Skip to main content

H+, Na+, K+, and Amino Acid Transport in Caterpillar and Larval Mosquito Alimentary Canal

  • Chapter
  • First Online:
Epithelial Transport Physiology

Abstract

Two principal strategies are used to energize membranes in living organisms, a Na+ strategy and a voltage strategy. In the Na+ strategy a primary Na+/K+ ATPase imposes both Na+ and K+ concentration gradients across cell membranes with Na+ high outside and K+ high inside the cells. The Na+ gradient, Δ[Na+] is used to drive diverse secondary transporters. For example, in many animal cells Δ[Na+] drives Na+ inwardly coupled to H+ outwardly, mediated by Na+/H+ exchangers (NHEs). They provide the principal means by which metabolically produced acids are ejected from mammalian cells [70]. In the voltage strategy the electron transport system of prokaryotes or H+ V-ATPases of eukaryotes, impose a voltage gradient, ΔΨ, across biological membranes with the outside positive. The ΔΨ drives secondary (Na+ or K+)/nH+ antiport that is mediated by Na+/H+ antiporters (NHAs). The stoichiometry of NHEs is 1Na+ to 1H+ so they are independent of the membrane potential and are said to be electroneutral. The stoichiometry of NHAs is 1Na+ or K+ to more than 1H+ so they are driven both by the ion gradients and the membrane potential and are said to be electrophoretic. NHAs operate in the opposite direction from NHEs, moving nH+ inwardly and Na+ or K+ outwardly. ΔΨ also drives Na+- or K+-coupled nutrient amino acid uptake that is mediated by electrophoretic (Na+ or K+) amino acid symporters (NATs) [11]. In eukaryotic cells the primary sources of voltage gradients across plasma membranes have classically been considered to be K+, Na+, or other ionic diffusion potentials. Thus, K+ diffusion potentials dominate the resting potential and Na+ diffusion potentials dominate the action potential in squid axon and many other nerves. Only recently are ΔΨs generated by H+ V-ATPases becoming recognized as the energy source for electrophoretic transporters in animal cells [35, 65, 90]. The H+ V-ATPases translocate H+ outwardly across the cell membrane leaving their partner anion (gegenion) behind. Thus, they charge the capacitance of the membrane resulting in a transmembrane voltage, with the outside positive. The translocated H+s exchange with more numerous Na+s or K+s in the outside bulk solution, transforming the H+ electrochemical gradient to a Na+ or K+ electrochemical gradient which in turn drives Na+- or K+-coupled amino acid symport via a NAT into the cells. Membrane energization by H+ V-ATPases is accomplished by a five-phase system consisting of (1) the bulk solution inside the cells, (2) the inside solution/membrane interface, (3) the membrane, (4) the outside solution/membrane interface, and (5) the outside bulk solution [36, 49, 50].

The chapter is divided into five parts: (1) voltage-driven transporters and their terminology, (2) a summary of progress from the concept of “active K+ transport” through the discovery of portasomes and their role in the isolation of the so-called K+ pump to the cloning of its component H+ V-ATPase and K+/2H+ antiporter, (3) the cloning and localization of components of the H+ V-ATPase-Na+/H+ antiporter-NAT system of mosquito larval alimentary canal (AC), with emphasis on the cloning of the first, putatively electrophoretic, Na+/nH+ antiporter from Anopheles gambiae (AgNHA1), (4) attempts to characterize NHEs and NHAs heterologously in Xenopus oocytes, and (5) the incorporation of existing data into a qualitative model of the mosquito system for taking up amino acids while recycling H+, Na+, and K+ between lumen, cells, and hemolymph as well as generating longitudinal pH gradients in the absence of barriers along the AC of mosquito larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahearn, G. A., Franco, P. and Clay, L. P. (1990). Electrogenic 2 Na+/1 H+ Exchange in Crustaceans. J Membrane Biol 116, 215–226.

    Article  CAS  Google Scholar 

  2. Anderson, E. and Harvey, W. R. (1966). Active transport by the Cecropia midgut. II. Fine structure of the midgut epithelium. J Cell Biol 31, 107–137.

    Article  CAS  PubMed  Google Scholar 

  3. Arkin, I. T., Xu, H., Jensen, M. O., Arbely, E., Bennett, E. R., Bowers, K. J., Chow, E., Dror, R. O., Eastwood, M. P., Flitman-Tene, R. et al. (2007). Mechanism of Na+/H+ antiporting. Science 317, 799–803.

    Article  CAS  PubMed  Google Scholar 

  4. Azuma, M., Harvey, W. R. and Wieczorek, H. (1995). Stoichiometry of K+/H+ antiport helps to explain extracellular pH 11 in a model epithelium. FEBS Lett 361, 153–156.

    Article  CAS  PubMed  Google Scholar 

  5. Berridge, M. J. (1966). Metabolic pathways of isolated malpighian tubules of the blowfly functioning in an artificial medium. J Insect Physiol 12, 1523–1538.

    Article  CAS  PubMed  Google Scholar 

  6. Berridge, M. J., Gupta, B. L., Hall, T. A., Maddrell, S. H., Moreton, R. B. and Wall, B. J. (1977). Electron microprobe studies of electrolyte distribution in fluid transporting epithelia [proceedings]. J Physiol 266, 32P–33P.

    CAS  PubMed  Google Scholar 

  7. Beyenbach, K. W. (2001). Energizing epithelial transport with the vacuolar H(+)-ATPase. News Physiol Sci 16, 145–151.

    CAS  PubMed  Google Scholar 

  8. Boudko, D. Y., Kohn, A. B., Meleshkevitch, E. A., Dasher, M. K., Seron, T. J., Stevens, B. R. and Harvey, W. R. (2005a). Ancestry and progeny of nutrient amino acid transporters. Proc Natl Acad Sci USA 102, 1360–1365.

    Article  CAS  PubMed  Google Scholar 

  9. Boudko, D. Y., Moroz, L. L., Harvey, W. R. and Linser, P. J. (2001a). Alkalinization by chloride/bicarbonate pathway in larval mosquito midgut. Proc Natl Acad Sci U S A 98, 15354–15359.

    Article  CAS  PubMed  Google Scholar 

  10. Boudko, D. Y., Moroz, L. L., Linser, P. J., Trimarchi, J. R., Smith, P. J. and Harvey, W. R. (2001b). In situ analysis of pH gradients in mosquito larvae using non-invasive, self-referencing, pH-sensitive microelectrodes. J Exp Biol 204, 691–699.

    CAS  PubMed  Google Scholar 

  11. Boudko, D. Y., Stevens, B. R., Donly, B. C. and Harvey, W. R. (2005b). Nutrient Amino acid and Neurotransmitter transporters. In Comprehensive Molecular Insect Science, vol. 4 (ed. K. Iatrou, S. Gill, Lawrence I. Gilbert), pp. 255–309. Amsterdam: Elsevier.

    Google Scholar 

  12. Brett, C. L., Donowitz, M. and Rao, R. (2005). Evolutionary origins of eukaryotic sodium/proton exchangers. Am J Physiol Cell Physiol 288, C223–239.

    Article  CAS  PubMed  Google Scholar 

  13. Brett, C. L., Donowitz, M. and Rao, R. (2006). Does the proteome encode organellar pH? FEBS Lett 580, 717–719.

    Article  CAS  PubMed  Google Scholar 

  14. Brown, D. (1989). Vesicle recycling and cell-specific function in kidney epithelial cells. Annu Rev Physiol 51, 771–784.

    Article  CAS  PubMed  Google Scholar 

  15. Brown, D. and Breton, S. (1996). Mitochondria-rich, proton-secreting epithelial cells. J Exp Biol 199, 2345–2358.

    CAS  PubMed  Google Scholar 

  16. Brown, D., Smith, P. J. S. and Breton, S. (1997). Role of V-ATPase-rich cells in acidification of the male reproductive tract. J Exp Biol 200, 257–262.

    CAS  PubMed  Google Scholar 

  17. Castagna, M., Shayakul, C., Trotti, D., Sacchi, V. F., Harvey, W. R. and Hediger, M. A. (1998). Cloning and characterization of a potassium-coupled amino acid transporter. Proc Natl Acad Sci USA 95, 5395–5400.

    Article  CAS  PubMed  Google Scholar 

  18. Chao, A. C., Moffett, D. F. and Koch, A. (1991). Cytoplasmic pH and goblet cavity pH in the posterior midgut of the tobacco hornworm Manduca sexta. J Exp Biol 155, 403–414.

    Google Scholar 

  19. Chatterjee, D., Chakraborty, M., Leit, M., Neff, L., Jamsakellokumpu, S., Fuchs, R., Bartkiewicz, M., Hernando, N. and Baron, R. (1992). The Osteoclast Proton Pump Differs in Its Pharmacology and Catalytic Subunits from Other Vacuolar H+-ATPases. J Exp Biol 172, 193–204.

    CAS  PubMed  Google Scholar 

  20. Cherepanov, D. A., Junge, W. and Mulkidjanian, A. Y. (2004). Proton transfer dynamics at the membrane/water interface: dependence on the fixed and mobile pH buffers, on the size and form of membrane particles, and on the interfacial potential barrier. Biophys J 86, 665–680.

    Article  CAS  PubMed  Google Scholar 

  21. Cidon, S. and Nelson, N. (1982). Properties of a Novel ATPase Enzyme in Chromaffin Granules. J Bioenerg Biomembr 14, 499–512.

    Article  CAS  PubMed  Google Scholar 

  22. Cioffi, M. and Wolfersberger, M. G. (1983). Isolation of separate apical, lateral and basal plasma membrane from cells of an insect epithelium. A procedure based on tissue organization and ultrastructure. Tissue Cell 15, 781–803.

    Article  CAS  PubMed  Google Scholar 

  23. Clements, A. N. (1992). The Biology of Mosquitoes. London: Chapman and Hall Press.

    Google Scholar 

  24. Day, J. P., Wan, S., Allan, A. K., Kean, L., Davies, S. A., Gray, J. V. and Dow, J. A. (2008). Identification of two partners from the bacterial Kef exchanger family for the apical plasma membrane V-ATPase of Metazoa. J Cell Sci 121, 2612–2619.

    Article  CAS  PubMed  Google Scholar 

  25. Dean, R. B. (1941). Theories of electrolyte equilibrium in muscle. Biological Symposia 3, 331.

    CAS  Google Scholar 

  26. Donini, A., Gaidhu, M. P., Strasberg, D. R. and O'Donnell, M. J. (2007). Changing salinity induces alterations in hemolymph ion concentrations and Na+ and Cl transport kinetics of the anal papillae in the larval mosquito, Aedes aegypti. J Exp Biol 210, 983–992.

    Article  CAS  PubMed  Google Scholar 

  27. Dow, J. A. (1984). Extremely high pH in biological systems: a model for carbonate transport. Am J Physiol 246, R633–R636.

    CAS  PubMed  Google Scholar 

  28. Dow, J. A., Gupta, B. L., Hall, T. A. and Harvey, W. R. (1984a). X-ray microanalysis of elements in frozen-hydrated sections of an electrogenic K+ transport system: the posterior midgut of tobacco hornworm (Manduca sexta) in vivo and in vitro. J Membr Biol 77, 223–241.

    Article  CAS  PubMed  Google Scholar 

  29. Dow, J. A. T. and Peacock, J. M. (1989). Microelectrode evidence for the electrical isolation of goblet cell cavities in Manduca sexta middle midgut. . J Exper Biol 143, 101–114.

    Google Scholar 

  30. Ehrenfeld, J., Garcia-Romeu, F. and Harvey, B. J. (1985). Electrogenic active proton pump in Rana esculenta skin and its role in sodium ion transport. J Physiol 359, 331–355.

    CAS  PubMed  Google Scholar 

  31. Fernandez Moran, H., Oda, T., Blair, P. V. and Green, D. E. (1964). A macromolecular repeating unit of mitochondrial structure and function. correlated electron microscopic and biochemical studies of isolated mitochondria and submitochondrial particles of beef heart muscle. J Cell Biol 22, 63–100.

    Article  CAS  PubMed  Google Scholar 

  32. Gluck, S., Kelly, S. and Al-Awqati, Q. (1982). The proton translocating ATPase responsible for urinary acidification. J Biol Chem 257, 9230–9233.

    CAS  PubMed  Google Scholar 

  33. Gruber, G., Radermacher, M., Ruiz, T., Godovac-Zimmermann, J., Canas, B., Kleine-Kohlbrecher, D., Huss, M., Harvey, W. R. and Wieczorek, H. (2000). Three-dimensional structure and subunit topology of the V(1) ATPase from Manduca sexta midgut. Biochemistry 39, 8609–8616.

    Article  CAS  PubMed  Google Scholar 

  34. Gupta B. L., Berridge M. J. (1966). A coat of repeating subunits on the cytoplasmic surface of the plasma membrane in the rectal papillae of the blowfly, Calliphora Erythrocephala (Meig.), studied in situ by electron microscopy. J Cell Biol 29, 376–382.

    Article  CAS  PubMed  Google Scholar 

  35. Harvey, W. R. (1992). Physiology of V-ATPases. J Exp Biol : 172, 1–17.

    CAS  PubMed  Google Scholar 

  36. Harvey, W. R. (2009). Voltage coupling of primary H+ V-ATPases to secondary Na+- or K+-dependent transporters. J Exp Biol 212, 1620–1629.

    Article  CAS  PubMed  Google Scholar 

  37. Harvey, W. R., Boudko, D. Y., Rheault, M. R. and Okech, B. A. (2009). NHEVNAT: an H+ V-ATPase electrically coupled to a Na+:nutrient amino acid transporter (NAT) forms an Na+/H+ exchanger (NHE). J Exp Biol 212, 347–357.

    Article  CAS  PubMed  Google Scholar 

  38. Harvey, W. R., Cioffi, M., Dow, J. A. and Wolfersberger, M. G. (1983). Potassium ion transport ATPase in insect epithelia. J Exp Biol 106, 91–117.

    CAS  PubMed  Google Scholar 

  39. Harvey, W. R., Cioffi, M. and Wolfersberger, M. G. (1981). Portasomes as coupling factors in active ion transport and oxidative phosphorylation. Amer Zool 21, 775–791.

    CAS  Google Scholar 

  40. Harvey, B. J. and Ehrenfeld, J. (1986). Regulation of intracellular sodium and pH by the electrogenic H+ pump in frog skin. Pflugers Arch – Eur J Physiol 406, 362–366.

    Article  CAS  Google Scholar 

  41. Harvey, W. R. and Nedergaard, S. (1964). Sodium-independent active transport of potassium in the isolated midgut of Cecropia silkworm. Proc Natl Acad Sci USA 51, 757–765.

    Article  CAS  PubMed  Google Scholar 

  42. Hidalgo, C. (1982). Lipid-protein interactions and calcium transport in sarcoplasmic reticulum. Ann N Y Acad Sci 402, 561–562.

    Article  CAS  PubMed  Google Scholar 

  43. Hunke, C., Chen, W. J., Schafer, H. J. and Gruber, G. (2007). Cloning, purification, and nucleotide-binding traits of the catalytic subunit A of the V1VO ATPase from Aedes albopictus. Protein Expr Purif 53, 378–383.

    Article  CAS  PubMed  Google Scholar 

  44. Hunte, C., Screpanti, E., Venturi, M., Rimon, A., Padan, E. and Michel, H. (2005). Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435, 1197–1202.

    Article  CAS  PubMed  Google Scholar 

  45. Ianowski, J. P. and O'Donnell, M. J. (2004). Basolateral ion transport mechanisms during fluid secretion by Drosophila Malpighian tubules: Na+ recycling, Na+:K+:2Cl cotransport and Cl conductance. J Exp Biol 207, 2599–2609.

    Article  CAS  PubMed  Google Scholar 

  46. Ianowski, J. P. and O'Donnell, M. J. (2006). Electrochemical gradients for Na+, K+, Cl and H+ across the apical membrane in Malpighian (renal) tubule cells of Rhodnius prolixus. J Exp Biol 209, 1964–1975.

    Article  CAS  PubMed  Google Scholar 

  47. Jefferies, K. C., Cipriano, D. J. and Forgac, M. (2008). Function, structure and regulation of the vacuolar (H+)-ATPases. Arch Biochem Biophys 476, 33–42.

    Article  CAS  PubMed  Google Scholar 

  48. Kang'ethe, W., Aimanova, K. G., Pullikuth, A. K. and Gill, S. S. (2007). NHE8 mediates amiloride-sensitive Na+/H+ exchange across mosquito Malpighian tubules and catalyzes Na+ and K+ transport in reconstituted proteoliposomes. Am J Physiol Renal Physiol 292, F1501–F1512.

    Article  PubMed  Google Scholar 

  49. Kell, D. B. (1979). On the functional proton current pathway of electron transport phosphorylation. An electrodic view. Biochim Biophys Acta 549, 55–99.

    CAS  PubMed  Google Scholar 

  50. Kell, D. B. (1992). The protonmotive force as an intermediate in electron transport-linked phosphorylation: problems and prospects. Curr Top Cell Regul 33, 279–289.

    CAS  PubMed  Google Scholar 

  51. Koefoed-Johnsen, V. and Ussing, H. H. (1958). The nature of the frog skin potential. Acta Physiol Scand 42, 298–308.

    Article  CAS  PubMed  Google Scholar 

  52. Krulwich, T. A. (1986). Bioenergetics of alkalophilic bacteria. J Membrane Biol 89, 113–125.

    Article  CAS  Google Scholar 

  53. Krulwich, T. A. and Guffanti, A. A. (1992). Proton-coupled bioenergetic processes in extremely alkaliphilic bacteria. J Bioenerg Biomembrane 24(6), 587–599.

    Article  CAS  PubMed  Google Scholar 

  54. Küppers, J. and Thurm, U. (1979). Active ion transport by a sensory epithelium. I. Transepithelial short circuit current, potential difference, and their dependence on metabolism. J Comp Phyisol 134, 131–136.

    Article  Google Scholar 

  55. Lepier, A., Azuma, M., Harvey, W. R. and Wieczorek, H. (1994). K+/H+ antiport in the tobacco hornworm midgut: the K(+)-transporting component of the K+ pump. J Exp Biol 196, 361–373.

    CAS  PubMed  Google Scholar 

  56. Maddrell, S. H. P. (1981). The functional design of the insect excretory system. J Exp Biol 90, 1–15.

    Google Scholar 

  57. Maddrell, S. H., Pilcher, D. E. and Gardiner, B. O. (1969). Stimulatory effect of 5-hydroxytryptamine (serotonin) on secretion by malpighian tubules of insects. Nature 222, 784–785.

    Article  CAS  PubMed  Google Scholar 

  58. Meleshkevitch, E. A., Assis-Nascimento, P., Popova, L. B., Miller, M. M., Kohn, A. B., Phung, E. N., Mandal, A., Harvey, W. R. and Boudko, D. Y. (2006). Molecular characterization of the first aromatic nutrient transporter from the sodium neurotransmitter symporter family. J Exp Biol 209, 3183–3198.

    Article  CAS  PubMed  Google Scholar 

  59. Meleshkevitch, E. A., Robinson, M., Popova, L. B., Miller, M. M., Harvey, W. R. and Boudko, D. Y. (2009). Cloning and functional expression of the first eukaryotic Na+-tryptophan symporter, AgNAT6. J. Exp. Biol, 212, 1559–1567.

    Google Scholar 

  60. Mulkidjanian, A. Y., Cherepanov, D. A., Heberle, J. and Junge, W. (2005). Proton transfer dynamics at membrane/water interface and mechanism of biological energy conversion. Biochemistry (Mosc) 70, 251–256.

    Article  CAS  Google Scholar 

  61. Mulkidjanian, A. Y., Heberle, J. and Cherepanov, D. A. (2006). Protons @ interfaces: implications for biological energy conversion. Biochim Biophys Acta 1757, 913–930.

    Article  CAS  PubMed  Google Scholar 

  62. Murata, T., Yamato, I., Kakinuma, Y., Shirouzu, M., Walker, J. E., Yokoyama, S. and Iwata, S. (2008). Ion binding and selectivity of the rotor ring of the Na+-transporting V-ATPase. Proc Natl Acad Sci U S A 105, 8607–8612.

    Article  CAS  PubMed  Google Scholar 

  63. Murata, T., Yamato, I., Kakinuma, Y. and Yokoyama, K. (2007). [Unveiled multifunctionality of V-ATPase and the molecular mechanism revealed by X-ray crystal structures]. Tanpakushitsu Kakusan Koso 52, 335–341.

    CAS  PubMed  Google Scholar 

  64. Nelson, N. and Harvey, W. R. (1999). Vacuolar and plasma membrane proton-adenosinetriphosphatases. Physiol Rev 79, 361–385.

    CAS  PubMed  Google Scholar 

  65. Nessler, S., Friedrich, O., Bakouh, N., Fink, R. H., Sanchez, C. P., Planelles, G. and Lanzer, M. (2004). Evidence for activation of endogenous transporters in Xenopus laevis oocytes expressing the Plasmodium falciparum chloroquine resistance transporter, PfCRT. J Biol Chem 279, 39438–39446.

    Article  CAS  PubMed  Google Scholar 

  66. Okech, B. A., Boudko, D. Y., Linser, P. J. and Harvey, W. R. (2008). Cationic pathway of pH regulation in larvae of Anopheles gambiae. J Exp Biol 211, 957–968.

    Article  CAS  PubMed  Google Scholar 

  67. Onken, H. and Moffett, D. F. (2009). Revisiting the cellular mechanisms of strong luminal alkalinization in the anterior midgut of larval mosquitoes. J Exp Biol 212, 373–377.

    Article  CAS  PubMed  Google Scholar 

  68. Onken, H., Patel, M., Javoroncov, M., Izeirovski, S., Moffett, S. B. and Moffett, D. F. (2009). Strong alkalinization in the anterior midgut of larval yellow fever mosquitoes (Aedes aegypti): involvement of luminal Na(+)/K(+)-ATPase. J Exp Zool Part A Ecol Genet Physiol 311, 155–161.

    Article  Google Scholar 

  69. Orlowski, J. and Grinstein, S. (2004). Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflügers Arch 447, 549–565.

    Article  CAS  PubMed  Google Scholar 

  70. Padan, E., Bibi, E., Ito, M. and Krulwich, T. A. (2005). Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717, 67–88.

    Article  CAS  PubMed  Google Scholar 

  71. Piermarini, P. M., Weihrauch, D., Meyer, H., Huss, M. and Beyenbach, K. W. (2009). NHE8 is an intracellular cation/H+ exchanger in renal tubules of the yellow-fever mosquito Aedes aegypti. Am J Physiol Renal Physiol 296, F730–F750.

    Article  CAS  PubMed  Google Scholar 

  72. Pullikuth, A. K., Filippov, V. and Gill, S. S. (2003). Phylogeny and cloning of ion transporters in mosquitoes. J Exp Biol 206, 3857–3868.

    Article  CAS  PubMed  Google Scholar 

  73. Radermacher, M., Ruiz, T., Harvey, W. R., Wieczorek, H. and Gruber, G. (1999). Molecular architecture of Manduca sexta midgut V1 ATPase visualized by electron microscopy. FEBS Lett 453, 383–386.

    Article  CAS  PubMed  Google Scholar 

  74. Ramsay, J. A. (1953a). Active transport of potassium by the malpighian tubules of insects. J Exp Biol 30, 358–369.

    CAS  Google Scholar 

  75. Ramsay, J. A. (1953b). Exchanges of sodium and potassium in mosquito larvae. J Exp Biol 30, 79–89.

    CAS  Google Scholar 

  76. Rheault, M. R., Okech, B. A., Keen, S. B., Miller, M. M., Meleshkevitch, E. A., Linser, P. J., Boudko, D. Y. and Harvey, W. R. (2007). Molecular cloning, phylogeny and localization of AgNHA1: the first Na+/H+ antiporter (NHA) from a metazoan, Anopheles gambiae. J Exp Biol 210, 3848–3861.

    Article  CAS  PubMed  Google Scholar 

  77. Saroussi, S. and Nelson, N. (2008). Vacuolar H(+)-ATPase-an enzyme for all seasons. Pflügers Arch.

    Google Scholar 

  78. Skou, J. C. (1997). The identification of the sodium-potassium pump. Nobel Lectures, Chemistry 1996–2000, Editor Ingmar Grenthe, World Scientific Publishing Co., Singapore, 2003.

    Google Scholar 

  79. Smith, K. E., Vanekeris, L. A. and Linser, P. J. (2007). Cloning and characterization of AgCA9, a novel {alpha}-carbonic anhydrase from Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) larvae. J Exp Biol 210, 3919–3930.

    Article  CAS  PubMed  Google Scholar 

  80. Stobbart, R. H. (1971). Evidence for Na plus-H plus and Cl minus-HCO3 minus exchanges during independent sodium and chloride uptake by the larva of the mosquito Aedes aegypti (L.). J Exp Biol 54, 19–27.

    CAS  PubMed  Google Scholar 

  81. Taglicht, D., Padan, E. and Schuldiner, S. (1993). Proton-sodium stoichiometry of NhaA, an electrogenic antiporter from Escherichia-Coli. J Biol Chem 268(8), 5382–5387.

    CAS  PubMed  Google Scholar 

  82. Terra, W. R. and Ferreira, C. (1994). Insect digestive enzymes: properties, compartmentalization and function. Comp Biochem Physiol B Biochem Mol Biol 109, 1–62.

    Google Scholar 

  83. Thurm, U. and Wessel, G. (1979). Metabolism-dependent transepithelial potential differences at epidermal receptors of arthropods. I- Comparative data. J Comp Physiol 134, 119–130.

    Article  Google Scholar 

  84. Turbeck, B. O., Nedergaard, S. and Kruse, H. (1968). An anion-stimulated adenosine triphosphatase from the potassium-transporting midgut of the larva of Hyalophora cecropia. Biochim Biophys Acta 163, 354–361.

    Article  CAS  PubMed  Google Scholar 

  85. Uchida, E., Ohsumi, Y. and Anraku, Y. (1985). Purification and properties of H+-translocating Mg2+ -adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem 260, 1090–1095.

    CAS  PubMed  Google Scholar 

  86. Ussing, H. H. and Zerahn, K. (1951). Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand 23, 110–127.

    Article  CAS  PubMed  Google Scholar 

  87. Voss, M., Vitavska, O., Walz, B., Wieczorek, H. and Baumann, O. (2007). Stimulus-induced phosphorylation of V-ATPase by protein kinase A. J Biol Chem.

    Google Scholar 

  88. Weber, W. (1999). Ion currents of Xenopus laevis oocytes: state of the art. Biochim Biophys Acta 1421, 213–233.

    Article  CAS  PubMed  Google Scholar 

  89. Wieczorek, H., Brown, D., Grinstein, S., Ehrenfeld, J. and Harvey, W. R. (1999). Animal plasma membrane energization by proton-motive V-ATPases. Bioessays 21, 637–648.

    Article  CAS  PubMed  Google Scholar 

  90. Wieczorek, H., Putzenlechner, M., Zeiske, W. and Klein, U. (1991). A vacuolar-type proton pump energizes K+/H+ antiport in an animal plasma membrane. J Biol Chem 266, 15340–15347.

    CAS  PubMed  Google Scholar 

  91. Wieczorek, H., Weerth, S., Schindlbeck, M. and Klein, U. (1989). A vacuolar-type proton pump in a vesicle fraction enriched with potassium transporting plasma membranes from tobacco hornworm midgut. J Biol Chem 264, 11143–11148.

    CAS  PubMed  Google Scholar 

  92. Wieczorek, H., Wolfersberger, M. G., Cioffi, M. and Harvey, W. R. (1986). Cation-stimulated ATPase activity in purified plasma membranes from tobacco hornworm midgut. Biochimica et Biophysica Acta 857, 271–281.

    Article  CAS  PubMed  Google Scholar 

  93. Xiang, M., Feng, M., Muend, S. and Rao, R. (2007). A human Na+/H+ antiporter sharing evolutionary origins with bacterial NhaA may be a candidate gene for essential hypertension. Proc Natl Acad Sci U S A 104, 18677–18681.

    Article  CAS  PubMed  Google Scholar 

  94. Zhuang, Z., Linser, P. J. and Harvey, W. R. (1999). Antibody to H(+) V-ATPase subunit E colocalizes with portasomes in alkaline larval midgut of a freshwater mosquito (Aedes aegypti). J Exp Biol 202, 2449–2460.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Sergio Grinstein for the fluorescent image of AgNHA1-GFP expressing CHO cells, Dr. Mark R. Rheault for the data on hemolymph K+ activities in A. gambiae larvae and Drs. Olga Vitavska and Helmut Wieczorek for the information on immunolabeling caterpillar membranes. We thank Dr. Grinstein, Dr. Helmut Wieczorek, Dr. Nathan Nelson, Dr. Walter Boron, Dr. Subrata Tripathi, and Dr. David Price for many helpful discussions and suggestions but absolve them of any responsibility for controversial aspects of this chapter. This work was supported in part by Research Grants AI-52436 and AI-30464 from NIH and by funds from the Whitney Laboratory, the Emerging Pathogens Institute and the Department of Epidemiology and Biostatistics at the University of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Harvey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Harvey, W.R., Okech, B.A. (2010). H+, Na+, K+, and Amino Acid Transport in Caterpillar and Larval Mosquito Alimentary Canal. In: Gerencser, G. (eds) Epithelial Transport Physiology. Humana Press. https://doi.org/10.1007/978-1-60327-229-2_6

Download citation

Publish with us

Policies and ethics