Skip to main content

Cardiovascular Disease in Women with Diabetes

  • Chapter
  • First Online:
Diabetes in Women

Part of the book series: Contemporary Diabetes ((CDI))

  • 1211 Accesses

Abstract

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in women in the USA. Women with diabetes are at a greater risk of CVD than men with diabetes. In this chapter we review the various mechanisms by which hyperglycemia potentiates this increased CVD risk, including coagulation abnormalities as well as endothelial dysfunction. Where applicable, sex-specific differences in these mechanisms are highlighted. Finally, the impact and burden of diabetes on CVD as well as screening for CVD in women are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mosca L, Banka CL, Benjamin EJ et al. Evidence-based guidelines for cardiovascular disease prevention in women: 2007 update. Circulation 2007; 115(11):1481–1501.

    Article  PubMed  Google Scholar 

  2. Sowers JR. Diabetes mellitus and cardiovascular disease in women. Archives of Internal Medicine 1998; 158(6):617–621.

    Article  CAS  PubMed  Google Scholar 

  3. Kaseta JR, Skafar DF, Ram JL, Jacober SJ, Sowers JR. Cardiovascular disease in the diabetic woman. Journal of Clinical Endocrinology & Metabolism 1999; 84(6):1835–1838.

    Article  CAS  Google Scholar 

  4. Skafar DF, Xu R, Morales J, Ram J, Sowers JR. Clinical review 91: female sex hormones and cardiovascular disease in women. Journal of Clinical Endocrinology & Metabolism 1997; 82(12):3913–3918.

    Article  CAS  Google Scholar 

  5. Hanes DS, Weir MR, Sowers JR. Gender considerations in hypertension pathophysiology and treatment. American Journal of Medicine 1996; 101(3A):10S–21S.

    Article  CAS  PubMed  Google Scholar 

  6. Horwitz KB, Horwitz LD. Canine vascular tissues are targets for androgens, estrogens, progestins, and glucocorticoids. Journal of Clinical Investigation 1982; 69(4):750–758.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang F, Ram JL, Standley PR, Sowers JR. 17β-Estradiol attenuates voltage-dependent Ca2+ currents in A7r5 vascular smooth muscle cell line. American Journal of Physiology 1994; 266(4 Part 1):C975–C980.

    CAS  PubMed  Google Scholar 

  8. Orimo A, Inoue S, Ikegami A et al. Vascular smooth muscle cells as target for estrogen. Biochemical & Biophysical Research Communications 1993; 195(2):730–736.

    Article  CAS  Google Scholar 

  9. Maggi A, Cignarella A, Brusadelli A, Bolego C, Pinna C, Puglisi L. Diabetes undermines estrogen control of inducible nitric oxide synthase function in rat aortic smooth muscle cells through overexpression of estrogen receptor-beta. Circulation 2003; 108(2):211–217.

    Article  CAS  PubMed  Google Scholar 

  10. Natarajan S, Liao Y, Cao G, Lipsitz SR, McGee DL. Sex differences in risk for coronary heart disease mortality associated with diabetes and established coronary heart disease. Archives of Internal Medicine 2003; 163(14):1735–1740.

    Article  PubMed  Google Scholar 

  11. Almdal T, Scharling H, Jensen JS, Vestergaard H. The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: a population-based study of 13,000 men and women with 20 years of follow-up. Archives of Internal Medicine 2004; 164(13):1422–1426.

    Article  PubMed  Google Scholar 

  12. Hu FB, Stampfer MJ, Solomon CG et al. The impact of diabetes mellitus on mortality from all causes and coronary heart disease in women: 20 years of follow-up. Archives of Internal Medicine 2001; 161(14):1717–1723.

    Article  CAS  PubMed  Google Scholar 

  13. Barrett-Connor EL, Cohn BA, Wingard DL, Edelstein SL. Why is diabetes mellitus a stronger risk factor for fatal ischemic heart disease in women than in men? The Rancho Bernardo Study. JAMA 1991; 265(5):627–631.

    Article  CAS  PubMed  Google Scholar 

  14. Gregg EW, Gu Q, Cheng YJ, Venkat Narayan KM, Cowie CC. Mortality trends in men and women with diabetes, 1971 to 2000. Annals of Internal Medicine 2007; 147(3):149–155.

    PubMed  Google Scholar 

  15. Dale AC, Nilsen TI, Vatten L, Midthjell K, Wiseth R. Diabetes mellitus and risk of fatal ischaemic heart disease by gender: 18 years follow-up of 74 914 individuals in the HUNT 1 Study. European Heart Journal 2007; 28(23):2924–2929.

    Article  PubMed  Google Scholar 

  16. Huxley R, Barzi F, Woodward M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ 2006; 332(7533):73–78.

    Article  PubMed  Google Scholar 

  17. Goldschmid MG, Barrett-Connor E, Edelstein SL, Wingard DL, Cohn BA, Herman WH. Dyslipidemia and ischemic heart disease mortality among men and women with diabetes. Circulation 1994; 89(3):991–997.

    CAS  PubMed  Google Scholar 

  18. Lee WL, Cheung AM, Cape D, Zinman B. Impact of diabetes on coronary artery disease in women and men: a meta-analysis of prospective studies. Diabetes Care 2000; 23(7):962–968.

    Article  CAS  PubMed  Google Scholar 

  19. Ossei-Gerning N, Wilson IJ, Grant PJ. Sex differences in coagulation and fibrinolysis in subjects with coronary artery disease. Thrombosis and Haemostasis 1998; 79(4):736–740.

    CAS  PubMed  Google Scholar 

  20. McFarlane SI, Castro J, Kaur J et al. Control of blood pressure and other cardiovascular risk factors at different practice settings: outcomes of care provided to diabetic women compared to men. Journal of Clinical Hypertension 2005; 7(2):73–80.

    Article  PubMed  Google Scholar 

  21. Kanaya AM, Grady D, Barrett-Connor E. Explaining the sex difference in coronary heart disease mortality among patients with type 2 diabetes mellitus: a meta-analysis. Archives of Internal Medicine 2002; 162(15):1737–1745.

    Article  PubMed  Google Scholar 

  22. Wexler DJ, Grant RW, Meigs JB, Nathan DM, Cagliero E. Sex disparities in treatment of cardiac risk factors in patients with type 2 diabetes. Diabetes Care 2005; 28(3):514–520.

    Article  PubMed  Google Scholar 

  23. Ferrara A, Mangione CM, Kim C et al. Gender disparities in control and treatment of modifiable cardiovascular disease risk factors among patients with diabetes: translating research into action for diabetes (TRIAD). Diabetes Care 2007; doi: 10.2337/dc07-1244.

    Google Scholar 

  24. Wenger NK. Heightened cardiovascular risk in diabetic women: can the tide be turned? Annals of Internal Medicine 2007; 147(3):208–210.

    PubMed  Google Scholar 

  25. Vinik AI, Erbas T, Park TS, Nolan R, Pittenger GL. Platelet dysfunction in type 2 diabetes. Diabetes Care 2001; 24(8):1476–1485.

    Article  CAS  PubMed  Google Scholar 

  26. Gerrard JM, Stuart MJ, Rao GH et al. Alteration in the balance of prostaglandin and thromboxane synthesis in diabetic rats. Journal of Laboratory & Clinical Medicine 1980; 95(6):950–958.

    CAS  Google Scholar 

  27. Grant PJ. Diabetes mellitus as a prothrombotic condition. Journal of Internal Medicine 2007; 262(2):157–172.

    Article  CAS  PubMed  Google Scholar 

  28. Tschoepe D, Roesen P, Kaufmann L et al. Evidence for abnormal platelet glycoprotein expression in diabetes mellitus. European Journal of Clinical Investigation 1990; 20(2):166–170.

    CAS  PubMed  Google Scholar 

  29. Akai T, Naka K, Okuda K, Takemura T, Fujii S. Decreased sensitivity of platelets to prostacyclin in patients with diabetes mellitus. Hormone & Metabolic Research 1983; 15(11):523–526.

    Article  CAS  Google Scholar 

  30. Winocour PD, Watala C, Perry DW, Kinlough-Rathbone RL. Decreased platelet membrane fluidity due to glycation or acetylation of membrane proteins. Thrombosis & Haemostasis 1992; 68(5):577–582.

    CAS  Google Scholar 

  31. Winocour PD. Platelet abnormalities in diabetes mellitus. Diabetes 1992; 41(Suppl 2):26–31.

    PubMed  Google Scholar 

  32. Ferretti G, Rabini RA, Bacchetti T et al. Glycated low density lipoproteins modify platelet properties: a compositional and functional study. Journal of Clinical Endocrinology & Metabolism 2002; 87(5):2180–2184.

    Article  CAS  Google Scholar 

  33. McFarlane SI, Banerji M, Sowers JR. Insulin resistance and cardiovascular disease. Journal of Clinical Endocrinology & Metabolism 2001; 86(2):713–718.

    Article  CAS  Google Scholar 

  34. Falcon C, Pfliegler G, Deckmyn H, Vermylen J. The platelet insulin receptor: detection, partial characterization, and search for a function. Biochemical & Biophysical Research Communications 1988; 157(3):1190–1196.

    Article  CAS  Google Scholar 

  35. Udvardy M, Pfliegler G, Rak K. Platelet insulin receptor determination in non-insulin dependent diabetes mellitus. Experientia 1985; 41(3):422–423.

    Article  CAS  PubMed  Google Scholar 

  36. Ferroni P, Basili S, Falco A, Davi G. Platelet activation in type 2 diabetes mellitus. Journal of Thrombosis and Haemostasis 2004; 2(8):1282–1291.

    Article  CAS  PubMed  Google Scholar 

  37. Davi G, Ciabattoni G, Consoli A et al. In vivo formation of 8-iso-prostaglandin f2alpha and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation. Circulation 1999; 99(2):224–229.

    CAS  PubMed  Google Scholar 

  38. Carr ME. Diabetes mellitus: a hypercoagulable state. Journal of Diabetes & its Complications 2001; 15(1):44–54.

    Article  CAS  Google Scholar 

  39. Festa A, D’Agostino R, Jr, Tracy RP, Haffner SM, Insulin Resistance AS. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes 2002; 51(4):1131–1137.

    Article  CAS  PubMed  Google Scholar 

  40. Festa A, Williams K, Tracy RP, Wagenknecht LE, Haffner SM. Progression of plasminogen activator inhibitor-1 and fibrinogen levels in relation to incident type 2 diabetes. Circulation 2006; 113(14):1753–1759.

    Article  CAS  PubMed  Google Scholar 

  41. Nagi DK, Yudkin JS. Effects of metformin on insulin resistance, risk factors for cardiovascular disease, and plasminogen activator inhibitor in NIDDM subjects. A study of two ethnic groups. Diabetes Care 1993; 16(4):621–629.

    Article  CAS  PubMed  Google Scholar 

  42. Koenig W. Fibrin(ogen) in cardiovascular disease: an update. Thrombosis & Haemostasis 2003; 89(4):601–609.

    CAS  Google Scholar 

  43. Emanuele N, Azad N, Abraira C et al. Effect of intensive glycemic control on fibrinogen, lipids, and lipoproteins: Veterans Affairs Cooperative Study in Type II Diabetes Mellitus. Archives of Internal Medicine 1998; 158(22):2485–2490.

    Article  CAS  PubMed  Google Scholar 

  44. Fanghanel G, Silva U, Sanchez-Reyes L, Sisson D, Sotres D, Torres EM. Effects of metformin on fibrinogen levels in obese patients with type 2 diabetes. Revista de Investigacion Clinica 1998; 50(5):389–394.

    CAS  PubMed  Google Scholar 

  45. Heinrich J, Balleisen L, Schulte H, Assmann G, van de LJ. Fibrinogen and factor VII in the prediction of coronary risk. Results from the PROCAM study in healthy men. Arteriosclerosis & Thrombosis 1994; 14(1):54–59.

    CAS  Google Scholar 

  46. Boden G, Vaidyula VR, Homko C, Cheung P, Rao AK. Circulating tissue factor procoagulant activity and thrombin generation in patients with type 2 diabetes: effects of insulin and glucose. Journal of Clinical Endocrinology & Metabolism 2007; 92(11):4352–4358.

    Article  CAS  Google Scholar 

  47. Calles-Escandon J, Cipolla M. Diabetes and endothelial dysfunction: a clinical perspective. Endocrine Reviews 2001; 22(1):36–52.

    Article  CAS  PubMed  Google Scholar 

  48. Calles-Escandon J, Garcia-Rubi E, Mirza S, Mortensen A. Type 2 diabetes: one disease, multiple cardiovascular risk factors. Coronary Artery Disease 1999; 10(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  49. Furchgott RF. Introduction to EDRF research. Journal of Cardiovascular Pharmacology 1993; 22(Suppl 2):S1–S2.

    CAS  PubMed  Google Scholar 

  50. Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. Journal of Clinical Investigation 1989; 83(5):1774–1777.

    Article  CAS  PubMed  Google Scholar 

  51. Cacoub P, Carayon A, Dorent R et al. Endothelin: the vasoconstrictor of the 1990’s? Revue de Medecine Interne 1993; 14(4):229–232.

    Article  CAS  PubMed  Google Scholar 

  52. Goldin E, Casadevall M, Mourelle M et al. Role of prostaglandins and nitric oxide in gastrointestinal hyperemia of diabetic rats. American Journal of Physiology 1996; 270(4 Part 1):G684–G690.

    CAS  PubMed  Google Scholar 

  53. Hsueh WA, Anderson PW. Systemic hypertension and the renin-angiotensin system in diabetic vascular complications. American Journal of Cardiology 1993; 72(20):14H–21H.

    Article  CAS  PubMed  Google Scholar 

  54. Busse R, Fleming I, Hecker M. Signal transduction in endothelium-dependent vasodilatation. European Heart Journal 1993; 14(Suppl I):2–9.

    CAS  PubMed  Google Scholar 

  55. Mombouli JV. ACE inhibition, endothelial function and coronary artery lesions. Role of kinins and nitric oxide. Drugs 1997; 54(Suppl 5):12–22.

    Article  CAS  PubMed  Google Scholar 

  56. Cowan DB, Langille BL. Cellular and molecular biology of vascular remodeling. Current Opinion in Lipidology 1996; 7(2):94–100.

    Article  CAS  PubMed  Google Scholar 

  57. Natarajan R, Bai W, Lanting L, Gonzales N, Nadler J. Effects of high glucose on vascular endothelial growth factor expression in vascular smooth muscle cells. American Journal of Physiology 1997; 273(5 Part 2):H2224–H2231.

    CAS  PubMed  Google Scholar 

  58. Biegelsen ES, Loscalzo J. Endothelial function and atherosclerosis. Coronary Artery Disease 1999; 10(4):241–256.

    Article  CAS  PubMed  Google Scholar 

  59. Tracy RP, Lemaitre RN, Psaty BM et al. Relationship of C-reactive protein to risk of cardiovascular disease in the elderly. Results from the Cardiovascular Health Study and the Rural Health Promotion Project. Arteriosclerosis, Thrombosis & Vascular Biology 1997; 17(6):1121–1127.

    CAS  Google Scholar 

  60. De Meyer GR, Herman AG. Vascular endothelial dysfunction. Progress in Cardiovascular Diseases 1997; 39(4):325–342.

    Article  CAS  PubMed  Google Scholar 

  61. Kario K, Matsuo T, Kobayashi H, Matsuo M, Sakata T, Miyata T. Activation of tissue factor-induced coagulation and endothelial cell dysfunction in non-insulin-dependent diabetic patients with microalbuminuria. Arteriosclerosis, Thrombosis & Vascular Biology 1995; 15(8):1114–1120.

    CAS  Google Scholar 

  62. Schalkwijk CG, Stehouwer CD. Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clinical Science 2005; 109(2):143–159.

    Article  CAS  PubMed  Google Scholar 

  63. Hattori Y, Kasai K, Nakamura T, Emoto T, Shimoda S. Effect of glucose and insulin on immunoreactive endothelin-1 release from cultured porcine aortic endothelial cells. Metabolism: Clinical & Experimental 1991; 40(2):165–169.

    CAS  Google Scholar 

  64. Cipolla MJ. Elevated glucose potentiates contraction of isolated rat resistance arteries and augments protein kinase C-induced intracellular calcium release. Metabolism: Clinical & Experimental 1999; 48(8):1015–1022.

    CAS  Google Scholar 

  65. Cosentino F, Luscher TF. Endothelial dysfunction in diabetes mellitus. Journal of Cardiovascular Pharmacology 1998; 32(Suppl 3):S54–S61.

    CAS  PubMed  Google Scholar 

  66. Jialal I, Crettaz M, Hachiya HL et al. Characterization of the receptors for insulin and the insulin-like growth factors on micro- and macrovascular tissues. Endocrinology 1985; 117(3):1222–1229.

    Article  CAS  PubMed  Google Scholar 

  67. King GL, Buzney SM, Kahn CR et al. Differential responsiveness to insulin of endothelial and support cells from micro- and macrovessels. Journal of Clinical Investigation 1983; 71(4):974–979.

    Article  CAS  PubMed  Google Scholar 

  68. Kuboki K, Jiang ZY, Takahara N et al. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation 2000; 101(6):676–681.

    CAS  PubMed  Google Scholar 

  69. Inoguchi T, Xia P, Kunisaki M, Higashi S, Feener EP, King GL. Insulin’s effect on protein kinase C and diacylglycerol induced by diabetes and glucose in vascular tissues. American Journal of Physiology 1994; 267(3 Part 1):E369–E379.

    CAS  PubMed  Google Scholar 

  70. Vervoort G, Lutterman JA, Smits P, Berden JH, Wetzels JF. Transcapillary escape rate of albumin is increased and related to haemodynamic changes in normo-albuminuric type 1 diabetic patients. Journal of Hypertension 1999; 17(12 Part 2):1911–1916.

    Article  CAS  PubMed  Google Scholar 

  71. Ferri C, Bellini C, Desideri G et al. Circulating endothelin-1 levels in obese patients with the metabolic syndrome. Experimental & Clinical Endocrinology & Diabetes 1997; 105(Suppl 2):38–40.

    Article  CAS  Google Scholar 

  72. Calles-Escandon J, Ballor D, Harvey-Berino J, Ades P, Tracy R, Sobel B. Amelioration of the inhibition of fibrinolysis in elderly, obese subjects by moderate energy intake restriction. American Journal of Clinical Nutrition 1996; 64(1):7–11.

    CAS  PubMed  Google Scholar 

  73. Andersen P, Seljeflot I, Abdelnoor M et al. Increased insulin sensitivity and fibrinolytic capacity after dietary intervention in obese women with polycystic ovary syndrome. Metabolism: Clinical & Experimental 1995; 44(5):611–616.

    CAS  Google Scholar 

  74. Steinberg HO, Tarshoby M, Monestel R et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. Journal of Clinical Investigation 1997; 100(5):1230–1239.

    Article  CAS  PubMed  Google Scholar 

  75. Ting HH, Timimi FK, Boles KS, Creager SJ, Ganz P, Creager MA. Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. Journal of Clinical Investigation 1996; 97(1):22–28.

    Article  CAS  PubMed  Google Scholar 

  76. Tesfamariam B, Brown ML, Cohen RA. Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C. Journal of Clinical Investigation 1991; 87(5):1643–1648.

    Article  CAS  PubMed  Google Scholar 

  77. Hink U, Tsilimingas N, Wendt M, Munzel T. Mechanisms underlying endothelial dysfunction in diabetes mellitus: therapeutic implications. Treat in Endocrinology 2003; 2(5):293–304.

    Article  CAS  Google Scholar 

  78. Cosentino F, Hishikawa K, Katusic ZS, Luscher TF. High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation 1997; 96(1):25–28.

    CAS  PubMed  Google Scholar 

  79. Hink U, Li H, Mollnau H et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circulation Research 2001; 88(2):E14–E22.

    CAS  PubMed  Google Scholar 

  80. Milstien S, Katusic Z. Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochemical & Biophysical Research Communications 1999; 263(3):681–684.

    Article  CAS  Google Scholar 

  81. Stroes E, Kastelein J, Cosentino F et al. Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. Journal of Clinical Investigation 1997; 99(1):41–46.

    Article  CAS  PubMed  Google Scholar 

  82. Heitzer T, Brockhoff C, Mayer B et al. Tetrahydrobiopterin improves endothelium-dependent vasodilation in chronic smokers: evidence for a dysfunctional nitric oxide synthase. Circulation Research 2000; 86(2):E36–E41.

    CAS  PubMed  Google Scholar 

  83. Sowers JR. Insulin and insulin-like growth factor in normal and pathological cardiovascular physiology. Hypertension 1997; 29(3):691–699.

    CAS  PubMed  Google Scholar 

  84. Ishii H, Koya D, King GL. Protein kinase C activation and its role in the development of vascular complications in diabetes mellitus. Journal of Molecular Medicine 1998; 76(1):21–31.

    Article  CAS  PubMed  Google Scholar 

  85. Hirata K, Kuroda R, Sakoda T et al. Inhibition of endothelial nitric oxide synthase activity by protein kinase C. Hypertension 1995; 25(2):180–185.

    CAS  PubMed  Google Scholar 

  86. Inoguchi T, Li P, Umeda F et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C – dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 2000; 49(11):1939–1945.

    Article  CAS  PubMed  Google Scholar 

  87. Du XL, Edelstein D, Rossetti L et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexo-samine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proceedings of the National Academy of Sciences of the United States of America 2000; 97(22):12222–12226.

    Article  CAS  PubMed  Google Scholar 

  88. King GL, Brownlee M. The cellular and molecular mechanisms of diabetic complications. Endocrinology & Metabolism Clinics of North America 1996; 25(2):255–270.

    Article  CAS  Google Scholar 

  89. Guerci B, Bohme P, Kearney-Schwartz A, Zannad F, Drouin P. Endothelial dysfunction and type 2 diabetes, Part 2: altered endothelial function and the effects of treatments in type 2 diabetes mellitus. Diabetes & Metabolism 2001; 27(4 Part 1):436–447.

    CAS  Google Scholar 

  90. Border WA, Yamamoto T, Noble NA. Transforming growth factor beta in diabetic nephropathy. Diabetes/Metabolism Reviews 1996; 12(4):309–339.

    CAS  PubMed  Google Scholar 

  91. Yamamoto T, Nakamura T, Noble NA, Ruoslahti E, Border WA. Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proceedings of the National Academy of Sciences of the United States of America 1993; 90(5):1814–1818.

    Article  CAS  PubMed  Google Scholar 

  92. McMillan DE. Increased levels of acute-phase serum proteins in diabetes. Metabolism: Clinical & Experimental 1989; 38(11):1042–1046.

    CAS  Google Scholar 

  93. Chen S, Hong SW, Iglesias-de la Cruz MC, Isono M, Casaretto A, Ziyadeh FN. The key role of the transforming growth factor-beta system in the pathogenesis of diabetic nephropathy. Renal Failure 2001; 23(3–4):471–481.

    Article  CAS  PubMed  Google Scholar 

  94. Aiello LP, Avery RL, Arrigg PG et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. New England Journal of Medicine 1994; 331(22):1480–1487.

    Article  CAS  PubMed  Google Scholar 

  95. Bax JJ, Young LH, Frye RL, Bonow RO, Steinberg HO, Barrett EJ. Screening for coronary artery disease in patients with diabetes. Diabetes Care 2007; 30(10):2729–2736.

    Article  PubMed  Google Scholar 

  96. Stangl V, Witzel V, Baumann G, Stangl K. Current diagnostic concepts to detect coronary artery disease in women. European Heart Journal 2008; 29(6):707–717.

    Article  PubMed  Google Scholar 

  97. Mieres JH, Shaw LJ, Arai A et al. Role of noninvasive testing in the clinical evaluation of women with suspected coronary artery disease: Consensus statement from the Cardiac Imaging Committee, Council on Clinical Cardiology, and the Cardiovascular Imaging and Intervention Committee, Council on Cardiovascular Radiology and Intervention, American Heart Association. Circulation 2005; 111(5):682–696.

    Article  PubMed  Google Scholar 

  98. American Diabetes Association. Standards of medical care in diabetes – 2008. Diabetes Care 2008; 31(Suppl 1):S12–S54.

    Google Scholar 

  99. Gouni-Berthold I, Berthold HK, Mantzoros CS, Bohm M, Krone W. Sex disparities in the treatment and control of cardiovascular risk factors in type 2 diabetes. Diabetes Care 2008; 31(7):1389–1391.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Rieanne Brinkmann and Brenda Hunter for their assistance in the manuscript preparation. Dr. Sowers is a member of the Speakers’ Bureau and has received grant funding from Novartis Pharmaceutical Company. Dr. Sowers is a member of the Speakers’ Bureau for Merck Pharmaceutical Company. Dr. Sowers is on the Advisory Board and has received grant funding from Forest Research Institute.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gajula, S., Reddy, A., Kurukulasuriya, L.R., Manrique, C., Lastra, G., Sowers, J.R. (2009). Cardiovascular Disease in Women with Diabetes. In: Tsatsoulis, A., Wyckoff, J., Brown, F. (eds) Diabetes in Women. Contemporary Diabetes. Humana Press. https://doi.org/10.1007/978-1-60327-250-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-250-6_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-249-0

  • Online ISBN: 978-1-60327-250-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics