S. Proteomics—proteomics in genomeland. Science 2001;291:1221–1223.

    Article  PubMed  CAS  Google Scholar 

  39. Corthals GL, Wasinger VC, Hochstrasser DF, Sanchez JC. The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis 2000;21: 1104–1115.

    Article  PubMed  CAS  Google Scholar 

  40. Cho A, Normile D. Nobel Prize in Chemistry. Mastering macromolecules. Science 2002;298:527–528.

    Article  PubMed  Google Scholar 

  41. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 2003;422: 198–207.

    Article  PubMed  CAS  Google Scholar 

  42. Boguski MS, McIntosh MW. Biomedical informatics for proteomics. Nature 2003; 422:233–237.

    Article  PubMed  CAS  Google Scholar 

  43. Hanash S. Disease proteomics. Nature 2003;422:226–232.

    Article  PubMed  CAS  Google Scholar 

  44. Tyers M, Mann M. From genomics to proteomics. Nature 2003;422:193–197.

    Article  PubMed  CAS  Google Scholar 

  45. Rabilloud T, Adessi C, Giraudel A, Lunardi J. Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 1997; 18:307–316.

    Article  PubMed  CAS  Google Scholar 

  46. Hochstrasser DF, Harrington M, Hochstrasser AC, Miller MJ, Merril CR. Methods for increasing the resolution of two-dimensional protein electrophoresis. AnalBiochem 1988; 173:424–435.

    CAS  Google Scholar 

  47. Chevallet M, Santoni V, Poinas A, et al. New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis. Electrophoresis 1998;19:1901–1909.

    Article  PubMed  CAS  Google Scholar 

  48. Ahmed N, Barker G, Oliva K, et al. An approach to remove albumin for the proteomic analysis of low abundance biomarkers in human serum. Proteomics 2003;3:1980–1987.

    Article  PubMed  CAS  Google Scholar 

  49. Nilsson S, Ramstrom M, Palmblad M, Axelsson O, Bergquist J. Explorative study of the protein composition of amniotic fluid by liquid chromatography electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. J Proteome Res 2004;3:884–889.

    Article  PubMed  CAS  Google Scholar 

  50. Burkhard PR, Rodrigo N, May D, et al. Assessing cerebrospinal fluid rhinorrhea: a two-dimensional electrophoresis approach. Electrophoresis 2001;22:1826–1833.

    Article  PubMed  CAS  Google Scholar 

  51. Anderson NL, Polanski M, Pieper R, et al. The human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol Cell Proteomics 2004;3:311–326.

    Article  PubMed  CAS  Google Scholar 

  52. Chan KC, Lucas DA, Hise D, et al. Analysis of the human serum proteome. Clin Proteomics 2004;1:101–226.

    Article  Google Scholar 

  53. Heller M, Michel PE, Crettaz D, et al. Two stage Off-gelTM isoelectricfocusing: protein followed by peptide fractionation and application to proteome analysis of human plasma. Electrophoresis 2005;26:1174–1188.

    Article  PubMed  CAS  Google Scholar 

  54. Thadikkaran L, Siegenthaler MA, Crettaz D, Queloz PA, Schneider P, Tissot JD. Recent advances in blood-related proteomics. Proteomics 2005;5:3019–3034.

    Article  PubMed  CAS  Google Scholar 

  55. Tissot JD, Hohlfeld P, Layer A, Forestier F, Schneider P, Henry H. Clinical applications. Gel electrophoresis. In: Wilson I, Adlar TR, Poole CF, Cook M, eds. Encyclopedia of Separation Science. London: Academic, 2000:2468–2475.

    Google Scholar 

  56. Lee WC, Lee KH. Applications of affinity chromatography in proteomics. Anal Biochem 2004;324:1–10.

    Article  PubMed  CAS  Google Scholar 

  57. Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics 2004;4:3665–3685.

    Article  PubMed  CAS  Google Scholar 

  58. Lauber WM, Carroll JA, Dufield DR, Kiesel JR, Radabaugh MR, Malone JP. Mass spectrometry compatibility of two-dimensional gel protein stains. Electrophoresis 2001;22:906–918.

    Article  PubMed  CAS  Google Scholar 

  59. Nesatyy VJ, Dacanay A, Kelly JF, Ross NW. Microwave-assisted protein staining: mass spectrometry compatible methods for rapid protein visualisation. Rapid Commun Mass Spectrom 2002; 16:272–280.

    Article  PubMed  CAS  Google Scholar 

  60. White IR, Pickford R, Wood J, Skehel JM, Gangadharan B, Cutler P. A statistical comparison of silver and SYPRO Ruby staining for proteomic analysis. Electrophoresis 2004;25:3048–3054.

    Article  PubMed  CAS  Google Scholar 

  61. Wu J, Lenchik NJ, Pabst MJ, Solomon SS, Shull J, Gerling IC. Functional characterization of two-dimensional gel-separated proteins using sequential staining. Electrophoresis 2004;26:225–237.

    Article  CAS  Google Scholar 

  62. Templin MF, Stoll D, Schwenk JM, Potz O, Kramer S, Joos TO. Protein microarrays: promising tools for proteomic research. Proteomics 2003;3:2155–2166.

    Article  PubMed  CAS  Google Scholar 

  63. Espina V, Woodhouse EC, Wulfkuhle J, Asmussen HD, Petricoin EF, III, Liotta LA. Protein microarray detection strategies: focus on direct detection technologies. J Immunol Methods 2004;290:121–133.

    Article  PubMed  CAS  Google Scholar 

  64. Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology. Mass Spectrom Rev 2004;23:34–44.

    Article  PubMed  CAS  Google Scholar 

  65. Tissot JD, Duchosal MA, Schneider P. Two-dimensional polyacrylamide gel electrophoresis. In: Wilson I, Adlar TR, Poole CF, Cook M, eds. Encyclopedia of Separation Science. London: Academic, 2000:1364–1371.

    Google Scholar 

  66. Alfirevic Z, Sundberg K, Brigham S. Amniocentesis and chorionic villus sampling for prenatal diagnosis. Cochrane Database Syst Rev 2003;CD003252.

    Google Scholar 

  67. Sutcliffe RG, Brock DJ, Nicholson LV, Dunn E. Fetal and uterine-specific antigens in human amniotic fluid. J Reprod Fertil 1978;54:85–90.

    Article  PubMed  CAS  Google Scholar 

  68. Burnett D, Bradwell AR. The origin of plasma proteins in human amniotic fluid: the significance of alpha 1-antichymotrypsin complexes. Biol Neonate 1980;37: 302–307.

    PubMed  CAS  Google Scholar 

  69. Prado VF, Reis DD, Pena SD. Biochemical and immunochemical identification of the fetal polypeptides of human amniotic fluid during the second trimester of pregnancy. Braz J Med Biol Res 1990;23:121–131.

    PubMed  CAS  Google Scholar 

  70. Jones MI, Spragg SP, Webb T. Detection of proteins in human amniotic fluid using two-dimensional gel electrophoresis. Biol Neonate 1981;39:171–177.

    Article  PubMed  CAS  Google Scholar 

  71. Burdett P, Lizana J, Eneroth P, Bremme K. Proteins of human amniotic fluid. II. Mapping by two-dimensional electrophoresis. Clin Chem 1982;28:935–940.

    PubMed  CAS  Google Scholar 

  72. Stimson WH, Farquharson DM, Lang GD. Pregnancy-associated alpha 2-macroglobulin—a new serum protein elevated in normal human pregnancy. J Reprod Immunol 1983;5:321–327.

    Article  PubMed  CAS  Google Scholar 

  73. Kronquist KE, Crandall BF, Cosico LG. Detection of novel fetal polypeptides in human amniotic fluid using two-dimensional gel electrophoresis. Tumour Biol 1984;5:15–31.

    PubMed  CAS  Google Scholar 

  74. Mackiewicz A, Jakubek P, Sajdak S, Breborowicz J. Microheterogeneity forms of alpha-fetoprotein present in amniotic fluid. Placenta 1984;5:373–380.

    Article  PubMed  CAS  Google Scholar 

  75. Liberatori S, Bini L, DeFelice C, et al. A two-dimensional protein map of human amniotic fluid at 17 weeks’ gestation. Electrophoresis 1997;18:2816–2822.

    Article  PubMed  CAS  Google Scholar 

  76. Tsangaris G, Weitzdorfer R, Pollak D, Lubec G, Fountoulakis M. The amniotic fluid cell proteome. Electrophoresis 2005;26:1168–1173.

    Article  PubMed  CAS  Google Scholar 

  77. Afjehi-Sadat L, Krapfenbauer K, Slavc I, Fountoulakis M, Lubec G. Hypothetical proteins with putative enzyme activity in human amnion, lymphocyte, bronchial epithelial and kidney cell lines. Biochim Biophys Acta 2004; 1700:65–74.

    PubMed  CAS  Google Scholar 

  78. Oh JE, Fountoulakis M, Juranville JF, Rosner M, Hengstschlager M, Lubec G. Proteomic determination of metabolic enzymes of the amnion cell: basis for a possible diagnostic tool? Proteomics 2004;4:1145–1158.

    Article  PubMed  CAS  Google Scholar 

  79. Gibbs RS, Blanco JD. Premature rupture of the membranes. Obstet Gynecol 1982;60:671–679.

    PubMed  CAS  Google Scholar 

  80. Parry S, Strauss JF, III. Premature rupture of the fetal membranes. N Engl J Med 1998;338:663–670.

    Article  PubMed  CAS  Google Scholar 

  81. Garite TJ. Management of premature rupture of membranes. Clin Perinatol 2001;28:837–847.

    Article  PubMed  CAS  Google Scholar 

  82. Atterbury JL, Groome LJ, Hoff C. Methods used to diagnose premature rupture of membranes: a national survey of 812 obstetric nurses. Obstet Gynecol 1998;92:384–389.

    Article  PubMed  CAS  Google Scholar 

  83. Thadikkaran L, Crettaz D, Siegenthaler MA, et al. The role of proteomics in the assessement of premature rupture of fetal membranes. Clin Chim Acta 2005;360:27–36.

    Article  PubMed  CAS  Google Scholar 

  84. Perrimon N, Bernfield M. Specificities of heparan sulphate proteoglycans in developmental processes. Nature 2000;404:725–728.

    Article  PubMed  CAS  Google Scholar 

  85. Groffen AJ, Buskens CA, vanKuppevelt TH, Veerkamp JH, Monnens LA, van denHeuvel LP. Primary structure and high expression of human agrin in basement membranes of adult lung and kidney. Eur J Biochem 1998;254:123–128.

    Article  PubMed  CAS  Google Scholar 

  86. Costell M, Gustafsson E, Aszodi A, et al. Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol 1999;147:1109–1122.

    Article  PubMed  CAS  Google Scholar 

  87. French MM, Smith SE, Akanbi K, et al. Expression of the heparan sulfate proteoglycan, perlecan, during mouse embryogenesis and perlecan chondrogenic activity in vitro. J Cell Biol 1999; 145:1103–1115.

    Article  PubMed  CAS  Google Scholar 

  88. Govindraj P, West L, Koob TJ, Neame P, Doege K, Hassell JR. Isolation and identification of the major heparan sulfate proteoglycans in the developing bovine rib growth plate. J Biol Chem 2002;277:19,461–19,469.

    Article  PubMed  CAS  Google Scholar 

  89. Rohde LH, Janatpore MJ, McMaster MT, et al. Complementary expression of HIP, a cell-surface heparan sulfate binding protein, and perlecan at the human fetal-maternal interface. Biol Reprod 1998;58:1075–1083.

    Article  PubMed  CAS  Google Scholar 

  90. Gonzalez EM, Mongiat M, Slater SJ, Baffa R, Iozzo RV. A novel interaction between perlecan protein core and progranulin: potential effects on tumor growth. JBiol Chem 2003;278:38, 113–38,116.

    Google Scholar 

  91. Mongiat M, Fu J, Oldershaw R, Greenhalgh R, Gown AM, Iozzo RV. Perlecan protein core interacts with extracellular matrix protein 1 (ECM1), a glycoprotein involved in bone formation and angiogenesis. J Biol Chem 2003;278: 17,491–17,499.

    Article  PubMed  CAS  Google Scholar 

  92. Mongiat M, Sweeney C, San Antonio JD, Fu J, Iozzo RV. Endorepellin, a novel inhibitor of angiogenesis dervied from the C terminus of perlecan. J Biol Chem 2003;278:4238–4249.

    Article  PubMed  CAS  Google Scholar 

  93. Bix G, Fu J, Gonzalez EM, et al. Endorepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through alpha2beta1 integrin. J Cell Biol 2004; 166:97–109.

    Article  PubMed  CAS  Google Scholar 

  94. Oda O, Shinzato T, Ohbayashi K, et al. Purification and characterization of perlecan fragment in urine of end-stage renal failure patients. Clin Chim Acta 1996;255:119–132.

    Article  PubMed  CAS  Google Scholar 

  95. Meikle PJ, Fietz MJ, Hopwood JJ. Diagnosis of lysosomal storage disorders: current techniques and future directions. Expert Rev Mol Diagn 2004;4:677–691.

    Article  PubMed  CAS  Google Scholar 

  96. Wilcox WR. Lysosomal storage disorders: the need for better pediatric recognition and comprehensive care. J Pediatr 2004;144:S3–S14.

    PubMed  Google Scholar 

  97. Tissot JD, Schneider P, Pelet B, Frei PC, Hochstrasser DF. Mono-oligoclonal production of immunoglobulins in a child with the Wiskott-Aldrich syndrome. Br J Haematol 1990;75:436–438.

    PubMed  CAS  Google Scholar 

  98. Tissot JD, Hohlfeld P, Hochstrasser DF, Tolsa JF, Calame A, Schneider P. Clonal imbalances of plasma/serum immunoglobulin production in infants. Electrophoresis 1993; 14:245–247.

    Article  PubMed  CAS  Google Scholar 

  99. Tissot JD, Hohlfeld P, Forestier F, et al. Plasma/serum protein patterns in human fetuses and infants: a study by high-resolution two-dimensional polyacrylamide gel electrophoresis. Appl Theor Electroph 1993;3:183–190.

    CAS  Google Scholar 

  100. Nathoo SA, Finlay TH. Fetal-specific forms of alpha 1-protease inhibitors in mouse plasma. Pediatr Res 1987;22:1–5.

    Article  PubMed  CAS  Google Scholar 

  101. Mizejewski GJ. Biological roles of alpha-fetoprotein during pregnancy and perinatal development. Exp Biol Med (Maywood) 2004;229:439–463.

    CAS  Google Scholar 

  102. Kumar S, O’Brien A. Recent developments in fetal medicine. BMJ 2004;328: 1002–1006.

    Article  PubMed  Google Scholar 

  103. Hoang VM, Foulk R, Clauser K, Burlingame A, Gibson BW, Fisher SJ. Functional proteomics: examining the effects of hypoxia on the cytotrophoblast protein repertoire. Biochemistry 2001;40:4077–4086.

    Article  PubMed  CAS  Google Scholar 

  104. Page NM, Kemp CF, Butlin DJ, Lowry PJ. Placental peptides as markers of gestational disease. Reproduction 2002; 123:487–495.

    Article  PubMed  CAS  Google Scholar 

  105. deGroot CJ, Steegers-Theunissen RP, Guzel C, Steegers EA, Luider TM. Peptide patterns of laser dissected human trophoblasts analyzed by matrix-assisted laser desorption/ionisation-time of flight mass spectrometry. Proteomics 2005;5: 597–607.

    Article  PubMed  CAS  Google Scholar 

  106. Rabilloud T, Kieffer S, Procaccio V, et al. Two-dimensional electrophoresis of human placental mitochondria and protein identification by mass spectrometry: toward a human mitochondrial proteome. Electrophoresis 1998; 19:1006–1014.

    Article  PubMed  CAS  Google Scholar 

  107. Bruneel A, Labas V, Mailloux A, et al. Proteomic study of human umbilical vein endothelial cells in culture. Proteomics 2003;3:714–723.

    Article  PubMed  CAS  Google Scholar 

  108. Scheurer SB, Rybak JN, Rosli C, Neri D, Elia G. Modulation of gene expression by hypoxia in human umbilical cord vein endothelial cells: a transcriptomic and proteomic study. Proteomics 2004;4:1737–1760.

    Article  PubMed  CAS  Google Scholar 

  109. Tao W, Wang M, Voss ED, et al. Comparative proteomic analysis of human CD34+ stem/progenitor cells and mature CD15+ myeloid cells. Stem Cells 2004;22:1003–1014.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Crettaz, D. et al. (2007). Proteomics of Amniotic Fluid. In: Thongboonkerd, V. (eds) Proteomics of Human Body Fluids. Humana Press. https://doi.org/10.1007/978-1-59745-432-2_19

Download citation

Publish with us

Policies and ethics