Skip to main content

Haploidentical Stem Cell Transplantation

  • Chapter
Hematopoietic Stem Cell Transplantation

Part of the book series: Contemporary Hematology ((CH))

  • 1335 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moretta A, Bottino C, Mingari MC, Biassoni R, Moretta L. What is a natural killer cell? Nat Immunol 2002;3:6–8.

    PubMed  CAS  Google Scholar 

  2. Moretta L, Moretta A. Unravelling natural killer cell function: triggering and inhibitory human NK receptors. Embo J 2004;23:255–9.

    PubMed  CAS  Google Scholar 

  3. Hamerman JA, Ogasawara K, Lanier LL. NK cells in innate immunity. Curr Opin Immunol 2005;17:29–35.

    PubMed  CAS  Google Scholar 

  4. Kiessling R, Klein E, Wigzell H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 1975;5:112–7.

    PubMed  CAS  Google Scholar 

  5. Biron CA, Brossay L. NK cells and NKT cells in innate defense against viral infections. Curr Opin Immunol 2001;13:458–64.

    PubMed  CAS  Google Scholar 

  6. Frey M, Packianathan NB, Fehniger TA, et al. Differential expression and function of L-selectin on CD56bright and CD56dim natural killer cell subsets. J Immunol 1998;161:400–8.

    PubMed  CAS  Google Scholar 

  7. Cooper MA, Fehniger TA, Turner SC, et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 2001;97:3146–51.

    PubMed  CAS  Google Scholar 

  8. Anasetti C, Amos D, Beatty PG, et al. Effect of HLA compatibility on engraft-ment of bone marrow transplants in patients with leukemia or lymphoma. N Engl J Med 1989;320:197–204.

    PubMed  CAS  Google Scholar 

  9. Kalwak K, Turkiewicz D, Ussowicz M, et al. Clinical value of the flow cyto-metric method for measuring lymphocyte subset activation: spontaneous activation of T-cell subpopulations is associated with acute GvHD. Transplant Proc 2003;35:1559–62.

    PubMed  CAS  Google Scholar 

  10. Lamb LS, Jr., Gee AP, Henslee-Downey PJ, et al. Phenotypic and functional reconstitution of peripheral blood lymphocytes following T cell-depleted bone marrow transplantation from partially mismatched related donors. Bone Marrow Transplant 1998;21:461–71.

    PubMed  Google Scholar 

  11. Karre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H-2-defi-cient lymphoma variants suggests alternative immune defense strategy. Nature 1986;319:675–8.

    PubMed  CAS  Google Scholar 

  12. Ljunggren HG, Karre K. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 1990;11:237–44.

    PubMed  CAS  Google Scholar 

  13. Moretta L, Ciccone E, Moretta A, Hoglund P, Ohlen C, Karre K. Allorecognition by NK cells: nonself or no self? Immunol Today 1992;13:300–6.

    PubMed  CAS  Google Scholar 

  14. Oberg L, Johansson S, Michaelsson J, et al. Loss or mismatch of MHC class I is sufficient to trigger NK cell-mediated rejection of resting lymphocytes in vivo - role of KARAP/DAP12-dependent and -independent pathways. Eur J Immunol 2004;34:1646–53.

    PubMed  Google Scholar 

  15. Ploegh HL. Viral strategies of immune evasion. Science 1998;280:248–53.

    PubMed  CAS  Google Scholar 

  16. Garrido F, Ruiz-Cabello F, Cabrera T, et al. Implications for immunosurveil-lance of altered HLA class I phenotypes in human tumours. Immunol Today 1997;18:89–95.

    PubMed  CAS  Google Scholar 

  17. Raulet DH, Vance RE, McMahon CW. Regulation of the natural killer cell receptor repertoire. Annu Rev Immunol 2001;19:291–330.

    PubMed  CAS  Google Scholar 

  18. Mandelboim O, Lieberman N, Lev M, et al. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 2001;409:1055–60.

    PubMed  CAS  Google Scholar 

  19. Bauer S, Groh V, Wu J, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 1999;285:727–9.

    PubMed  CAS  Google Scholar 

  20. Diefenbach A, Jensen ER, Jamieson AM, Raulet DH. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 2001;413:165–71.

    PubMed  CAS  Google Scholar 

  21. Lanier LL. NK cell recognition. Annu Rev Immunol 2005;23:225–74.

    PubMed  CAS  Google Scholar 

  22. Raulet D. Natural Killer Cells. In: Paul WE e, ed. Fundamental Immunology. Philadelphia:: Lippincott, Williams and Wilkins; 2003:365–91.

    Google Scholar 

  23. Uhrberg M, Valiante NM, Shum BP, et al. Human diversity in killer cell inhibitory receptor genes. Immunity 1997;7:753–63.

    PubMed  CAS  Google Scholar 

  24. Mandelboim O, Reyburn HT, Sheu EG, et al. The binding site of NK receptors on HLA-C molecules. Immunity 1997;6:341–50.

    PubMed  CAS  Google Scholar 

  25. Cudkowicz G. Genetic control of bone marrow graft rejection. I. Determinant-specific difference of reactivity in two pairs of inbred mouse strains. Journal of Experimental Medicine 1971;134:281–93.

    PubMed  CAS  Google Scholar 

  26. Cudkowicz G, Bennett M. Peculiar immunobiology of bone marrow allografts. I. Graft rejection by irradiated responder mice. Journal of Experimental Medicine 1971;134:83–102.

    PubMed  CAS  Google Scholar 

  27. Bennett M. Biology and genetics of hybrid resistance. Advances in Immunology 1987;41:333–445.

    PubMed  CAS  Google Scholar 

  28. Murphy WJ, Kumar V, Bennett M. Rejection of bone marrow allografts by mice with severe combined immune deficiency (SCID). Evidence that natural killer cells can mediate the specificity of marrow graft rejection. Journal of Experimental Medicine 1987;165:1212–7.

    PubMed  CAS  Google Scholar 

  29. Kumar V, George T, Yu YY, Liu J, Bennett M. Role of murine NK cells and their receptors in hybrid resistance. Current Opinion in Immunology 1997;9:52–6.

    PubMed  CAS  Google Scholar 

  30. Hoglund P, Ohlen C, Carbone E, et al. Recognition of beta 2-microglobulin-nega-tive (beta 2m-) T-cell blasts by natural killer cells from normal but not from beta 2m- mice: nonresponsiveness controlled by beta 2m- bone marrow in chimeric mice. Proceedings of the National Academy of Sciences of the United States of America 1991;88:10332–6.

    PubMed  CAS  Google Scholar 

  31. Bix M, Liao NS, Zijlstra M, Loring J, Jaenisch R, Raulet D. Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice. Nature 1991;349:329–31.

    PubMed  CAS  Google Scholar 

  32. Ruggeri L, Capanni M, Casucci M, et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 1999;94:333–9.

    PubMed  CAS  Google Scholar 

  33. Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002;295: 2097–100.

    PubMed  CAS  Google Scholar 

  34. Shlomchik WD, Couzens MS, Tang CB, et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 1999;285:412–5.

    PubMed  CAS  Google Scholar 

  35. Leung W, Iyengar R, Turner V, et al. Determinants of antileukemia effects of allogeneic NK cells. Journal of Immunology 2004;172:644–50.

    CAS  Google Scholar 

  36. Davies SM, Ruggieri L, DeFor T, et al. Evaluation of KIR ligand incompatibility in mismatched unrelated donor hematopoietic transplants. Killer immunoglobu-lin-like receptor. Blood 2002;100:3825–7.

    PubMed  CAS  Google Scholar 

  37. Giebel S, Locatelli F, Lamparelli T, et al. Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood 2003;102:814–9.

    PubMed  CAS  Google Scholar 

  38. Lowe EJ, Turner V, Handgretinger R, et al. T-cell alloreactivity dominates natural killer cell alloreactivity in minimally T-cell-depleted HLA-non-identical paediat-ric bone marrow transplantation. Br J Haematol 2003;123:323–6.

    PubMed  Google Scholar 

  39. Bornhauser M, Schwerdtfeger R, Martin H, Frank KH, Theuser C, Ehninger G. Role of KIR ligand incompatibility in hematopoietic stem cell transplantation using unrelated donors. Blood 2004;103:2860–1; author reply 2.

    PubMed  Google Scholar 

  40. Hsu KC, Keever-Taylor CA, Wilton A, et al. Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood 2005;105:4878–84.

    PubMed  CAS  Google Scholar 

  41. Passweg JR, Koehl U, Stern M, et al. Preemptive immunotherapy with highly pPurified CD56+/CD3- natural killer cells after haploidentical stem cell transplantation. A prospective phase II study in 2 centers. Blood 2006;108:411a.

    Google Scholar 

  42. Drobyski WR. Evolving strategies to address adverse transplant outcomes associated with T cell depletion. J Hematother Stem Cell Res 2000;9:327–37.

    PubMed  CAS  Google Scholar 

  43. Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S. Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute Graft-versus-Host Disease after allogeneic bone marrow transplantation. J Exp Med 2002;196:389–99.

    PubMed  CAS  Google Scholar 

  44. Edinger M, Hoffmann P, Ermann J, et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting Graft-versus-Host disease after bone marrow transplantation. Nat Med 2003;9:1144–50.

    PubMed  CAS  Google Scholar 

  45. Sykes M, Hoyles KA, Romick ML, Sachs DH. In vitro and in vivo analysis of bone marrow-derived CD3+, CD4−, CD8−, NK1.1+ cell lines. Cell Immunol 1990;129:478–93.

    PubMed  CAS  Google Scholar 

  46. Zeng D, Lewis D, Dejbakhsh-Jones S, et al. Bone marrow NK1.1(−) and NK1.1(+) T cells reciprocally regulate acute graft versus host disease. J Exp Med 1999;189:1073–81.

    PubMed  CAS  Google Scholar 

  47. Lan F, Zeng D, Higuchi M, Huie P, Higgins JP, Strober S. Predominance of NK1.1+TCR alpha beta+ or DX5+TCR alpha beta+ T cells in mice conditioned with fractionated lymphoid irradiation protects against Graft-versus-Host Disease: “natural suppressor” cells. J Immunol 2001;167:2087–96.

    PubMed  CAS  Google Scholar 

  48. Hanash AM, Levy RB. Donor CD4+CD25+ T cells promote engraftment and tolerance following MHC-mismatched hematopoietic cell transplantation. Blood 2005;105:1828–36.

    PubMed  CAS  Google Scholar 

  49. Trenado A, Charlotte F, Fisson S, et al. Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control Graft-versus-Host Disease while maintaining graft-versus-leukemia. J Clin Invest 2003;112:1688–96.

    PubMed  CAS  Google Scholar 

  50. Hoffmann P, Eder R, Kunz-Schughart LA, Andreesen R, Edinger M. Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood 2004;104:895–903.

    PubMed  CAS  Google Scholar 

  51. Clark FJ, Gregg R, Piper K, et al. Chronic Graft-versus-Host Disease is associated with increased numbers of peripheral blood CD4+CD25high regulatory T cells. Blood 2004;103:2410–6.

    PubMed  CAS  Google Scholar 

  52. Nguyen VH, Chang D, Shashidhar S, et al. CD4+CD25+ Regulatory T cells enhance immune reconstitution following allogeneic hematopoietic cell transplantation by protecting thymic and lymphoid compartments from Graft-versus-Host Disease damage without impacting T cell repertoire development. Blood 2006; 108:70a.

    Google Scholar 

  53. Lan F, Zeng D, Higuchi M, Higgins JP, Strober S. Host conditioning with total lymphoid irradiation and antithymocyte globulin prevents Graft-versus-Host Disease: the role of CD1-reactive natural killer T cells. Biol Blood Marrow Transplant 2003;9:355–63.

    PubMed  Google Scholar 

  54. Lowsky R, Takahashi T, Liu YP, et al. Protective conditioning for acute Graft-versus-Host Disease. N Engl J Med 2005;353:1321–31.

    PubMed  CAS  Google Scholar 

  55. Lowsky R, Stockerl-Goldstein K, Laport G, et al. Clinical outcomes following allogeneic hematopoietic cell transplantation (HCT) using nonmyeloablative host conditioning with total lymphoid irradiation and anti-thymocyte globulin confirm a low incidence of graft versus host disease (GVHD) and retained graft anti-tumor activity. Blood 2006;108.

    Google Scholar 

  56. Pillai AB, Dutt S, George TI, S.A. S. Interaction between host natural killer T cells and donor CD4+CD25+ treg cells protects against GVHD after TLI/ATS Host Conditioning and Bone Marrow Transplantation.. Blood 2006;108:445a.

    Google Scholar 

  57. Koc ON, Gerson SL, Cooper BW, et al. Rapid hematopoietic recovery after coin-fusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 2000;18:307–16.

    PubMed  CAS  Google Scholar 

  58. Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 2000;28:875–84.

    PubMed  CAS  Google Scholar 

  59. Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 1995;16:557–64.

    PubMed  CAS  Google Scholar 

  60. Lazarus HM, Koc ON, Devine SM, et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biology of Blood & Marrow Transplantation 2005;11:389–98.

    Google Scholar 

  61. Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002;99:3838–43.

    PubMed  CAS  Google Scholar 

  62. Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002;30:42–8.

    PubMed  Google Scholar 

  63. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 2003;75:389–97.

    PubMed  CAS  Google Scholar 

  64. Maitra B, Szekely E, Gjini K, et al. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant 2004;33:597–604.

    PubMed  CAS  Google Scholar 

  65. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005;105:1815–22.

    PubMed  CAS  Google Scholar 

  66. Lee ST, Jang JH, Cheong JW, et al. Treatment of high-risk acute myelogenous leukaemia by myeloablative chemoradiotherapy followed by co-infusion of T cell-depleted haematopoietic stem cells and culture-expanded marrow mesenchymal stem cells from a related donor with one fully mismatched human leucocyte antigen haplotype. Br J Haematol 2002;118:1128–31.

    PubMed  Google Scholar 

  67. Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute Graft-ver-sus-Host Disease with third party haploidentical mesenchymal stem cells. Lancet 2004;363:1439–41.

    PubMed  Google Scholar 

  68. Le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of severe acute Graft-versus-Host Disease. Blood 2006;108:753a.

    Google Scholar 

  69. Murdoch C, Finn A. Chemokine receptors and their role in inflammation and infectious diseases. Blood 2000;95:3032–43.

    PubMed  CAS  Google Scholar 

  70. Harris M. Monoclonal antibodies as therapeutic agents for cancer. Lancet Oncol 2004;5:292–302.

    PubMed  CAS  Google Scholar 

  71. Wasil T, Rai KR, Mehrotra B. The role of monoclonal antibodies in stem cell transplantation. Semin Oncol 2004;31:83–9.

    PubMed  CAS  Google Scholar 

  72. Dale DC. Colony-stimulating factors for the management of neutropenia in cancer patients. Drugs 2002;62 Suppl 1:1–15.

    PubMed  CAS  Google Scholar 

  73. Joshi SS, Lynch JC, Pavletic SZ, et al. Decreased immune functions of blood cells following mobilization with granulocyte colony-stimulating factor: association with donor characteristics. Blood 2001;98:1963–70.

    PubMed  CAS  Google Scholar 

  74. Morris ES, MacDonald KP, Rowe V, et al. Donor treatment with pegylated G-CSF augments the generation of IL-10-producing regulatory T cells and promotes transplantation tolerance. Blood 2004;103:3573–81.

    PubMed  CAS  Google Scholar 

  75. Porrata LF, Inwards DJ, Lacy MQ, Markovic SN. Immunomodulation of early engrafted natural killer cells with interleukin-2 and interferon-alpha in autologous stem cell transplantation. Bone Marrow Transplant 2001;28:673–80.

    PubMed  CAS  Google Scholar 

  76. Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003;3:133–46.

    PubMed  CAS  Google Scholar 

  77. Fehniger TA, Caligiuri MA. Interleukin 15: biology and relevance to human disease. Blood 2001;97:14–32.

    PubMed  CAS  Google Scholar 

  78. Alpdogan O, Eng JM, Muriglan SJ, et al. Interleukin-15 enhances immune recon-stitution after allogeneic bone marrow transplantation. Blood 2005;105:865–73.

    PubMed  CAS  Google Scholar 

  79. Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H. Interleukin-18 regulates both Th1 and Th2 responses. Annu Rev Immunol 2001;19:423–74.

    PubMed  CAS  Google Scholar 

  80. Carson WE, Dierksheide JE, Jabbour S, et al. Coadministration of interleukin-18 and interleukin-12 induces a fatal inflammatory response in mice: critical role of natural killer cell interferon-gamma production and STAT-mediated signal trans-duction. Blood 2000;96:1465–73.

    PubMed  CAS  Google Scholar 

  81. Nakamura S, Otani T, Ijiri Y, Motoda R, Kurimoto M, Orita K. IFN-gamma-dependent and -independent mechanisms in adverse effects caused by concomitant administration of IL-18 and IL-12. J Immunol 2000;164:3330–6.

    PubMed  CAS  Google Scholar 

  82. Alpdogan O, Schmaltz C, Muriglan SJ, et al. Administration of interleukin-7 after allogeneic bone marrow transplantation improves immune reconstitution without aggravating Graft-versus-Host Disease. Blood 2001;98:2256–65.

    PubMed  CAS  Google Scholar 

  83. Sinha ML, Fry TJ, Fowler DH, Miller G, Mackall CL. Interleukin 7 worsens Graft-versus-Host Disease. Blood 2002;100:2642–9.

    PubMed  CAS  Google Scholar 

  84. Min D, Taylor PA, Panoskaltsis-Mortari A, et al. Protection from thymic epithelial cell injury by keratinocyte growth factor: a new approach to improve thymic and peripheral T-cell reconstitution after bone marrow transplantation. Blood 2002;99: 4592–600.

    PubMed  CAS  Google Scholar 

  85. Bruner RJ, Farag SS. Monoclonal antibodies for the prevention and treatment of Graft-versus-Host Disease. Semin Oncol 2003;30:509–19.

    PubMed  CAS  Google Scholar 

  86. Guinan EC, Boussiotis VA, Neuberg D, et al. Transplantation of anergic histoin-compatible bone marrow allografts. N Engl J Med 1999;340:1704–14.

    PubMed  CAS  Google Scholar 

  87. Sasaki M, Hasegawa H, Kohno M, Inoue A, Ito MR, Fujita S. Antagonist of secondary lymphoid-tissue chemokine (CCR ligand 21) prevents the development of chronic Graft-versus-Host Disease in mice. J Immunol 2003;170:588–96.

    PubMed  CAS  Google Scholar 

  88. Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 1992;257:238–41.

    PubMed  CAS  Google Scholar 

  89. Walter EA, Greenberg PD, Gilbert MJ, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 1995;333:1038–44.

    PubMed  CAS  Google Scholar 

  90. Peggs KS, Verfuerth S, Pizzey A, et al. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 2003;362:1375–7.

    PubMed  Google Scholar 

  91. Hebart H, Daginik S, Stevanovic S, et al. Sensitive detection of human cytomega-lovirus peptide-specific cytotoxic T-lymphocyte responses by interferon-gamma-enzyme-linked immunospot assay and flow cytometry in healthy individuals and in patients after allogeneic stem cell transplantation. Blood 2002;99:3830–7.

    PubMed  CAS  Google Scholar 

  92. Papadopoulos EB, Ladanyi M, Emanuel D, et al. Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med 1994;330:1185–91.

    PubMed  CAS  Google Scholar 

  93. Rooney CM, Smith CA, Ng CY, et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 1998;92:1549–55.

    PubMed  CAS  Google Scholar 

  94. Riddell SR, Greenberg PD. T cell therapy of human CMV and EBV infection in immunocompromised hosts. Rev Med Virol 1997;7:181–92.

    PubMed  Google Scholar 

  95. Heslop HE, Ng CY, Li C, et al. Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med 1996;2:551–5.

    PubMed  CAS  Google Scholar 

  96. Falkenburg JH, Wafelman AR, Joosten P, et al. Complete remission of accelerated phase chronic myeloid leukemia by treatment with leukemia-reactive cytotoxic T lymphocytes. Blood 1999;94:1201–8.

    PubMed  CAS  Google Scholar 

  97. Molldrem JJ, Lee PP, Kant S, et al. Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells. J Clin Invest 2003;111:639–47.

    PubMed  CAS  Google Scholar 

  98. Bleakley M, Riddell SR. Molecules and mechanisms of the graft-versus-leukae-mia effect. Nat Rev Cancer 2004;4:371–80.

    PubMed  CAS  Google Scholar 

  99. Powles RL, Morgenstern GR, Kay HE, et al. Mismatched family donors for bone-marrow transplantation as treatment for acute leukaemia. Lancet 1983;1:612–5.

    PubMed  CAS  Google Scholar 

  100. Beatty PG, Clift RA, Mickelson EM, et al. Marrow transplantation from related donors other than HLA-identical siblings. N Engl J Med 1985;313:765–71.

    PubMed  CAS  Google Scholar 

  101. Szydlo R, Goldman JM, Klein JP, et al. Results of allogeneic bone marrow transplants for leukemia using donors other than HLA-identical siblings. J Clin Oncol 1997;15:1767–77.

    PubMed  CAS  Google Scholar 

  102. Truitt RL, Rimm AA, Saltzstein EC, Rose WC, Bortin MM. Graft-versus-leuke-mia for AKR spontaneous leukemia-lymphoma. Transplant Proc 1976;8:569–74.

    PubMed  CAS  Google Scholar 

  103. Giralt S, Estey E, Albitar M, et al. Engraftment of allogeneic hematopoietic progenitor cells with purine analog-containing chemotherapy: harnessing graft-versus-leukemia without myeloablative therapy. Blood 1997;89:4531–6.

    PubMed  CAS  Google Scholar 

  104. Spitzer TR, McAfee S, Sackstein R, et al. Intentional induction of mixed chimer-ism and achievement of antitumor responses after nonmyeloablative conditioning therapy and HLA-matched donor bone marrow transplantation for refractory hematologic malignancies. Biol Blood Marrow Transplant 2000;6:309–20.

    PubMed  CAS  Google Scholar 

  105. McSweeney PA, Niederwieser D, Shizuru JA, et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood 2001;97:3390–400.

    PubMed  CAS  Google Scholar 

  106. Kawai T, Poncelet A, Sachs DH, et al. Long-term outcome and alloantibody production in a non-myeloablative regimen for induction of renal allograft tolerance. Transplantation 1999;68:1767–75.

    PubMed  CAS  Google Scholar 

  107. Spitzer TR, Delmonico F, Tolkoff-Rubin N, et al. Combined histocompatibility leukocyte antigen-matched donor bone marrow and renal transplantation for multiple myeloma with end stage renal disease: the induction of allograft tolerance through mixed lymphohematopoietic chimerism. Transplantation 1999;68:480–4.

    PubMed  CAS  Google Scholar 

  108. Bach FH, Albertini RJ, Joo P, Anderson JL, Bortin MM. Bone-marrow transplantation in a patient with the Wiskott-Aldrich syndrome. Lancet 1968;2:1364–6.

    PubMed  CAS  Google Scholar 

  109. Good RA, Gatti RA, Hong R, Meuwissen HJ. Graft treatment of immunological deficiency. Lancet 1969;1:1162.

    PubMed  CAS  Google Scholar 

  110. Friedrich W, Goldmann SF, Vetter U, et al. Immunoreconstitution in severe combined immunodeficiency after transplantation of HLA-haploidentical, T-cell-depleted bone marrow. Lancet 1984;1:761–4.

    PubMed  CAS  Google Scholar 

  111. Buckley RH, Schiff SE, Schiff RI, et al. Haploidentical bone marrow stem cell transplantation in human severe combined immunodeficiency. Semin Hematol 1993;30:92–101; discussion 2–4.

    PubMed  CAS  Google Scholar 

  112. Halberg FE, Wara WM, Weaver KE, et al. Total body irradiation and bone marrow transplantation for immunodeficiency disorders in young children. Radiother Oncol 1990;18 Suppl 1:114–7.

    PubMed  Google Scholar 

  113. Lenarsky C, Parkman R. Bone marrow transplantation for the treatment of immune deficiency states. Bone Marrow Transplant 1990;6:361–9.

    PubMed  CAS  Google Scholar 

  114. Drobyski WR, Klein J, Flomenberg N, et al. Superior survival associated with transplantation of matched unrelated versus one-antigen-mismatched unrelated or highly human leukocyte antigen-disparate haploidentical family donor marrow grafts for the treatment of hematologic malignancies: establishing a treatment algorithm for recipients of alternative donor grafts. Blood 2002;99:806–14.

    PubMed  CAS  Google Scholar 

  115. Rayfield LS, Brent L. The effect of T lymphocyte depletion on neonatal tolerance induction, graft-vs.-host disease and cellular chimerism. European Journal of Immunology 1984;14:308–13.

    PubMed  CAS  Google Scholar 

  116. Mitsuyasu RT, Champlin RE, Gale RP, et al. Treatment of donor bone marrow with monoclonal anti-T-cell antibody and complement for the prevention of Graft-versus-Host Disease. A prospective, randomized, double-blind trial. Annals of Internal Medicine 1986;105:20–6.

    PubMed  CAS  Google Scholar 

  117. Mehta J, Singhal S, Gee AP, et al. Bone marrow transplantation from partially HLA-mismatched family donors for acute leukemia: single-center experience of 201 patients. Bone Marrow Transplant 2004;33:389–96.

    PubMed  CAS  Google Scholar 

  118. Aversa F, Tabilio A, Velardi A, et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med 1998;339:1186–93.

    PubMed  CAS  Google Scholar 

  119. Reisner Y, Martelli MF. Tolerance induction by ‘megadose’ transplants of CD34+ stem cells: a new option for leukemia patients without an HLA-matched donor. Curr Opin Immunol 2000;12:536–41.

    PubMed  CAS  Google Scholar 

  120. Reisner Y, Gur H, Reich-Zeliger S, Martelli MF, Bachar-Lustig E. Hematopoietic stem cell transplantation across major genetic barriers: tolerance induction by megadose CD34 cells and other veto cells. Ann N Y Acad Sci 2005;1044:70–83.

    PubMed  CAS  Google Scholar 

  121. Lang P, Schumm M, Greil J, et al. A comparison between three graft manipulation methods for haploidentical stem cell transplantation in pediatric patients: preliminary results of a pilot study. Klinische Padiatrie 2005;217:334–8.

    PubMed  CAS  Google Scholar 

  122. Lang P, Klingebiel T, Bader P, et al. Transplantation of highly purified peripheral-blood CD34+ progenitor cells from related and unrelated donors in children with nonmalignant diseases. Bone Marrow Transplantation 2004;33:25–32.

    PubMed  CAS  Google Scholar 

  123. Lang P, Bader P, Schumm M, et al. Transplantation of a combination of CD133+ and CD34+ selected progenitor cells from alternative donors. British Journal of Haematology 2004;124:72–9.

    PubMed  Google Scholar 

  124. Peters C, Matthes-Martin S, Fritsch G, et al. Transplantation of highly purified peripheral blood CD34+ cells from HLA-mismatched parental donors in 14 children: evaluation of early monitoring of engraftment. Leukemia 1999;13:2070–8.

    PubMed  CAS  Google Scholar 

  125. Marks DI, Khattry N, Cummins M, et al. Haploidentical stem cell transplantation for children with acute leukaemia. British Journal of Haematology 2006;134: 196–201.

    PubMed  Google Scholar 

  126. Waller EK, Giver CR, Rosenthal H, et al. Facilitating T-cell immune reconstitution after haploidentical transplantation in adults. Blood Cells Mol Dis 2004;33:233–7.

    PubMed  CAS  Google Scholar 

  127. Walker I, Shehata N, Cantin G, et al. Canadian multicenter pilot trial of haploiden-tical donor transplantation. Blood Cells Molecules & Diseases 2004;33:222–6.

    Google Scholar 

  128. Baron F, Storb R. Current roles for allogeneic hematopoietic cell transplantation following nonmyeloablative or reduced-intensity conditioning. Clin Adv Hematol Oncol 2005;3:799–819.

    PubMed  Google Scholar 

  129. Couriel DR, Saliba RM, Giralt S, et al. Acute and chronic Graft-versus-Host Disease after ablative and nonmyeloablative conditioning for allogeneic hemat-opoietic transplantation. Biol Blood Marrow Transplant 2004;10:178–85.

    PubMed  Google Scholar 

  130. Pelot MR, Pearson DA, Swenson K, et al. Lymphohematopoietic graft-vs.-host reactions can be induced without graft-vs.-host disease in murine mixed chimeras established with a cyclophosphamide-based nonmyeloablative conditioning regimen. Biol Blood Marrow Transplant 1999;5:133–43.

    PubMed  CAS  Google Scholar 

  131. Mapara MY, Kim YM, Wang SP, Bronson R, Sachs DH, Sykes M. Donor lymphocyte infusions mediate superior graft-versus-leukemia effects in mixed compared to fully allogeneic chimeras: a critical role for host antigen-presenting cells. Blood 2002;100:1903–9.

    PubMed  CAS  Google Scholar 

  132. Mapara MY, Kim YM, Marx J, Sykes M. Donor lymphocyte infusion-mediated graft-versus-leukemia effects in mixed chimeras established with a nonmyelo-ablative conditioning regimen: extinction of graft-versus-leukemia effects after conversion to full donor chimerism. Transplantation 2003;76:297–305.

    PubMed  Google Scholar 

  133. Sykes M, Preffer F, McAfee S, et al. Mixed lymphohaemopoietic chimerism and graft-versus-lymphoma effects after non-myeloablative therapy and HLA-mis-matched bone-marrow transplantation. Lancet 1999;353:1755–9.

    PubMed  CAS  Google Scholar 

  134. Spitzer TR, McAfee SL, Dey BR, et al. Nonmyeloablative haploidentical stem-cell transplantation using anti-CD2 monoclonal antibody (MEDI-507)-based conditioning for refractory hematologic malignancies. Transplantation 2003;75: 1748–51.

    PubMed  CAS  Google Scholar 

  135. Dey BR, McAfee S, Colby C, et al. Anti-tumour response despite loss of donor chimaerism in patients treated with non-myeloablative conditioning and alloge-neic stem cell transplantation. Br J Haematol 2005;128:351–9.

    PubMed  CAS  Google Scholar 

  136. Rubio MT, Kim YM, Sachs T, Mapara M, Zhao G, Sykes M. Antitumor effect of donor marrow graft rejection induced by recipient leukocyte infusions in mixed chimeras prepared with nonmyeloablative conditioning: critical role for recipient-derived IFN-gamma. Blood 2003;102:2300–7.

    PubMed  CAS  Google Scholar 

  137. Rubio MT, Saito TI, Kattleman K, Zhao G, Buchli J, Sykes M. Mechanisms of the antitumor responses and host-versus-graft reactions induced by recipient leukocyte infusions in mixed chimeras prepared with nonmyeloablative conditioning: a critical role for recipient CD4+ T cells and recipient leukocyte infusion-derived IFN-gamma-producing CD8+ T cells. J Immunol 2005;175:665–76.

    PubMed  CAS  Google Scholar 

  138. O'Donnell PV, Luznik L, Jones RJ, et al. Nonmyeloablative bone marrow transplantation from partially HLA-mismatched related donors using posttransplanta-tion cyclophosphamide. Biol Blood Marrow Transplant 2002;8:377–86.

    PubMed  Google Scholar 

  139. Levy MY, Symons HJ, Fuchs EJ. Clinical tumor responses despite graft rejection after nonmyeloablative conditioning and transplantation of partially HLA-mis-matched (haploidentical) bone marrow. Blood 2005;106:812a.

    Google Scholar 

  140. Cavazzana-Calvo M, Fromont C, Le Deist F, et al. Specific elimination of alloreactive T cells by an anti-interleukin-2 receptor B chain-specific immunotoxin. Transplantation 1990;50:1–7.

    PubMed  CAS  Google Scholar 

  141. Mavroudis DA, Jiang YZ, Hensel N, et al. Specific depletion of alloreactivity against haplotype mismatched related individuals by a recombinant immunotoxin: a new approach to Graft-versus-Host Disease prophylaxis in haploidentical bone marrow transplantation. Bone Marrow Transplant 1996;17:793–9.

    PubMed  CAS  Google Scholar 

  142. Fehse B, Frerk O, Goldmann M, Bulduk M, Zander AR. Efficient depletion of alloreactive donor T lymphocytes based on expression of two activation-induced antigens (CD25 and CD69). Br J Haematol 2000;109:644–51.

    PubMed  CAS  Google Scholar 

  143. Koh MB, Prentice HG, Lowdell MW. Selective removal of alloreactive cells from haematopoietic stem cell grafts: graft engineering for GVHD prophylaxis. Bone Marrow Transplant 1999;23:1071–9.

    PubMed  CAS  Google Scholar 

  144. van Dijk AM, Kessler FL, Stadhouders-Keet SA, Verdonck LF, de Gast GC, Otten HG. Selective depletion of major and minor histocompatibility antigen reactive T cells: towards prevention of acute Graft-versus-Host Disease. Br J Haematol 1999;107:169–75.

    PubMed  Google Scholar 

  145. Garderet L, Snell V, Przepiorka D, et al. Effective depletion of alloreactive lymphocytes from peripheral blood mononuclear cell preparations. Transplantation 1999;67:124–30.

    PubMed  CAS  Google Scholar 

  146. Godfrey WR, Krampf MR, Taylor PA, Blazar BR. Ex vivo depletion of alloreac-tive cells based on CFSE dye dilution, activation antigen selection, and dendritic cell stimulation. Blood 2004;103:1158–65.

    PubMed  CAS  Google Scholar 

  147. Martins SL, St John LS, Champlin RE, et al. Functional assessment and specific depletion of alloreactive human T cells using flow cytometry. Blood 2004;104:3429– 36.

    PubMed  CAS  Google Scholar 

  148. Chen BJ, Cui X, Liu C, Chao NJ. Prevention of Graft-versus-Host Disease while preserving graft-versus-leukemia effect after selective depletion of host-reactive T cells by photodynamic cell purging process. Blood 2002;99:3083–8.

    PubMed  CAS  Google Scholar 

  149. Guimond M, Balassy A, Barrette M, Brochu S, Perreault C, Roy DC. P-glycoprotein targeting: a unique strategy to selectively eliminate immunoreactive T cells. Blood 2002;100:375–82.

    PubMed  CAS  Google Scholar 

  150. Hartwig UF, Robbers M, Wickenhauser C, Huber C. Murine acute Graft-versus-Host Disease can be prevented by depletion of alloreactive T lymphocytes using activation-induced cell death. Blood 2002;99:3041–9.

    PubMed  CAS  Google Scholar 

  151. Montagna D, Yvon E, Calcaterra V, et al. Depletion of alloreactive T cells by a specific anti-interleukin-2 receptor p55 chain immunotoxin does not impair in vitro antileukemia and antiviral activity. Blood 1999;93:3550–7.

    PubMed  CAS  Google Scholar 

  152. Michalek J, Collins RH, Durrani HP, et al. Definitive separation of graft-versus-leukemia- and graft-versus-host-specific CD4+ T cells by virtue of their receptor beta loci sequences. Proc Natl Acad Sci U S A 2003;100:1180–4.

    PubMed  CAS  Google Scholar 

  153. Hsieh MH, Varadi G, Flomenberg N, Korngold R. Leucyl-leucine methyl ester-treated haploidentical donor lymphocyte infusions can mediate graft- versus-leukemia activity with minimal Graft-versus-Host Disease risk. Biol Blood Marrow Transplant 2002;8:303–15.

    PubMed  CAS  Google Scholar 

  154. Andre-Schmutz I, Le Deist F, Hacein-Bey-Abina S, et al. Immune reconstitution without Graft-versus-Host Disease after haemopoietic stem-cell transplantation: a phase 1/2 study. Lancet 2002;360:130–7.

    PubMed  Google Scholar 

  155. Solomon SR, Mielke S, Savani BN, et al. Selective depletion of alloreactive donor lymphocytes: a novel method to reduce the severity of Graft-versus-Host Disease in older patients undergoing matched sibling donor stem cell transplantation. Blood 2005;106:1123–9.

    PubMed  CAS  Google Scholar 

  156. Amrolia PJ, Muccioli-Casadei G, Huls H, et al. Adoptive immunotherapy with allodepleted donor T-cells improves immune reconstitution after haploidentical stem cell transplantation. Blood 2006;108:1797–808.

    PubMed  CAS  Google Scholar 

  157. Roy D, Cohen S, Busque L, et al. Phase I clinical study of donor lymphocyte infusion depleted of alloreactive T cells after haplotype mismatched myeloablative stem cell transplantation to limit infections and malignant relapse without causing GVHD. BLlood 2006;108:309a.

    Google Scholar 

  158. Mielke S, Rezvani K, Solomon SR, et al. Selective cepletion of CD25+ host-reactive donor lymphocytes from allografts preserves a CD25− CD4+foxp3+ fraction of T cells and thereby provides a source for efficient reconstitution of regulatory T cells and additional GVHD control. Blood 2006;118:308a.

    Google Scholar 

  159. Lu DP, Dong L, Wu T, et al. Conditioning including antithymocyte globulin followed by unmanipulated HLA-mismatched/haploidentical blood and marrow transplantation can achieve comparable outcomes with HLA-identical sibling transplantation. Blood 2006;107:3065–73.

    PubMed  CAS  Google Scholar 

  160. Ogawa H, Ikegame K, Yoshihara S, et al. Unmanipulated HLA 2–3 antigen-mismatched (haploidentical) stem cell transplantation using nonmyeloablative conditioning.. Biol Blood Marrow Transplant 2006;12:1073–84.

    PubMed  Google Scholar 

  161. Burlingham WJ, Grailer AP, Heisey DM, et al. The effect of tolerance to nonin-herited maternal HLA antigens on the survival of renal transplants from sibling donors. N Engl J Med 1998;339:1657–64.

    PubMed  CAS  Google Scholar 

  162. van Rood JJ, Loberiza FR, Jr., Zhang MJ, et al. Effect of tolerance to noninher-ited maternal antigens on the occurrence of Graft-versus-Host Disease after bone marrow transplantation from a parent or an HLA-haploidentical sibling. Blood 2002;99:1572–7.

    PubMed  Google Scholar 

  163. Ichinohe T, Uchiyama T, Shimazaki C, et al. Feasibility of HLA-haploidentical hematopoietic stem cell transplantation between noninherited maternal antigen (NIMA)-mismatched family members linked with long-term fetomaternal micro-chimerism. Blood 2004;104:3821–8.

    PubMed  CAS  Google Scholar 

  164. Narimatsu H, Morishita Y, Saito S, et al. Conditioning regimen of melphalan, fludarabine and total body irradiation in unmanipulated HLA haploidentical stem cell transplantation based on feto-maternal tolerance. Intern Med 2004;43:1063–7.

    PubMed  Google Scholar 

  165. Obama K, Takemoto Y, Takatsuka Y, Utsunomiya A. Successful reduced-intensity HLA-haploidentical stem cell transplantation based on the concept of feto-mater-nal tolerance for an elderly patient with myelodysplastic syndrome. Bone Marrow Transplant 2004;33:253.

    PubMed  CAS  Google Scholar 

  166. Obama K, Utsunomiya A, Takatsuka Y, Takemoto Y. Reduced-intensity non-T-cell depleted HLA-haploidentical stem cell transplantation for older patients based on the concept of feto-maternal tolerance. Bone Marrow Transplant 2004;34:897–9.

    PubMed  CAS  Google Scholar 

  167. Collins RH, Jr., Shpilberg O, Drobyski WR, et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation.[see comment]. Journal of Clinical Oncology 1997;15:433–44.

    PubMed  Google Scholar 

  168. Porter D, Levine JE. Graft-versus-host disease and graft-versus-leukemia after donor leukocyte infusion. Seminars in Hematology 2006;43:53–61.

    PubMed  Google Scholar 

  169. Porter DL, Roth MS, McGarigle C, Ferrara JL, Antin JH. Induction of Graft-versus-Host Disease as immunotherapy for relapsed chronic myeloid leukemia. New England Journal of Medicine 1994;330:100–6.

    PubMed  CAS  Google Scholar 

  170. Guglielmi C, Arcese W, Dazzi F, et al. Donor lymphocyte infusion for relapsed chronic myelogenous leukemia: prognostic relevance of the initial cell dose. Blood 2002;100:397–405.

    PubMed  CAS  Google Scholar 

  171. Lewalle P, Triffet A, Delforge A, et al. Donor lymphocyte infusions in adult haploidentical transplant: a dose finding study. Bone Marrow Transplantation 2003;31:39–44.

    PubMed  CAS  Google Scholar 

  172. Sharabi Y, Sachs DH. Mixed chimerism and permanent specific transplantation tolerance induced by a nonlethal preparative regimen. Journal of Experimental Medicine 1989;169:493–502.

    PubMed  CAS  Google Scholar 

  173. Kawai T, Cosimi AB, Colvin RB, et al. Mixed allogeneic chimerism and renal allograft tolerance in cynomolgus monkeys. Transplantation 1995;59:256–62.

    PubMed  CAS  Google Scholar 

  174. Fudaba Y, Spitzer TR, Shaffer J, et al. Myeloma responses and tolerance following combined kidney and nonmyeloablative marrow transplantation: in vivo and in vitro analyses.[see comment]. American Journal of Transplantation 2006;6:2121–33.

    PubMed  CAS  Google Scholar 

  175. Fernandez MN, Regidor C, Cabrera R, et al. Unrelated umbilical cord blood transplants in adults: early recovery of neutrophils by supportive co-transplantation of a low number of highly purified peripheral blood CD34+ cells from an HLA-haploidentical donor. Experimental Hematology 2003;31:535–44.

    PubMed  Google Scholar 

  176. Magro E, Gonzalo-Daganzo R, Martin-Donaire T, et al. Single unit cord blood transplant supported by third party highly purified mobilized hematopoietic stem cells: immune reconstitution studies. Blood 2006;108:96a.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bimalangshu, R.D., Spitzer, T.R. (2008). Haploidentical Stem Cell Transplantation. In: Soiffer, R.J. (eds) Hematopoietic Stem Cell Transplantation. Contemporary Hematology. Humana Press. https://doi.org/10.1007/978-1-59745-438-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-438-4_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-05-3

  • Online ISBN: 978-1-59745-438-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics