Skip to main content

Peptides and Peptidomimetics as Cancer Therapy Sensitizing Agents

  • Chapter
Sensitization of Cancer Cells for Chemo/Immuno/Radio-therapy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Los M, Wesselborg S, Schulze-Osthoff K. The role of caspases in development, immunity, and apoptotic signal transduction: lessons from knockout mice. Immunity 1999, 10:629–639.

    Article  CAS  PubMed  Google Scholar 

  2. Philchenkov A, Zavelevich M, Kroczak TJ, et al. Caspases and cancer: mechanisms of inactivation and new treatment modalities. Exp Oncol 2004, 26(2):82–97.

    CAS  PubMed  Google Scholar 

  3. Wang X. The expanding role of mitochondria in apoptosis. Genes Dev 2001, 15(22):2922–2933.

    CAS  PubMed  Google Scholar 

  4. Chu E, DeVita VT. Principles of medical oncology. In: DeVita VT, Hellman S, Rosenberg SA (eds.). Cancer: principles and practice of oncology, 7th ed. Philadelphia: Lippincott Williams & Wilkins, 2005.

    Google Scholar 

  5. Skipper HE. Kinetics of mammary tumor cell growth and implications for therapy. Cancer 1971, 28(6):1479–1499.

    Article  CAS  PubMed  Google Scholar 

  6. Ling V. Multidrug resistance: molecular mechanisms and clinical relevance. Cancer Chemother Pharmacol 1997, 40(Suppl):S3–8.

    Article  CAS  PubMed  Google Scholar 

  7. Shadidi M, Sioud M. Selective targeting of cancer cells using synthetic peptides. Drug Resist Updat 2003, 6(6):363–371.

    Article  CAS  PubMed  Google Scholar 

  8. Cao Y. Endogenous angiogenesis inhibitors and their therapeutic implications. Int J Biochem Cell Biol 2001, 33(4):357–369.

    Article  CAS  PubMed  Google Scholar 

  9. Rosenblatt MI, Azar DT. Anti-angiogenic therapy: prospects for treatment of ocular tumors. Semin Ophthalmol 2006, 21(3):151–160.

    Article  PubMed  Google Scholar 

  10. Gibaldi M. Regulating angiogenesis: a new therapeutic strategy. J Clin Pharmacol 1998, 38(10):898–903.

    CAS  PubMed  Google Scholar 

  11. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971, 285(21):1182–1186.

    Article  CAS  PubMed  Google Scholar 

  12. Pandya NM, Dhalla NS, Santani DD. Angiogenesis— a new target for future therapy. Vascul Pharmacol 2006, 44(5):265–274.

    Article  CAS  PubMed  Google Scholar 

  13. Bikfalvi A, Bicknell R. Recent advances in angio-genesis, anti-angiogenesis and vascular targeting. Trends Pharmacol Sci 2002, 23(12):576–582.

    Article  CAS  PubMed  Google Scholar 

  14. Gille J. Antiangiogenic cancer therapies get their act together: current developments and future prospects of growth factor- and growth factor receptor-targeted approaches. Exp Dermatol 2006, 15(3):175–186.

    Article  CAS  PubMed  Google Scholar 

  15. Sivakumar B, Harry LE, Paleolog EM. Modulating angiogenesis: more vs less. JAMA 2004, 292(8): 972–977.

    Article  CAS  PubMed  Google Scholar 

  16. O'Reilly MS. The combination of antiangiogenic therapy with other modalities. Cancer J 2002, 8(Suppl 1): S89–99.

    PubMed  Google Scholar 

  17. Nyberg P, Xie L, Kalluri R. Endogenous inhibitors of angiogenesis. Cancer Res 2005, 65(10):3967–3979.

    Article  CAS  PubMed  Google Scholar 

  18. Folkman J. Endogenous angiogenesis inhibitors. Apmis 2004, 112(7–8):496–507.

    Article  CAS  PubMed  Google Scholar 

  19. Folkman J. Antiangiogenesis in cancer therapy— endostatin and its mechanisms of action. Exp Cell Res 2006, 312(5):594–607.

    Article  CAS  PubMed  Google Scholar 

  20. Rege TA, Fears CY, Gladson CL. Endogenous inhibitors of angiogenesis in malignant gliomas: nature's antiangiogenic therapy. Neuro-oncol 2005, 7(2):106–121.

    Article  CAS  PubMed  Google Scholar 

  21. Hajitou A, Grignet C, Devy L, et al. The antitumoral effect of endostatin and angiostatin is associated with a down-regulation of vascular endothelial growth factor expression in tumor cells. FASEB J 2002, 16(13):1802–1804.

    CAS  PubMed  Google Scholar 

  22. Folkman J. Antiangiogenesis in cancer therapy— endostatin and its mechanisms of action. Exp Cell Res 2006, 312(5):594–607.

    Article  CAS  PubMed  Google Scholar 

  23. Brooks PC, Stromblad S, Sanders LC, et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 1996, 85(5):683–693.

    Article  CAS  PubMed  Google Scholar 

  24. Bikfalvi A. Recent developments in the inhibition of angiogenesis: examples from studies on platelet factor-4 and the VEGF/VEGFR system. Biochem Pharmacol 2004, 68(6):1017–1021.

    Article  CAS  PubMed  Google Scholar 

  25. Zaichuk TA, Shroff EH, Emmanuel R, et al. Nuclear factor of activated T cells balances angiogen-esis activation and inhibition. J Exp Med 2004, 199(11):1513–1522.

    Article  CAS  PubMed  Google Scholar 

  26. Staton CA, Lewis CE. Angiogenesis inhibitors found within the haemostasis pathway. J Cell Mol Med 2005, 9(2):286–302.

    Article  CAS  PubMed  Google Scholar 

  27. Volpert OV, Zaichuk T, Zhou W, et al. Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and pigment epithelium-derived factor. Nat Med 2002, 8(4):349–357.

    Article  CAS  PubMed  Google Scholar 

  28. Armstrong LC, Bjorkblom B, Hankenson KD, et al. Thrombospondin 2 inhibits microvascular endothe-lial cell proliferation by a caspase-independent mechanism. Mol Biol Cell 2002, 13(6):1893–1905.

    Article  CAS  PubMed  Google Scholar 

  29. Dunehoo AL, Anderson M, Majumdar S, et al. Cell adhesion molecules for targeted drug delivery. J Pharm Sci 2006, 95(9):1856–1872.

    Article  CAS  PubMed  Google Scholar 

  30. Blaschuk OW, Rowlands TM. Plasma membrane components of adherens junctions (Review). Mol Membr Biol 2002, 19(2):75–80.

    Article  CAS  PubMed  Google Scholar 

  31. Erez N, Zamir E, Gour BJ, et al. Induction of apopto-sis in cultured endothelial cells by a cadherin antagonist peptide: involvement of fibroblast growth factor receptor-mediated signalling. Exp Cell Res 2004, 294(2):366–378.

    Article  CAS  PubMed  Google Scholar 

  32. Mendoza FJ, Espino PS, Cann KL, et al. Anti-tumor chemotherapy utilizing peptide-based approaches-apoptotic pathways, kinases, and proteasome as targets. Arch Immunol Ther Exp 2005, 53(1):47–60.

    CAS  Google Scholar 

  33. Blaschuk OW, Rowlands TM. Cadherins as modulators of angiogenesis and the structural integrity of blood vessels. Cancer Metastasis Rev 2000, 19(1–2):1–5.

    Article  CAS  PubMed  Google Scholar 

  34. Williams E, Williams G, Gour BJ, et al. A novel family of cyclic peptide antagonists suggests that N-cadherin specificity is determined by amino acids that flank the HAV motif. J Biol Chem 2000, 275(6):4007–4012.

    Article  CAS  PubMed  Google Scholar 

  35. Williams EJ, Williams G, Gour B, et al. INP, a novel N-cadherin antagonist targeted to the amino acids that flank the HAV motif. Mol Cell Neurosci 2000, 15(5):456–464.

    Article  CAS  PubMed  Google Scholar 

  36. Kawaguchi M, Hosotani R, Ohishi S, et al. A novel synthetic Arg-Gly-Asp-containing peptide cyclo(-RGDfV-) is the potent inhibitor of angiogenesis. Biochem Biophys Res Commun 2001, 288(3):711–717.

    Article  CAS  PubMed  Google Scholar 

  37. Friedlander M, Brooks PC, Shaffer RW, et al. Definition of two angiogenic pathways by distinct alpha v integrins. Science 1995, 270(5241):1500–1502.

    Article  CAS  PubMed  Google Scholar 

  38. Nicosia RF, Bonanno E. Inhibition of angiogenesis in vitro by Arg-Gly-Asp-containing synthetic peptide. Am J Pathol 1991, 138(4):829–833.

    CAS  PubMed  Google Scholar 

  39. Aumailley M, Gurrath M, Muller G, et al. Arg-Gly-Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1. FEBS Lett 1991, 291(1):50–54.

    Article  CAS  PubMed  Google Scholar 

  40. Cianfrocca ME, Kimmel KA, Gallo J, et al. Phase 1 trial of the antiangiogenic peptide ATN-161 (Ac-PHSCN-NH(2) ), a beta integrin antagonist, in patients with solid tumours. Br J Cancer 2006, 94(11):1621–1626.

    CAS  PubMed  Google Scholar 

  41. Belvisi L, Riccioni T, Marcellini M, et al. Biological and molecular properties of a new alpha(v)beta3/ alpha(v)beta5 integrin antagonist. Mol Cancer Ther 2005, 4(11):1670–1680.

    Article  CAS  PubMed  Google Scholar 

  42. Niewiarowski S, McLane MA, Kloczewiak M, et al. Disintegrins and other naturally occurring antagonists of platelet fibrinogen receptors. Semin Hematol 1994, 31(4):289–300.

    CAS  PubMed  Google Scholar 

  43. Kang IC, Lee YD, Kim DS. A novel disintegrin sal-mosin inhibits tumor angiogenesis. Cancer Res 1999, 59(15):3754–3760.

    CAS  PubMed  Google Scholar 

  44. Kim SI, Kim KS, Kim HS, et al. Inhibitory effect of the salmosin gene transferred by cationic liposomes on the progression of B16BL6 tumors. Cancer Res 2003, 63(19):6458–6462.

    CAS  PubMed  Google Scholar 

  45. Hong SY, Sohn YD, Chung KH, et al. Structural and functional significance of disulfide bonds in saxa-tilin, a 7.7 kDa disintegrin. Biochem Biophys Res Commun 2002, 293(1):530–536.

    Article  CAS  PubMed  Google Scholar 

  46. Kim KS, Kim DS, Chung KH, et al. Inhibition of angiogenesis and tumor progression by hydrodynamic cotransfection of angiostatin K1-3, endostatin, and sax-atilin genes. Cancer Gene Ther 2006, 13(6):563–571.

    Article  CAS  PubMed  Google Scholar 

  47. Hong S Y, Koh YS, Chung KH, et al. Snake venom dis-integrin, saxatilin, inhibits platelet aggregation, human umbilical vein endothelial cell proliferation, and smooth muscle cell migration. Thromb Res 2002, 105(1):79–86.

    Article  CAS  PubMed  Google Scholar 

  48. Kim DS, Jang YJ, Jeon OH, et al. Saxatilin inhibits TNF-alpha-induced proliferation by suppressing AP-1-dependent IL-8 expression in the ovarian cancer cell line MDAH 2774. Mol Immunol 2006.

    Google Scholar 

  49. Macaulay VM, O'Byrne KJ, Saunders MP, et al. Phase I study of intrapleural batimastat (BB-94), a matrix metalloproteinase inhibitor, in the treatment of malignant pleural effusions. Clin Cancer Res 1999, 5(3):513–520.

    CAS  PubMed  Google Scholar 

  50. Griffioen AW, van der Schaft DW, Barendsz-Janson AF, et al. Anginex, a designed peptide that inhibits angiogenesis. Biochem J 2001, 354(Pt 2):233–242.

    Article  CAS  PubMed  Google Scholar 

  51. Pilch J, Franzin CM, Knowles LM, et al. The anti-angiogenic peptide anginex disrupts the cell membrane. J Mol Biol 2006, 356(4):876–885.

    Article  CAS  PubMed  Google Scholar 

  52. Shai Y, Oren Z. From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides 2001, 22(10):1629–1641.

    Article  CAS  PubMed  Google Scholar 

  53. Dings RP, Yokoyama Y, Ramakrishnan S, et al. The designed angiostatic peptide anginex synergistically improves chemotherapy and antiangiogenesis therapy with angiostatin. Cancer Res 2003, 63(2):382–385.

    CAS  PubMed  Google Scholar 

  54. Tsujimoto Y, Cossman J, Jaffe E, et al. Involvement of the bcl-2 gene in human follicular lymphoma. Science 1985, 228(4706):1440–1443.

    Article  CAS  PubMed  Google Scholar 

  55. Yang J, Liu X, Bhalla K, et al. Prevention of apopto-sis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 1997, 275(5303):1129–1132.

    Article  CAS  PubMed  Google Scholar 

  56. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 het-erodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993, 74(4):609–619.

    Article  CAS  PubMed  Google Scholar 

  57. Kelekar A, Thompson CB. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol 1998, 8(8):324–330.

    Article  CAS  PubMed  Google Scholar 

  58. Manion MK, Hockenbery DM. Targeting BCL-2-related proteins in cancer therapy. Cancer Biol Ther 2003, 2(4 Suppl 1):S105–114.

    CAS  PubMed  Google Scholar 

  59. Cosulich SC, Worrall V, Hedge PJ, et al. Regulation of apoptosis by BH3 domains in a cell-free system. Curr Biol 1997, 7(12):913–920.

    Article  CAS  PubMed  Google Scholar 

  60. Holinger EP, Chittenden T, Lutz RJ. Bak BH3 peptides antagonize Bcl-xL function and induce apopto-sis through cytochrome c-independent activation of caspases. J Biol Chem 1999, 274(19):13298–13304.

    Article  CAS  PubMed  Google Scholar 

  61. Wang JL, Zhang ZJ, Choksi S, et al. Cell permeable Bcl-2 binding peptides: a chemical approach to apoptosis induction in tumor cells. Cancer Res 2000, 60(6):1498–1502.

    CAS  PubMed  Google Scholar 

  62. Zavaglia D, Normand N, Brewis N, et al. VP22-mediated and light-activated delivery of an anti-c-raf1 antisense oligonucleotide improves its activity after intratumoral injection in nude mice. Mol Ther 2003, 8(5):840–845.

    Article  CAS  PubMed  Google Scholar 

  63. Brewis ND, Phelan A, Normand N, et al. Particle assembly incorporating a VP22-BH3 fusion protein, facilitating intracellular delivery, regulated release, and apoptosis. Mol Ther 2003, 7(2):262–270.

    Article  CAS  PubMed  Google Scholar 

  64. Walensky LD, Kung AL, Escher I, et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 2004, 305(5689):1466–1470.

    Article  CAS  PubMed  Google Scholar 

  65. Hanks SK, Quinn AM, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 1988, 241(4861):42–52.

    Article  CAS  PubMed  Google Scholar 

  66. Manning G, Whyte DB, Martinez R, et al. The protein kinase complement of the human genome. Science 2002, 298(5600):1912–1934.

    Article  CAS  PubMed  Google Scholar 

  67. Maddika S, Ande SR, Panigrahi S, et al. Cell survival, cell death and cell cycle pathways are interconnected: Implications for cancer therapy. Drug Resist Updat 2007, 10: in press.

    Google Scholar 

  68. Cohen P. Protein kinases: the major drug targets of the twenty-first century? Nat Rev Drug Discov 2002, 1(4):309–315.

    Article  CAS  PubMed  Google Scholar 

  69. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefit-inib therapy. Science 2004, 304(5676):1497–1500.

    Article  CAS  PubMed  Google Scholar 

  70. Pero SC, Shukla GS, Armstrong AL, et al. Identification of a small peptide that inhibits the phosphorylation of ErbB2 and proliferation of ErbB2 overexpressing breast cancer cells. Int J Cancer 2004, 111(6):951–960.

    Article  CAS  PubMed  Google Scholar 

  71. Flowers LO, Johnson HM, Mujtaba MG, et al. Characterization of a peptide inhibitor of Janus kinase 2 that mimics suppressor of cytokine signaling 1 function. J Immunol 2004, 172(12):7510–7518.

    CAS  PubMed  Google Scholar 

  72. Flowers LO, Subramaniam PS, Johnson HM. A SOCS-1 peptide mimetic inhibits both constitutive and IL-6 induced activation of STAT3 in prostate cancer cells. Oncogene 2005, 24(12):2114–2120.

    Article  CAS  PubMed  Google Scholar 

  73. Buerger C, Nagel-Wolfrum K, Kunz C, et al. Sequence-specific peptide aptamers, interacting with the intracellular domain of the epidermal growth factor receptor, interfere with Stat3 activation and inhibit the growth of tumor cells. J Biol Chem 2003, 278(39):37610–37621.

    Article  CAS  PubMed  Google Scholar 

  74. Kunz C, Borghouts C, Buerger C, et al. Peptide aptamers with binding specificity for the intracellular domain of the ErbB2 receptor interfere with AKT signaling and sensitize breast cancer cells to Taxol. Mol Cancer Res 2006, 4(12):983–998.

    Article  CAS  PubMed  Google Scholar 

  75. Obata T, Yaffe MB, Leparc GG, et al. Peptide and protein library screening defines optimal substrate motifs for AKT/PKB. J Biol Chem 2000, 275(46):36108–36115.

    Article  CAS  PubMed  Google Scholar 

  76. Laine J, Kunstle G, Obata T, et al. The protoonco-gene TCL1 is an Akt kinase coactivator. Mol Cell 2000, 6(2):395–407.

    Article  CAS  PubMed  Google Scholar 

  77. Lam KS, Wu J, Lou Q. Identification and characterization of a novel synthetic peptide substrate specific for Src-family protein tyrosine kinases. Int J Pept Protein Res 1995, 45(6):587–592.

    Article  CAS  PubMed  Google Scholar 

  78. Alfaro-Lopez J, Yuan W, Phan BC, et al. Discovery of a novel series of potent and selective substrate-based inhibitors of p60c-src protein tyrosine kinase: conformational and topographical constraints in pep-tide design. J Med Chem 1998, 41(13):2252–2260.

    Article  CAS  PubMed  Google Scholar 

  79. Kamath JR, Liu R, Enstrom AM, et al. Development and characterization of potent and specific peptide inhibitors of p60c-src protein tyrosine kinase using pseudosubstrate-based inhibitor design approach. J Pept Res 2003, 62(6):260–268.

    Article  CAS  PubMed  Google Scholar 

  80. Coussens L, Parker PJ, Rhee L, et al. Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science 1986, 233(4766):859–866.

    Article  CAS  PubMed  Google Scholar 

  81. Chen L, Hahn H, Wu G, et al. Opposing cardiopro-tective actions and parallel hypertrophic effects of delta PKC and epsilon PKC. Proc Natl Acad Sci USA 2001, 98(20):11114–11119.

    Article  CAS  PubMed  Google Scholar 

  82. Dominguez I, Diaz-Meco MT, Municio MM, et al. Evidence for a role of protein kinase C zeta subspecies in maturation of Xenopus laevis oocytes. Mol Cell Biol 1992, 12(9):3776–3783.

    CAS  PubMed  Google Scholar 

  83. Eichholtz T, de Bont DB, de Widt J, et al. A myris-toylated pseudosubstrate peptide, a novel protein kinase C inhibitor. J Biol Chem 1993, 268(3):1982–1986.

    CAS  PubMed  Google Scholar 

  84. House C, Kemp BE. Protein kinase C contains a pseudosubstrate prototope in its regulatory domain. Science 1987, 238(4834):1726–1728.

    Article  CAS  PubMed  Google Scholar 

  85. Bogoyevitch MA, Barr RK, Ketterman AJ. Peptide inhibitors of protein kinases-discovery, characterisation and use. Biochim Biophys Acta 2005, 1754(1–2): 79–99.

    CAS  PubMed  Google Scholar 

  86. Tohtong R, Phattarasakul K, Jiraviriyakul A, et al. Dependence of metastatic cancer cell invasion on MLCK-catalyzed phosphorylation of myosin regulatory light chain. Prostate Cancer Prostatic Dis 2003, 6(3):212–216.

    Article  CAS  PubMed  Google Scholar 

  87. Pearson RB, Misconi LY, Kemp BE. Smooth muscle myosin kinase requires residues on the COOH-termi-nal side of the phosphorylation site. Peptide inhibitors. J Biol Chem 1986, 261(1):25–27.

    CAS  PubMed  Google Scholar 

  88. Barr RK, Bogoyevitch MA. The c-Jun N-terminal protein kinase family of mitogen-activated protein kinases (JNK MAPKs). Int J Biochem Cell Biol 2001, 33(11):1047–1063.

    Article  CAS  PubMed  Google Scholar 

  89. Dickens M, Rogers JS, Cavanagh J, et al. A cyto-plasmic inhibitor of the JNK signal transduction pathway. Science 1997, 277(5326):693–696.

    Article  CAS  PubMed  Google Scholar 

  90. Barr RK, Kendrick TS, Bogoyevitch MA. Identification of the critical features of a small peptide inhibitor of JNK activity. J Biol Chem 2002, 277(13):10987–10997.

    Article  CAS  PubMed  Google Scholar 

  91. Bonny C, Oberson A, Negri S, et al. Cell-permeable peptide inhibitors of JNK: novel blockers of beta-cell death. Diabetes 2001, 50(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  92. Payne ME, Fong YL, Ono T, et al. Calcium/calmodu-lin-dependent protein kinase II. Characterization of distinct calmodulin binding and inhibitory domains. J Biol Chem 1988, 263(15):7190–7195.

    CAS  PubMed  Google Scholar 

  93. Perea SE, Reyes O, Puchades Y, et al. Antitumor effect of a novel proapoptotic peptide that impairs the phosphorylation by the protein kinase 2 (casein kinase 2). Cancer Res 2004, 64(19):7127–7129.

    Article  CAS  PubMed  Google Scholar 

  94. Cassens U, Lewinski G, Samraj AK, et al. Viral modulation of cell death by inhibition of caspases. Arch Immunol Ther Exp 2003, 51(1):19–27.

    CAS  Google Scholar 

  95. Cellier F, Conejero G, Breitler JC, et al. Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower. Accumulation of dehydrin transcripts correlates with tolerance. Plant Physiol 1998, 116(1):319–328.

    Article  CAS  PubMed  Google Scholar 

  96. Dai Z, Zhu WG, Morrison CD, et al. A comprehensive search for DNA amplification in lung cancer identifies inhibitors of apoptosis cIAP1 and cIAP2 as candidate oncogenes. Hum Mol Genet 2003, 12(7):791–801.

    Article  CAS  PubMed  Google Scholar 

  97. Hasegawa T, Suzuki K, Sakamoto C, et al. Expression of the inhibitor of apoptosis (IAP) family members in human neutrophils: up-regulation of cIAP2 by granu-locyte colony-stimulating factor and overexpression of cIAP2 in chronic neutrophilic leukemia. Blood 2003, 101(3):1164–1171.

    Article  CAS  PubMed  Google Scholar 

  98. Imoto I, Yang ZQ, Pimkhaokham A, et al. Identification of cIAP1 as a candidate target gene within an ampli-con at 11q22 in esophageal squamous cell carcinomas. Cancer Res 2001, 61(18):6629–6634.

    CAS  PubMed  Google Scholar 

  99. Krajewska M, Krajewski S, Banares S, et al. Elevated expression of inhibitor of apoptosis proteins in prostate cancer. Clin Cancer Res 2003, 9(13):4914–4925.

    CAS  PubMed  Google Scholar 

  100. Salvesen GS, Duckett CS. IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 2002, 3(6):401–410.

    Article  CAS  PubMed  Google Scholar 

  101. Tamm I, Kornblau SM, Segall H, et al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res 2000, 6(5):1796–1803.

    CAS  PubMed  Google Scholar 

  102. Liu Z, Sun C, Olejniczak ET, et al. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 2000, 408(6815):1004–1008.

    Article  CAS  PubMed  Google Scholar 

  103. Wu G, Chai J, Suber TL, et al. Structural basis of IAP recognition by Smac/DIABLO. Nature 2000, 408(6815):1008–1012.

    Article  CAS  PubMed  Google Scholar 

  104. Arnt CR, Chiorean M V, Heldebrant MP, et al. Synthetic Smac/DIABLO peptides enhance the effects of chem-otherapeutic agents by binding XIAP and cIAP1 in situ. J Biol Chem 2002, 277(46):44236–44243.

    Article  CAS  PubMed  Google Scholar 

  105. Fulda S, Wick W, Weller M, et al. Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 2002, 8(8):808–815.

    CAS  PubMed  Google Scholar 

  106. Guo F, Nimmanapalli R, Paranawithana S, et al. Ectopic overexpression of second mitochondria-derived activator of caspases (Smac/DIABLO) or cotreatment with N-terminus of Smac/DIABLO peptide potentiates epothilone B derivative-(BMS 247550) and Apo-2L/TRAIL-induced apoptosis. Blood 2002, 99(9):3419–3426.

    Article  CAS  PubMed  Google Scholar 

  107. Yang L, Mashima T, Sato S, et al. Predominant suppression of apoptosome by inhibitor of apop-tosis protein in non-small cell lung cancer H460 cells: therapeutic effect of a novel polyarginine-conjugated Smac peptide. Cancer Res 2003, 63(4):831–837.

    CAS  PubMed  Google Scholar 

  108. Denicourt C, Dowdy SF. Medicine. Targeting apoptotic pathways in cancer cells. Science 2004, 305(5689):1411–1413.

    Article  CAS  PubMed  Google Scholar 

  109. Patch JA, Barron AE. Mimicry of bioactive peptides via non-natural, sequence-specific peptidomimetic oligomers. Curr Opin Chem Biol 2002, 6(6):872–877.

    Article  CAS  PubMed  Google Scholar 

  110. Gante J. Peptidomimetics: tailored enzyme inhibitors. Angewandte Chemie [International Edition in English] 1994, 33(17):1699–1720.

    Article  Google Scholar 

  111. Arnt CR, Kaufmann SH. The saintly side of Smac/ DIABLO: giving anticancer drug-induced apoptosis a boost. Cell Death Diff 2003, 10(10):1118–1120.

    Article  CAS  Google Scholar 

  112. Freidinger RM, Veber DF, Perlow DS, et al. Bioactive conformation of luteinizing hormone-releasing hormone: evidence from a conformationally constrained analogue. Science 1980, 210(4470):656–658.

    Article  CAS  PubMed  Google Scholar 

  113. Sukumaran DK. A molecular constraint that genera tes a cis peptide bond. J Amer Chem Soc 1991, 113(2):706–707.

    Article  CAS  Google Scholar 

  114. Alig L, Edenhofer A, Hadvary P, et al. Low molecular weight, non-peptide fibrinogen receptor antagonists. J Med Chem 1992, 35(23):4393–4407.

    Article  CAS  PubMed  Google Scholar 

  115. Marshall GR. A hierarchical approach to peptido-mimetic design. Tetrahedron 1993, 49:3547–3558.

    Article  CAS  Google Scholar 

  116. Hirschmann R. De novo design and synthesis of somatostatin non-peptide peptidomimetics utilizing beta-D-glucose as a novel scaffolding. J Am Chem Soc 1993, 115(26):12550–12568.

    Article  CAS  Google Scholar 

  117. De B, Plattner JJ, Bush EN, et al. LH-RH antagonists: design and synthesis of a novel series of pepti-domimetics. J Med Chem 1989, 32(9):2036–2038.

    Article  CAS  PubMed  Google Scholar 

  118. Weinstock J, Keenan RM, Samanen J, et al. 1-(carboxybenzyl)imidazole-5-acrylic acids: potent and selective angiotensin II receptor antagonists. J Med Chem 1991, 34(4):1514–1517.

    Article  CAS  PubMed  Google Scholar 

  119. Oost TK, Sun C, Armstrong RC, et al. Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J Med Chem 2004, 47(18):4417–4426.

    Article  CAS  PubMed  Google Scholar 

  120. Li L, Thomas RM, Suzuki H, et al. A small molecule Smac mimic potentiates TRAIL- and TNFalpha-mediated cell death. Science 2004, 305(5689):1471–1474.

    Article  CAS  PubMed  Google Scholar 

  121. Sun H, Nikolovska-Coleska Z, Yang CY, et al. Structure-based design of potent, conformationally constrained Smac mimetics. J Am Chem Soc 2004, 126(51):16686–16687.

    Article  CAS  PubMed  Google Scholar 

  122. Huang Y, Rich RL, Myszka DG, et al. Requirement of both the second and third BIR domains for the relief of X-linked inhibitor of apoptosis protein (XIAP)-mediated caspase inhibition by Smac. J Biol Chem 2003, 278(49):49517–49522.

    Article  CAS  PubMed  Google Scholar 

  123. Booy EP, Johar D, Maddika S, et al. Monoclonal and bispecific antibodies as novel therapeutics. Arch Immunol Ther Exp 2006, 54:1–17.

    Article  CAS  Google Scholar 

  124. Johnston JB, Navaratnam S, Pitz MW, et al. Targeting the EGFR pathway for cancer therapy. Curr Med Chem 2006, 13:3483–3492.

    Article  CAS  PubMed  Google Scholar 

  125. Byrd JC, Rai K, Peterson BL, et al. Addition of rituxi-mab to fludarabine may prolong progression-free survival and overall survival in patients with previously untreated chronic lymphocytic leukemia: an updated retrospective comparative analysis of CALGB 9712 and CALGB 9011. Blood 2005, 105(1):49–53.

    Article  CAS  PubMed  Google Scholar 

  126. Hiddemann W, Kneba M, Dreyling M, et al. Frontline therapy with rituximab added to the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) significantly improves the outcome for patients with advanced-stage follicular lymphoma compared with therapy with CHOP alone: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood 2005, 106(12):3725–3732.

    Article  CAS  PubMed  Google Scholar 

  127. Kaminski MS, Tuck M, Estes J, et al. 131I-tositu-momab therapy as initial treatment for follicular lymphoma. N Engl J Med 2005, 352(5):441–449.

    Article  CAS  PubMed  Google Scholar 

  128. Marcus R, Imrie K, Belch A, et al. CVP chemotherapy plus rituximab compared with CVP as first-line treatment for advanced follicular lymphoma. Blood 2005, 105(4):1417–1423.

    Article  CAS  PubMed  Google Scholar 

  129. Larson RA, Sievers EL, Stadtmauer EA, et al. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer 2005, 104(7):1442–1452.

    Article  CAS  PubMed  Google Scholar 

  130. O'Brien SM, Kantarjian HM, Thomas DA, et al. Alemtuzumab as treatment for residual disease after chemotherapy in patients with chronic lymphocytic leukemia. Cancer 2003, 98(12):2657–2663.

    Article  PubMed  CAS  Google Scholar 

  131. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004, 350(23):2335–2342.

    Article  CAS  PubMed  Google Scholar 

  132. Sandler A, Gray R, Perry MC, et al. Paclitaxel-carbo-platin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 2006, 355(24):2542–2550.

    Article  CAS  PubMed  Google Scholar 

  133. Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006, 354(6):567–578.

    Article  CAS  PubMed  Google Scholar 

  134. Cunningham D, Allum WH, Stenning SP, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 2006, 355(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  135. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 2005, 353(16):1659–1672.

    Article  CAS  PubMed  Google Scholar 

  136. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001, 344(11):783–792.

    Article  CAS  PubMed  Google Scholar 

  137. Aina OH, Sroka TC, Chen ML, et al. Therapeutic cancer targeting peptides. Biopolymers 2002, 66(3):184–199.

    Article  CAS  PubMed  Google Scholar 

  138. Beckman RA, Loeb LA. Genetic instability in cancer: theory and experiment. Semin Cancer Biol 2005, 15(6):423–435.

    Article  CAS  PubMed  Google Scholar 

  139. D'Andrea LD, Del Gatto A, Pedone C, et al. Peptide-based molecules in angiogenesis. Chem Biol Drug Des 2006, 67(2):115–126.

    Article  PubMed  CAS  Google Scholar 

  140. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998, 279(5349):377–380.

    Article  CAS  PubMed  Google Scholar 

  141. Janssen AP, Schiffelers RM, ten Hagen TL, et al. Peptide-targeted PEG-liposomes in anti-angiogenic therapy. Int J Pharm 2003, 254(1):55–58.

    Article  CAS  PubMed  Google Scholar 

  142. Schiffelers SL, Akkermans JA, Saris WH, et al. Lipolytic and nutritive blood flow response to beta-adrenoceptor stimulation in situ in subcutaneous abdominal adipose tissue in obese men. Int J Obes Relat Metab Disord 2003, 27(2):227–231.

    Article  CAS  PubMed  Google Scholar 

  143. Opalinska JB, Gewirtz AM. Nucleic-acid therapeutics: basic principles and recent applications. Nat Rev Drug Discov 2002, 1(7):503–514.

    Article  CAS  PubMed  Google Scholar 

  144. Sorensen DR, Leirdal M, Sioud M. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol 2003, 327(4):761–766.

    Article  CAS  PubMed  Google Scholar 

  145. Ellerby HM, Arap W, Ellerby LM, et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 1999, 5(9):1032–1038.

    Article  CAS  PubMed  Google Scholar 

  146. Javadpour MM, Juban MM, Lo WC, et al. De novo antimicrobial peptides with low mammalian cell toxicity. J Med Chem 1996, 39(16):3107–3113.

    Article  CAS  PubMed  Google Scholar 

  147. Fulda S, Debatin KM. Apoptosis pathways: turned on their heads? Drug Resist Updat 2003, 6(1):1–3.

    Article  PubMed  Google Scholar 

  148. Grifman M, Trepel M, Speece P, et al. Incorporation of tumor-targeting peptides into recombinant adeno-associated virus capsids. Mol Ther 2001, 3(6):964–975.

    Article  CAS  PubMed  Google Scholar 

  149. Schally AV, Nagy A. Cancer chemotherapy based on targeting of cytotoxic peptide conjugates to their receptors on tumors. Eur J Endocrinol 1999, 141(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  150. Kvols LK, Woltering EA. Role of somatostatin analogues in the clinical management of non-neu-roendocrine solid tumors. Anticancer Drugs 2006, 17(6):601–608.

    Article  CAS  PubMed  Google Scholar 

  151. Yegen BC. Bombesin-like peptides: candidates as diagnostic and therapeutic tools. Curr Pharm Des 2003, 9(12):1013–1022.

    Article  CAS  PubMed  Google Scholar 

  152. Yamamoto Y, Tsutsumi Y, Mayumi T. Molecular design of bioconjugated cell adhesion peptide with a water-soluble polymeric modifier for enhancement of antimetastatic effect. Curr Drug Targets 2002, 3(2):123–130.

    Article  CAS  PubMed  Google Scholar 

  153. Lu Y, Yang J, Sega E. Issues related to targeted delivery of proteins and peptides. Aaps J 2006, 8(3):E466–478.

    Article  CAS  PubMed  Google Scholar 

  154. Torchilin VP, Lukyanov AN. Peptide and protein drug delivery to and into tumors: challenges and solutions. Drug Discov Today 2003, 8(6):259–266.

    Article  CAS  PubMed  Google Scholar 

  155. Dass CR, Choong PF. Carrier-mediated delivery of peptidic drugs for cancer therapy. Peptides 2006, 27(11):3020–3028.

    Article  CAS  PubMed  Google Scholar 

  156. Rammensee HG. Some considerations on the use of peptides and mRNA for therapeutic vaccination against cancer. Immunol Cell Biol 2006, 84(3):290–294.

    Article  CAS  PubMed  Google Scholar 

  157. Anderson JE, Hansen LL, Mooren FC, et al. Methods and biomarkers for the diagnosis and prognosis of cancer and other diseases: Towards personalized medicine. Drug Resist Updat 2006, 9(4–5):198–210.

    Article  CAS  PubMed  Google Scholar 

  158. Kroczak TJ, Baran J, Pryjma JS, et al. The emerging importance of DNA mapping and other comprehensive screening techniques as tools to identify new drug targets and as a mean of (cancer) therapy personalization. Expert Opin Ther Targets 2006, 10:289–302.

    Article  CAS  PubMed  Google Scholar 

  159. Barczyk K, Kreuter M, Pryjma J, et al. Serum cyto-chrome c indicates in vivo apoptosis and can serve as a prognostic marker during cancer therapy. Int J Cancer 2005, 116(2):167–173.

    Article  CAS  PubMed  Google Scholar 

  160. Ghavami S, Hashemi M, Kadkhoda K, et al. Apoptosis in liver diseases - detection and therapeutic applications. Med Sci Monit 2005, 11(11): RA337–R3345.

    CAS  PubMed  Google Scholar 

  161. Luo Y, Smith RA, Guan R, et al. Pseudosubstrate peptides inhibit Akt and induce cell growth inhibition. Biochemistry 2004, 43(5):1254–1263.

    Article  CAS  PubMed  Google Scholar 

  162. Hiromura M, Okada F, Obata T, et al. Inhibition of Akt kinase activity by a peptide spanning the betaA strand of the proto-oncogene TCL1. J Biol Chem 2004, 279(51):53407–53418.

    Article  CAS  PubMed  Google Scholar 

  163. Niv MY, Rubin H, Cohen J, et al. Sequence-based design of kinase inhibitors applicable for therapeutics and target identification. J Biol Chem 2004, 279(2):1242–1255.

    Article  CAS  PubMed  Google Scholar 

  164. Ramdas L, Obeyesekere NU, Sun G, et al. N-myr-istoylation of a peptide substrate for Src converts it into an apparent slow-binding bisubstrate-type inhibitor. J Pept Res 1999, 53(5):569–577.

    Article  CAS  PubMed  Google Scholar 

  165. Ward NE, Gravitt KR, O'Brian CA. Irreversible inactivation of protein kinase C by a peptide-sub-strate analogue. J Biol Chem 1995, 270(14):8056–8060.

    Article  CAS  PubMed  Google Scholar 

  166. Kemp BE, Pearson RB, Guerriero V Jr, et al. The calmodulin binding domain of chicken smooth muscle myosin light chain kinase contains a pseudosubstrate sequence. J Biol Chem 1987, 262(6):2542–2548.

    CAS  PubMed  Google Scholar 

  167. Gondeau C, Gerbal-Chaloin S, Bello P, et al. Design of a novel class of peptide inhibitors of cyclin-dependent kinase/cyclin activation. J Biol Chem 2005, 280(14):13793–13800.

    Article  CAS  PubMed  Google Scholar 

  168. Bardwell AJ, Flatauer LJ, Matsukuma K, et al. A conserved docking site in MEKs mediates high-affinity binding to MAP kinases and cooperates with a scaffold protein to enhance signal transmission. J Biol Chem 2001, 276(13):10374–10386.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

ML thankfully acknowledges the support by the CFI-Canada Research Chair program, PCRFC-, CCMF-, MHRC, and CIHR-foundation— financed programs. SM thankfully acknowledges the support by the MHRC-, CCMF-, and University of Manitoba—funded fellowships. SP, EW, and KW thankfully acknowledge the support by CIHR-training fellowship. AZ, SP, and ME thankfully acknowledge generous CCMF-funded fellowships.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Banerji, S. et al. (2008). Peptides and Peptidomimetics as Cancer Therapy Sensitizing Agents. In: Bonavida, B. (eds) Sensitization of Cancer Cells for Chemo/Immuno/Radio-therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-474-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-474-2_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-29-9

  • Online ISBN: 978-1-59745-474-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics