Skip to main content

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 921 Accesses

Abstract

Herpesviruses are large, enveloped, double-stranded DNA viruses, which are characterized by their ability to cause mild acute infections followed by lifelong latency in the host and periodic episodes of reactivation. The herpesviridae family is subdivided, based on their biologic properties, into the α-, β-, and γ-herpesvirinae and can be found in a wide variety of species (1).Of the eight human herpesviruses (HHV) identified to date, only two have been clearly shown to be oncogenic: Epstein-Barr virus (EBV, or HHV-4) and human herpesvirus 8 (HHV-8; also termed Kaposi’s sarcoma-associated herpesvirus, KSHV). Both viruses belong to the γ-herpesvirus subfamily, but are further subdivided as a lymphocryptovirus (EBV) or a rhadinovirus (HHV-8). They can infect cells of lymphoid origin, particularly B-cells, but also have a tropism for other cell types, such as epithelial cells for EBV and endothelial cells for HHV-8. Infection of susceptible cells with either of these herpesviruses results in the triggering of both a humoral and cellular immune response, which includes the expression of numerous cellular cytokines. Interestingly, in addition to inducing host cytokines, both EBV and HHV-8 encode homologues to cellular cytokines and their expression is important in both modulation of the host’s immune response to infection as well as viral-induced pathogenesis. In this chapter we will review cytokine responses, both virally encoded and cellular, that are produced as a result of EBV or HHV-8 infection focusing on those identified as having a potential role in carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McGeoch DJ. Molecular evolution of the gamma-Herpesvirinae. Philos Trans R Soc Lond B Biol Sci 2001; 356(1408):421–435.

    CAS  PubMed  Google Scholar 

  2. Henle W, Henle G. Epidemiologic aspects of Epstein-Barr virus (EBV)-associated diseases. Ann N Y Acad Sci 1980; 354:326–331.

    CAS  PubMed  Google Scholar 

  3. Straus SE, Cohen JI, Tosato G, Meier J. NIH conference. Epstein-Barr virus infections: biology, pathogenesis, and management. Ann Intern Med 1993; 118(1):45–58.

    CAS  PubMed  Google Scholar 

  4. Straus SE, Cohen JI, Tosato G, Meier J. NIH conference. Epstein-Barr virus infections: biology, pathogenesis, and management. Ann Intern Med 1993; 118(l):45–58.

    CAS  PubMed  Google Scholar 

  5. Ohga S, Nomura A, Takada H, Hara T. Immunological aspects of Epstein-Barr virus infection. Crit Rev Oncol Hematol 2002; 44(3):203–215.

    PubMed  Google Scholar 

  6. Thompson MP, Kurzrock R. Epstein-Barr virus and cancer. Clin Cancer Res 2004; 10(3):803–821.

    CAS  PubMed  Google Scholar 

  7. Young LS, Dawson CW, Eliopoulos AG. The expression and function of Epstein-Barr virus encoded latent genes. Mol Pathol 2000; 53(5):238–247.

    CAS  PubMed  Google Scholar 

  8. Kitagawa N, Goto M, Kurozumi K, et al. Epstein-Barr virus-encoded poly(A)(-) RNA supports Burkitt’s lymphoma growth through interleukin-10 induction. EMBO J 2000; 19(24):6742–6750.

    CAS  PubMed  Google Scholar 

  9. Itoh K, Hirohata S. The role of IL-10 in human B cell activation, proliferation, and differentiation. J Immunol 1995; 154(9):4341–4350.

    CAS  PubMed  Google Scholar 

  10. Nanbo A, Inoue K, Adachi-Takasawa K, Takada K. Epstein-Barr virus RNA confers resistance to interferon-alpha-induced apoptosis in Burkitt’s lymphoma. EMBO J 2002; 21(5):954–965.

    CAS  PubMed  Google Scholar 

  11. Sharma V. Current perspectives on cytokines for anti-retroviral therapy in AIDS related B-cell lymphomas. Curr Drug Targets Infect Disord 2003; 3(2):137–149.

    CAS  PubMed  Google Scholar 

  12. Beck A, Pazolt D, Grabenbauer GG, et al. Expression of cytokine and chemokine genes in Epstein-Barr virus-associated nasopharyngeal carcinoma: comparison with Hodgkin’s disease. J Pathol 2001; 194(2):145–151.

    CAS  PubMed  Google Scholar 

  13. Ohshima K, Karube K, Hamasaki M, et al. Differential chemokine, chemokine receptor and cytokine expression in Epstein-Barr virus-associated lymphoproliferative diseases. Leuk Lymphoma 2003; 44(8):1367–1378.

    CAS  PubMed  Google Scholar 

  14. Herling M, Rassidakis GZ, Medeiros LJ, et al. Expression of Epstein-Barr virus latent membrane protein-1 in Hodgkin and Reed-Sternberg cells of classical Hodgkin’s lymphoma: associations with presenting features, serum interleukin 10 levels, and clinical outcome. Clin Cancer Res 2003; 9(6): 2114–2120.

    CAS  PubMed  Google Scholar 

  15. Herbst H, Foss HD, Samol J, et al. Frequent expression of interleukin-10 by Epstein-Barr virusharboring tumor cells of Hodgkin’s disease. Blood 1996; 87(7):2918–2929.

    CAS  PubMed  Google Scholar 

  16. Kapp U, Yeh WC, Patterson B, et al. Interleukin 13 is secreted by and stimulates the growth of Hodgkin and Reed-Sternberg cells. J Exp Med 1999; 189(12):1939–1946.

    CAS  PubMed  Google Scholar 

  17. Ohshima K, Akaiwa M, Umeshita R, Suzumiya J, Izuhara K, Kikuchi M. Interleukin-13 and interleukin-13 receptor in Hodgkin’s disease: possible autocrine mechanism and involvement in fibrosis. Histopathology 2001; 38(4):368–375.

    CAS  PubMed  Google Scholar 

  18. Rowe DT, Webber S, Schauer EM, Reyes J, Green M. Epstein-Barr virus load monitoring: its role in the prevention and management of post-transplant lymphoproliferative disease. Transplant Infectious Disease 2001; 3(2):79–87.

    CAS  PubMed  Google Scholar 

  19. Tsai DE, Hardy CL, Tomaszewski JE, et al. Reduction in immunosuppression as initial therapy for posttransplant lymphoproliferative disorder: analysis of prognostic variables and long-term follow-up of 42 adult patients. Transplantation 2001; 71(8):1076–1088.

    CAS  PubMed  Google Scholar 

  20. Nalesnik MA, Zeevi A, Randhawa PS, et al. Cytokine mRNA profiles in Epstein-Barr virus-associated post-transplant lymphoproliferative disorders. Clin Transplant 1999; 13 (1 Pt l):39–44.

    CAS  PubMed  Google Scholar 

  21. Beatty PR, Krams SM, Martinez OM. Involvement of IL-10 in the autonomous growth of EBV-transformed B cell lines. J Immunol 1997; 158(9):4045–4051.

    CAS  PubMed  Google Scholar 

  22. Baiocchi RA, Ward JS, Carrodeguas L, et al. GM-CSF and IL-2 induce specific cellular immunity and provide protection against Epstein-Barr virus lymphoproliferative disorder. J Clin Invest 2001; 108(6):887–894.

    CAS  PubMed  Google Scholar 

  23. Birkeland SA, Hamilton-Dutoit S, Bendtzen K. Long-term follow-up of kidney transplant patients with posttransplant lymphoproliferative disorder: duration of posttransplant lymphoproliferative disorder-induced operational graft tolerance, interleukin-18 course, and results of retransplantation. Transplantation 2003; 76(1):153–158.

    CAS  PubMed  Google Scholar 

  24. Yao L, Setsuda J, Sgadari C, Cherney B, Tosato G. Interleukin-18 expression induced by Epstein-Barr virus-infected cells. J Leukoc Biol 2001; 69(5):779–784.

    CAS  PubMed  Google Scholar 

  25. Sgadari C, Angiolillo AL, Cherney BW, et al. Interferon-inducible protein-10 identified as a mediator of tumor necrosis in vivo. Proc Natl Acad Sci U S A 1996; 93(24): 13791–13796.

    CAS  PubMed  Google Scholar 

  26. Sgadari C, Farber JM, Angiolillo AL, et al. Mig, the monokine induced by interferon-gamma, promotes tumor necrosis in vivo. Blood 1997; 89(8):2635–2643.

    CAS  PubMed  Google Scholar 

  27. Vanbuskirk AM, Malik V, Xia D, Pelletier RP. A gene polymorphism associated with posttransplant lymphoproliferative disorder. Transplant Proc 2001; 33(1–2):1834.

    CAS  PubMed  Google Scholar 

  28. Budiani DR, Hutahaean S, Haryana SM, Soesatyo MH, Sosroseno W. Interleukin-10 levels in Epstein-Barr virus-associated nasopharyngeal carcinoma. J Microbiol Immunol Infect 2002; 35(4): 265–268.

    PubMed  Google Scholar 

  29. Huang YT, Sheen TS, Chen CL, et al. Profile of cytokine expression in nasopharyngeal carcinomas: a distinct expression of interleukin 1 in tumor and CD4+ T cells. Cancer Res 1999; 59(7): 1599–1605.

    CAS  PubMed  Google Scholar 

  30. Tang KF, Tan SY, Chan SH, et al. A distinct expression of CC chemokines by macrophages in nasopharyngeal carcinoma: implication for the intense tumor infiltration by T lymphocytes and macrophages. Hum Pathol 2001; 32(1):42–49.

    CAS  PubMed  Google Scholar 

  31. Yoshizaki T, Horikawa T, Qing-Chun R, et al. Induction of interleukin-8 by Epstein-Barr virus latent membrane protein-1 and its correlation to angiogenesis in nasopharyngeal carcinoma. Clin Cancer Res 2001; 7(7):1946–1951.

    CAS  PubMed  Google Scholar 

  32. Moore KW, de Waal MR, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19:683–765.

    CAS  PubMed  Google Scholar 

  33. Moore KW, Vieira P, Fiorentino DF, Trounstine ML, Khan TA, Mosmann TR. Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein-Barr virus gene BCRF1. Science 1990; 248:1230.

    CAS  PubMed  Google Scholar 

  34. Zdanov A, Schalk-Hihi C, Menon S, Moore KW, Wlodawer A. Crystal structure of Epstein-Barr virus protein BCRF1, a homolog of cellular interleukin-10. J Mol Biol 1997; 268(2):460–467.

    CAS  PubMed  Google Scholar 

  35. Liu Y, de Waal MR, Briere F, et al. The EBV IL-10 homologue is a selective agonist with impaired binding to the IL-10 receptor. J Immunol 1997; 158(2):604–613.

    CAS  PubMed  Google Scholar 

  36. Ding Y, Qin L, Kotenko SV, Pestka S, Bromberg JS. A single amino acid determines the immunostimulatory activity of interleukin 10. J Exp Med 2000; 191(2):213–224.

    CAS  PubMed  Google Scholar 

  37. Miyazaki I, Cheung RK, Dosch HM. Viral interleukin 10 is critical for the induction of B cell growth transformation by Epstein-Barr virus. J Exp Med 1993; 178(2):439–447.

    CAS  PubMed  Google Scholar 

  38. Stuart AD, Stewart JP, Arrand JR, Mackett M. The Epstein-Barr virus encoded cytokine viral interleukin-10 enhances transformation of human B lymphocytes. Oncogene 1995; 11(9): 1711–1719.

    CAS  PubMed  Google Scholar 

  39. Suzuki T, Tahara H, Narula S, Moore KW, Robbins PD, Lotze MT. Viral interleukin 10 (IL-10), the human herpes virus 4 cellular IL-10 homologue, induces local anergy to allogeneic and syngeneic tumors. J Exp Med 1995; 182(2):477–486.

    CAS  PubMed  Google Scholar 

  40. Nepomuceno RR, Balatoni CE, Natkunam Y, Snow AL, Krams SM, Martinez OM. Rapamycin inhibits the interleukin 10 signal transduction pathway and the growth of Epstein Barr virus B-cell lymphomas. Cancer Res 2003; 63(15):4472–4480.

    CAS  PubMed  Google Scholar 

  41. Khatri VP, Caligiuri MA. A review of the association between interleukin-10 and human B-cell malignancies. Cancer Immunol Immunother 1998; 46(5):239–244.

    CAS  PubMed  Google Scholar 

  42. Cervenak L, Morbidelli L, Donati D, et al. Abolished angiogenicity and tumorigenicity of Burkitt lymphoma by interleukin-10. Blood 2000; 96(7):2568–2573.

    CAS  PubMed  Google Scholar 

  43. Chang Y, Cesarman E, Pessin MS, et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 1994; 266:1865–1869.

    CAS  PubMed  Google Scholar 

  44. Moore PS, Chang Y. Kaposi’s sarcoma-associated herpesvirus. In: Knipe DM, Howley PM, editors. Fields Virology. Philadelphia: Lippincott Williams and Wilkins, 2001: 2803–2833.

    Google Scholar 

  45. Wang QJ, Jenkins FJ, Jacobson LP, et al. Primary human herpesvirus 8 infection generates a broadly specific CD8(+) T-cell response to viral lytic cycle proteins. Blood 2001; 97(8):2366–2373.

    CAS  PubMed  Google Scholar 

  46. Andreoni M, Sannati L, Nicastri E, et al. Primary human herpesvirus 8 infection in immunocompetent children. JAMA 2002; 287(10): 1295–1300.

    PubMed  Google Scholar 

  47. Blackbourn DJ, Lennette ET, Ambroziak J, Mourich DV, Levy JA. Human herpesvirus 8 detection in nasal secretions and saliva. J Infect Dis 1998; 177(1):213–216.

    CAS  PubMed  Google Scholar 

  48. Martin JN. Diagnosis and epidemiology of human herpesvirus 8 infection. Semin Hematol 2003; 40(2): 133–142.

    PubMed  Google Scholar 

  49. Pauk J, Huang ML, Brodie SJ, et al. Mucosal shedding of human herpesvirus 8 in men. N Engl J Med 2000; 343(19):1369–1377.

    CAS  PubMed  Google Scholar 

  50. Howard MR, Whitby D, Bahadur G, et al. Detection of human herpesvirus 8 DNA in semen from HlV-infected individuals but not healthy semen donors. AIDS 1997; 11(2):F15–F19.

    CAS  PubMed  Google Scholar 

  51. Huang YQ, Li JJ, Poiesz BJ, Kaplan MH, Friedman-Kien AE. Detection of the herpesvirus-like DNA sequences in matched specimens of semen and blood from patients with AIDS-related Kaposi’s sarcoma by polymerase chain reaction in situ hybridization. Am J Pathol 1997; 150(l):147–153.

    CAS  PubMed  Google Scholar 

  52. Viviano E, Vitale F, Ajello F, et al. Human herpesvirus type 8 DNA sequences in biological samples of HIV-positive and negative individuals in Sicily. AIDS 1997; 11(5):607–612.

    CAS  PubMed  Google Scholar 

  53. Pellett PE, Wright DJ, Engels EA, et al. Multicenter comparison of serologic assays and estimation of human herpesvirus 8 seroprevalence among US blood donors. Transfusion 2003; 43:1260–1268.

    CAS  PubMed  Google Scholar 

  54. DeSantis SM, Pau CP, Archibald LK, et al. Demographic and immune correlates of human herpesvirus 8 seropositivity in Malawi, Africa. Int J Infect Dis 2002; 6(4):266–271.

    Google Scholar 

  55. Hladik W, Dollard SC, Downing RG, et al. Kaposi’s sarcoma in Uganda: risk factors for human herpesvirus 8 infection among blood donors. J Acquir Immune Defic Syndr 2003; 33(2):206–210.

    PubMed  Google Scholar 

  56. Olsen SJ, Chang Y, Moore PS, Biggar RJ, Melbye M. Increasing Kaposi’s sarcoma-associated herpesvirus seroprevalence with age in a highly Kaposi’s sarcoma endemic region, Zambia in 1985. AIDS 1998; 12(14):1921–1925.

    CAS  PubMed  Google Scholar 

  57. Jenkins FJ, Hoffman LJ, Liegey-Dougall A. Reactivation of and primary infection with human herpesvirus 8 among solid-organ transplant recipients. J Infect Dis 2002; 185:1238–1243.

    PubMed  Google Scholar 

  58. Hudnall SD, Chen T, Rady P, Tyring S, Allison P. Human herpesvirus 8 seroprevalence and viral load in healthy adult blood donors. Transfusion 2003; 43(l):85–90.

    PubMed  Google Scholar 

  59. Ablashi D, Chatlynne L, Cooper H, et al. Seroprevalence of human herpesvirus-8 (HHV-8) in countries of Southeast Asia compared to the USA, the Caribbean and Africa. Br J Cancer 1999; 81(5):893–897.

    CAS  PubMed  Google Scholar 

  60. Chatlynne LG, Ablashi DV. Seroepidemiology of Kaposi’s sarcoma-associated herpesvirus (KSHV). Semin Cancer Biol 1999; 9(3): 175–185.

    CAS  PubMed  Google Scholar 

  61. Greenblatt RM, Jacobson LP, Levine AM, et al. Human herpesvirus 8 infection and Kaposi’s sarcoma among human immunodeficiency virus-infected and-uninfected women. J Infect Dis 2001; 183(7): 1130–1134.

    CAS  PubMed  Google Scholar 

  62. Hoffman LJ, Bunker CH, Pellett PE, et al. Elevated seroprevalence of human herpesvirus 8 among men with prostate cancer. J Infect Dis 2004; 189(1): 15–20.

    PubMed  Google Scholar 

  63. Bourboulia D, Whitby D, Boshoff C, et al. Serologic evidence for mother-to-child transmission of Kaposi sarcomaassociated herpesvirus infection. JAMA 1998; 280(l):31,32.

    CAS  PubMed  Google Scholar 

  64. Aboulafia D, Miles SA, Saks SR, Mitsuyasu RT. Intravenous recombinant tumor necrosis factor in the treatment of AIDS-related Kaposi’s sarcoma. J Acquir Immune Defic Syndr 1989; 2(l):54–58.

    CAS  PubMed  Google Scholar 

  65. Krigel RL, Odajnyk CM, Laubenstein LJ, et al. Therapeutic trial of interferon-gamma in patients with epidemic Kaposi’s sarcoma. J Biol Response Mod 1985; 4(4):358–364.

    CAS  PubMed  Google Scholar 

  66. Oxholm A, Oxholm P, Permin H, Bendtzen K. Epidermal tumour necrosis factor alpha and interleukin 6-like activities in AIDS-related Kaposi’s sarcoma. An immunohistological study. APMIS 1989; 97(6):533–538.

    CAS  PubMed  Google Scholar 

  67. Miles SA, Rezai AR, Salazar-Gonzalez JF, et al. AIDS Kaposi sarcoma-derived cells produce and respond to interleukin 6. Proc Natl Acad Sci U S A 1990; 87(11):4068–4072.

    CAS  PubMed  Google Scholar 

  68. Sturzl M, Brandstetter H, Zietz C, et al. Identification of interleukin-1 and platelet-derived growth factor-B as major mitogens for the spindle cells of Kaposi’s sarcoma: a combined in vitro and in vivo analysis. Oncogene 1995; 10(10):2007–2016.

    CAS  PubMed  Google Scholar 

  69. Sirianni MC, Vincenzi L, Fiorelli V, et al. gamma-Interferon production in peripheral blood mononuclear cells and tumor infiltrating lymphocytes from Kaposi’s sarcoma patients: correlation with the presence of human herpesvirus-8 in peripheral blood mononuclear cells and lesional macrophages. Blood 1998; 91(3):968–976.

    CAS  PubMed  Google Scholar 

  70. Fiorelli V, Gendelman R, Sirianni MC, et al. gamma-Interferon produced by CD8+ T cells infiltrating Kaposi’s sarcoma induces spindle cells with angiogenic phenotype and synergy with human immunodeficiency virus-1 Tat protein: an immune response to human herpesvirus-8 infection? Blood 1998; 91(3):956–967.

    CAS  PubMed  Google Scholar 

  71. Monini P, Colombini S, Sturzl M, et al. Reactivation and persistence of human herpesvirus-8 infection in B cells and monocytes by Th-1 cytokines increased in Kaposi’s sarcoma. Blood 1999; 93(12):4044–4058.

    CAS  PubMed  Google Scholar 

  72. Monini P, Carlini F, Sturzl M, et al. Alpha interferon inhibits human herpesvirus 8 (HHV-8) reactivation in primary effusion lymphoma cells and reduces HHV-8 load in cultured peripheral blood mononuclear cells. J Virol 1999; 73(5):4029–4041.

    CAS  PubMed  Google Scholar 

  73. Koster R, Blatt LM, Streubert M, et al. Consensus-interferon and platelet-derived growth factor adversely regulate proliferation and migration of Kaposi’s sarcoma cells by control of c-myc expression. Am J Pathol 1996; 149(6): 1871–1885.

    CAS  PubMed  Google Scholar 

  74. Real FX, Oettgen HF, Krown SE. Kaposi’s sarcoma and the acquired immunodeficiency syndrome: treatment with high and low doses of recombinant leukocyte A interferon. J Clin Oncol 1986; 4(4): 544–551.

    CAS  PubMed  Google Scholar 

  75. Tur E, Brenner S, Michalevicz R. Low dose recombinant interferon alfa treatment for classic Kaposi’s sarcoma. Arch Dermatol 1993; 129(10):1297–1300.

    CAS  PubMed  Google Scholar 

  76. Ensoli B, Sturzl M, Monini P. Cytokine-mediated growth promotion of Kaposi’s sarcoma and primary effusion lymphoma. Semin Cancer Biol 2000; 10(5):367–381.

    CAS  PubMed  Google Scholar 

  77. Jones KD, Aoki Y, Chang Y, Moore PS, Yarchoan R, Tosato G. Involvement of interleukin-10 (IL-10) and viral IL-6 in the spontaneous growth of Kaposi’s sarcoma herpesvirus-associated infected primary effusion lymphoma cells. Blood 1999; 94(8):2871–2879.

    CAS  PubMed  Google Scholar 

  78. Aoki Y, Yarchoan R, Braun J, Iwamoto A, Tosato G. Viral and cellular cytokines in AIDS-related malignant lymphomatous effusions. Blood 2000; 96(4): 1599–1601.

    CAS  PubMed  Google Scholar 

  79. Drexler HG, Meyer C, Gaidano G, Carbone A. Constitutive cytokine production by primary effusion (body cavitybased) lymphoma-derived cell lines. Leukemia 1999; 13(4):634–640.

    CAS  PubMed  Google Scholar 

  80. Asou H, Said JW, Yang R, et al. Mechanisms of growth control of Kaposi’s sarcoma-associated herpes virus-associated primary effusion lymphoma cells. Blood 1998; 91(7):2475–2481.

    CAS  PubMed  Google Scholar 

  81. Chang J, Renne R, Dittmer D, Ganem D. Inflammatory cytokines and the reactivation of Kaposi’s sarcomaassociated herpesvirus lytic replication. Virology 2000; 266(l):17–25.

    CAS  PubMed  Google Scholar 

  82. Blackbourn DJ, Fujimura S, Kutzkey T, Levy JA. Induction of human herpesvirus-8 gene expression by recombinant interferon gamma. AIDS 2000; 14(1):98, 99.

    CAS  PubMed  Google Scholar 

  83. Chang J, Renne R, Dittmer D, Ganem D. Inflammatory cytokines and the reactivation of Kaposi’s sarcoma-associated herpesvirus lytic replication. Virology 2000 Jan 5 266;17–25.

    Google Scholar 

  84. Toomey NL, Deyev VV, Wood C, et al. Induction of a TRAIL-mediated suicide program by interferon alpha in primary effusion lymphoma. Oncogene 2001; 20(48):7029–7040.

    CAS  PubMed  Google Scholar 

  85. Oksenhendler E, Carcelain G, Aoki Y, et al. High levels of human herpesvirus 8 viral load, human interleukin-6, interleukin-10, and C reactive protein correlate with exacerbation of multicentric castleman disease in HIV-infected patients. Blood 2000; 96(6):2069–2073.

    CAS  PubMed  Google Scholar 

  86. Staskus KA, Sun R, Miller G, et al. Cellular tropism and viral interleukin-6 expression distinguish human herpesvirus 8 involvement in Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. J Virol 1999; 73(5):4181–4187.

    CAS  PubMed  Google Scholar 

  87. Aoki Y, Tosato G, Fonville TW, Pittaluga S. Serum viral interleukin-6 in AIDS-related multicentric Castleman disease. Blood 2001; 97(8):2526, 2527.

    CAS  PubMed  Google Scholar 

  88. Beck JT, Hsu SM, Wijdenes J, et al. Brief report: alleviation of systemic manifestations of Castleman’s disease by monoclonal anti-interleukin-6 antibody. N Engl J Med 1994; 330(9):602–605.

    CAS  PubMed  Google Scholar 

  89. Nishimoto N, Sasai M, Shima Y, et al. Improvement in Castleman’s disease by humanized antiinterleukin-6 receptor antibody therapy. Blood 2000; 95(1):56–61.

    CAS  PubMed  Google Scholar 

  90. Corbellino M, Bestetti G, Scalamogna C, et al. Long-term remission of Kaposi sarcoma-associated herpesvirus-related multicentric Castleman disease with anti-CD20 monoclonal antibody therapy. Blood 2001; 98(12):3473–3475.

    CAS  PubMed  Google Scholar 

  91. Nord JA, Karter D. Low dose interferon-alpha therapy for HIV-associated multicentric Castleman’s disease. Int J STD AIDS 2003; 14(1):61, 62.

    CAS  PubMed  Google Scholar 

  92. Andres E, Maloisel F. Interferon-alpha as first-line therapy for treatment of multicentric Castleman’s disease. Ann Oncol 2000; 11(12):1613, 1614.

    CAS  PubMed  Google Scholar 

  93. Kumari P, Schechter GP, Saini N, Benator DA. Successful treatment of human immunodeficiency virus-related Castleman’s disease with interferon-alpha. Clin Infect Dis 2000; 31(2):602–604.

    CAS  PubMed  Google Scholar 

  94. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003; 374(Pt l):1–20.

    CAS  PubMed  Google Scholar 

  95. Neipel F, Albrecht JC, Ensser A, et al. Human herpesvirus 8 encodes a homolog of interleukin-6. J Virol 1997; 71(l):839–842.

    CAS  PubMed  Google Scholar 

  96. Burger R, Neipel F, Fleckenstein B, et al. Human herpesvirus type 8 interleukin-6 homologue is functionally active on human myeloma cells. Blood 1998; 91(6):1858–1863.

    CAS  PubMed  Google Scholar 

  97. Osborne J, Moore PS, Chang Y. KSHV-encoded viral IL-6 activates multiple human IL-6 signaling pathways. Hum Immunol 1999; 60(10):921–927.

    CAS  PubMed  Google Scholar 

  98. Wan X, Wang H, Nicholas J. Human herpesvirus 8 interleukin-6 (vIL-6) signals through gpl30 but has structural and receptor-binding properties distinct from those of human IL-6. J Virol 1999; 73(10):8268–8278.

    CAS  PubMed  Google Scholar 

  99. Chatterjee M, Osborne J, Bestetti G, Chang Y, Moore PS. Viral IL-6-induced cell proliferation and immune evasion of interferon activity. Science 2002; 298(5597):1432–1435.

    CAS  PubMed  Google Scholar 

  100. Aoki Y, Jaffe ES, Chang Y, et al. Angiogenesis and hematopoiesis induced by Kaposi’s sarcomaassociated herpesvirus-encoded interleukin-6. Blood 1999; 93(12):4034–4043.

    CAS  PubMed  Google Scholar 

  101. Cannon JS, Nicholas J, Orenstein JM, et al. Heterogeneity of viral IL-6 expression in HHV-8-associated diseases. J Infect Dis 1999; 180(3):824–828.

    CAS  PubMed  Google Scholar 

  102. Yang TY, Chen SC, Leach MW, et al. Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi’s sarcoma. J Exp Med 2000; 191(3):445–454.

    CAS  PubMed  Google Scholar 

  103. Bais C, Santomasso B, Coso O, et al. G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 1998; 391(6662):86–89.

    CAS  PubMed  Google Scholar 

  104. Poison AG, Wang D, DeRisi J, Ganem D. Modulation of host gene expression by the constitutively active G protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus. Cancer Res 2002; 62(15):4525–4530.

    Google Scholar 

  105. Sodhi A, Montaner S, Patel V, et al. The Kaposi’s sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogenactivated protein kinase and p38 pathways acting on hypoxia-inducible factor lalpha. Cancer Res 2000; 60(17):4873–4880.

    CAS  PubMed  Google Scholar 

  106. Shepard LW, Yang M, Xie P, et al. Constitutive activation of NF-kappa B and secretion of interleukin-8 induced by the G protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus involve G alpha(13) and RhoA. J Biol Chem 2001; 276(49):45979–45987.

    CAS  PubMed  Google Scholar 

  107. Schwarz M, Murphy PM. Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor constitutively activates NF-kappa B and induces proinflammatory cytokine and chemokine production via a C-terminal signaling determinant. J Immunol 2001; 167(l):505–513.

    CAS  PubMed  Google Scholar 

  108. Arvanitakis L, Geras-Raaka E, Varma A, Gershengorn MC, Cesarman E. Human herpesvirus KSHV encodes a constitutively active G-proteincoupled receptor linked to cell proliferation. Nature 1997; 385(6614):347–350.

    CAS  PubMed  Google Scholar 

  109. Pati S, Cavrois M, Guo HG, et al. Activation of NF-kappaB by the human herpesvirus 8 chemokine receptor ORF74: evidence for a paracrine model of Kaposi’s sarcoma pathogenesis. J Virol 2001; 75(18):8660–8673.

    CAS  PubMed  Google Scholar 

  110. Gao SJ, Boshoff C, Jayachandra S, Weiss RA, Chang Y, Moore PS. KSHV ORF K9 (vIRF) is an oncogene which inhibits the interferon signaling pathway. Oncogene 1997; 15(16): 1979–1985.

    CAS  PubMed  Google Scholar 

  111. Li M, Lee H, Guo J, et al. Kaposi’s sarcoma-associated herpesvirus viral interferon regulatory factor. J Virol 1998; 72(7):5433–5440.

    CAS  PubMed  Google Scholar 

  112. Zimring JC, Goodbourn S, Offermann MK. Human herpesvirus 8 encodes an interferon regulatory factor (IRF) homolog that represses IRF-1-mediated transcription. J Virol 1998; 72(l):701–707.

    CAS  PubMed  Google Scholar 

  113. Flowers CC, Flowers SP, Nabel GJ. Kaposi’s sarcoma-associated herpesvirus viral interferon regulatory factor confers resistance to the antiproliferative effect of interferonalpha. Mol Med 1998; 4(6):402–412.

    CAS  PubMed  Google Scholar 

  114. Seo T, Lee D, Shim YS, et al. Viral interferon regulatory factor 1 of Kaposi’s sarcoma-associated herpesvirus interacts with a cell death regulator, GRIM 19, and inhibits interferen/retinoic acid-induced cell death. J Virol 2002; 76(17):8797–8807.

    CAS  PubMed  Google Scholar 

  115. Kirchhoff S, Sebens T, Baumann S, et al. Viral IFN-regulatory factors inhibit activation-induced cell death via two positive regulatory IFN-regulatory factor 1-dependent domains in the CD95 ligand promoter. J Immunol 2002; 168(3):1226–1234.

    CAS  PubMed  Google Scholar 

  116. Burysek L, Yeow WS, Pitha PM. Unique properties of a second human herpesvirus 8-encoded interferon regulatory factor (vIRF-2). J Hum Virol 1999; 2(l):19–32.

    CAS  PubMed  Google Scholar 

  117. Burysek L, Pitha PM. Latently expressed human herpesvirus 8-encoded interferon regulatory factor 2 inhibits double-stranded RNA-activated protein kinase. J Virol 2001; 75(5):2345–2352.

    CAS  PubMed  Google Scholar 

  118. Lubyova B, Kellum MJ, Frisancho AJ, Pitha PM. Kaposi’s sarcoma-associated herpesvirus-encoded vIRF-3 stimulates the transcriptional activity of cellular IRF-3 and IRF-7. J Biol Chem 2004; 279(9):7643–7654.

    CAS  PubMed  Google Scholar 

  119. Lubyova B, Pitha PM. Characterization of a novel human herpesvirus 8-encoded protein, vIRF-3, that shows homology to viral and cellular interferon regulatory factors. J Virol 2000; 74(17): 8194–8201.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Jenkins, F.J., Hensler, H.R. (2007). Herpesviruses, Cytokines, and Cancer. In: Caligiuri, M.A., Lotze, M.T. (eds) Cytokines in the Genesis and Treatment of Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-455-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-455-1_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-820-2

  • Online ISBN: 978-1-59745-455-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics