Skip to main content

The Corticostriatal Pathway in Parkinson’s Disease

  • Chapter
  • First Online:
Cortico-Subcortical Dynamics in Parkinson's Disease

Part of the book series: Contemporary Neuroscience ((CNEURO))

The cortico-basal ganglia-thalamocortical loop participates in the regulation of motor movements and goal-directed behaviors [1–4]. Parkinson’s disease (PD), as well as other neurodegenerative disorders that affect motor function, is associated with abnormal neurotransmission along this pathway [5–7]. In this chapter, we will examine how a reduction of dopamine availability in PD produces striatal synaptic plasticity. These striatal adaptations might be sufficient to produce bradykinesia in the dopamine-deficient state and motor dyskinesias following treatment. Although changes occur at several levels of the cortico-basal ganglia-thalamocortical loop, the focus of this chapter is on the corticostriatal synapse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander, GE, DeLong, MR, Strick, PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 1986; 9:357–81.

    PubMed  CAS  Google Scholar 

  2. Alexander, GE, Crutcher, MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 1990;13(7):266–71.

    PubMed  CAS  Google Scholar 

  3. Albin, RL, Young, AB, Penney, JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989; 12(10):366–75.

    PubMed  CAS  Google Scholar 

  4. Jog, MS, et al. Building neural representations of habits. Science 1999; 286(5445):1745–9.

    PubMed  CAS  Google Scholar 

  5. Haber, SN. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 2003; 26(4): 317–30.

    PubMed  Google Scholar 

  6. Frankel, M, et al. Obsessions and compulsions in Gilles de la Tourette's syndrome. Neurology 1986; 36(3):378–82.

    PubMed  CAS  Google Scholar 

  7. Mink, JW, Thach WT. Basal ganglia intrinsic circuits and their role in behavior. Curr Opin Neurobiol 1993; 3(6):950–7.

    PubMed  CAS  Google Scholar 

  8. Wilson, CJ. Corticostriatal neurons of the medial agranular cortex in rats, in Functions of the Cortico-Basal Ganglia Loop, Kimura, M, Graybiel, AM. Editors. 1995, Tokyo: Springer. 50–72.

    Google Scholar 

  9. Kemp, JM, Powell TP. The cortico-striate projection in the monkey. Brain 1970;93(3): 525–46.

    PubMed  CAS  Google Scholar 

  10. Gerfen, CR. The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature 1984; 311(5985):461–4.

    PubMed  CAS  Google Scholar 

  11. Kita, H, Kitai, ST. Glutamate decarboxylase immunoreactive neurons in rat neostriatum: their morphological types and populations. Brain Res 1988;447(2):346–52.

    PubMed  CAS  Google Scholar 

  12. Wilson, CJ. Basal Ganglia, in The synaptic organization of the brain, Shepherd, GW. Editor. 1990,Oxford: Oxford University Press,. pp. 279–316.

    Google Scholar 

  13. Pickel, VM, et al. Ultrastructural immunocytochemical localization of tyrosine hydroxylase in the neostriatum. Brain Res 1981; 225(2): 373–85.

    PubMed  CAS  Google Scholar 

  14. Graybiel, AM. Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 1990;13(7):244–54.

    PubMed  CAS  Google Scholar 

  15. Bamford, NS, et al., Repeated exposure to methamphetamine causes long-lasting presynaptic corticostriatal depression that is renormalized with drug readministration. Neuron, 2008;58(1):89–103.

    Google Scholar 

  16. Zhang, W, et al. Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out mice. J Neurosci 2002;22(5):1709–17.

    PubMed  CAS  Google Scholar 

  17. Calabresi, P, et al. Acetylcholine-mediated modulation of striatal function. Trends Neurosci 2000;23(3):120–6.

    PubMed  CAS  Google Scholar 

  18. Hersch, SM, et al. Distribution of m1-m4 muscarinic receptor proteins in the rat striatum: light and electron microscopic immunocytochemistry using subtype-specific antibodies. J Neurosci 1994;14 (5 Pt 2):3351–63.

    PubMed  CAS  Google Scholar 

  19. Wang, H, Sun, X. Desensitized nicotinic receptors in brain. Brain Res Brain Res Rev 2005;48(3):420–37.

    PubMed  CAS  Google Scholar 

  20. Tepper, J.M., C.J. Wilson, and T. Koos, Feedforward and feedback inhibition in neostriatal GABAergic spiny neurons. Brain Res Rev 2008;58(2):272–81.

    Google Scholar 

  21. Redgrave, P, Prescott, TJ, Gurney, K. Is the short-latency dopamine response too short to signal reward error? Trends Neurosci 1999;22(4):146–51.

    PubMed  CAS  Google Scholar 

  22. Missale, C, et al. Dopamine receptors: from structure to function. Physiol Rev 1998;78(1):189–225.

    PubMed  CAS  Google Scholar 

  23. Levey, AI, et al. Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci U S A 1993;90(19):8861–5.

    PubMed  CAS  Google Scholar 

  24. Hersch, SM, et al. Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. J Neurosci 1995;15 (7 Pt 2):5222–37.

    PubMed  CAS  Google Scholar 

  25. Yung, K.K., et al., Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience, 1995. 65(3): p. 709–30.

    PubMed  CAS  Google Scholar 

  26. Caille, I., B. Dumartin, and B. Bloch, Ultrastructural localization of D1 dopamine receptor immunoreactivity in rat striatonigral neurons and its relation with dopaminergic innervation. Brain Res, 1996. 730(1–2): p. 17–31.

    PubMed  CAS  Google Scholar 

  27. Mercuri, N.B., P. Calabresi, and G. Bernardi, Responses of rat substantia nigra compacta neurones tol -DOPA. Br J Pharmacol, 1990. 100(2): p. 257–60.

    PubMed  CAS  Google Scholar 

  28. Wang, H. and V.M. Pickel, Dopamine D2 receptors are present in prefrontal cortical afferents and their targets in patches of the rat caudate-putamen nucleus. J Comp Neurol, 2002. 442(4): p. 392–404.

    PubMed  CAS  Google Scholar 

  29. Bamford, N.S., et al., Heterosynaptic dopamine neurotransmission selects sets of corticostriatal terminals. Neuron, 2004. 42(4): p. 653–63.

    PubMed  CAS  Google Scholar 

  30. Bamford, N.S., et al., Dopamine modulates release from corticostriatal terminals. J Neurosci, 2004. 24(43): p. 9541–52.

    PubMed  CAS  Google Scholar 

  31. Flores-Hernandez, J., E. Galarraga, and J. Bargas, Dopamine selects glutamatergic inputs to neostriatal neurons. Synapse, 1997. 25(2): p. 185–95.

    PubMed  CAS  Google Scholar 

  32. Cepeda, C., N.A. Buchwald, and M.S. Levine, Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc Natl Acad Sci U S A, 1993. 90(20): p. 9576–80.

    PubMed  CAS  Google Scholar 

  33. Cepeda, C., et al., Facilitated glutamatergic transmission in the striatum of D2 dopamine receptor-deficient mice. J Neurophysiol, 2001. 85(2): p. 659–70.

    PubMed  CAS  Google Scholar 

  34. Levine, M.S., et al., Neuromodulatory actions of dopamine on synaptically-evoked neostriatal responses in slices. Synapse, 1996. 24(1): p. 65–78.

    PubMed  CAS  Google Scholar 

  35. Kebabian, J.W. and D.B. Calne, Multiple receptors for dopamine. Nature, 1979. 277 (5692): p. 93–6.

    PubMed  CAS  Google Scholar 

  36. Creese, I., Dopamine receptors explained. Trends Neurosci, 1982. 5: p. 40–43.

    CAS  Google Scholar 

  37. Gonon, F., Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo. J Neurosci, 1997. 17(15): p. 5972–8.

    PubMed  CAS  Google Scholar 

  38. Graefe, K.H. and H. Bönish, The transport of amines across the axonal membranes of noradrenergic and dopaminergic neurons, in Handbook of Experimental Pharmacology, U. Trendelenburg and N. Weiner, Editors. 1988, Springer Verlag: Berlin. p. 193–235.

    Google Scholar 

  39. Nirenberg, M.J., et al., The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. J Neurosci, 1996. 16(2): p. 436–47.

    PubMed  CAS  Google Scholar 

  40. Pickel, V.M., M.J. Nirenberg, and T.A. Milner, Ultrastructural view of central catecholaminergic transmission: immunocytochemical localization of synthesizing enzymes, transporters and receptors. J Neurocytol, 1996. 25(12): p. 843–56.

    PubMed  CAS  Google Scholar 

  41. Chergui, K., M.F. Suaud-Chagny, and F. Gonon, Nonlinear relationship between impulse flow, dopamine release and dopamine elimination in the rat brain in vivo. Neuroscience, 1994. 62(3): p. 641–5.

    PubMed  CAS  Google Scholar 

  42. Mirenowicz, J. and W. Schultz, Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature, 1996. 379 (6564): p. 449–51.

    PubMed  CAS  Google Scholar 

  43. Bamford, N.S., et al., Dopamine-Deficient Mice Demonstrate Hypersensitive Corticostriatal D2 Receptors. Annals of Neurology, 2004. 56 (Suppl 8): p. S85.

    Google Scholar 

  44. Zhou, Q.Y. and R.D. Palmiter, Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell, 1995. 83(7): p. 1197–209.

    PubMed  CAS  Google Scholar 

  45. Gerfen, C.R. and W.S. Young, 3rd, Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study. Brain Res, 1988. 460(1): p. 161–7.

    PubMed  CAS  Google Scholar 

  46. Gerfen, C.R., et al., D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science, 1990. 250(4986): p. 1429–32.

    PubMed  CAS  Google Scholar 

  47. DeLong, M.R. and T. Wichmann, Circuits and ircuit disorders of the basal ganglia. Arch Neurol, 2007. 64(1): p. 20–4.

    PubMed  Google Scholar 

  48. Kawaguchi, Y., C.J. Wilson, and P.C. Emson, Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J Neurosci, 1990. 10(10): p. 3421–38.

    PubMed  CAS  Google Scholar 

  49. Haber, S.N. and W.J. Nauta, Ramifications of the globus pallidus in the rat as indicated by patterns of immunohistochemistry. Neuroscience, 1983. 9(2): p. 245–60.

    PubMed  CAS  Google Scholar 

  50. Vincent, S., et al., Immunohistochemical evidence for a dynorphin immunoreactive striato-nigral pathway. Eur J Pharmacol, 1982. 85(2): p. 251–2.

    PubMed  CAS  Google Scholar 

  51. Steiner, H. and C.R. Gerfen, Enkephalin regulates acute D2 dopamine receptor antagonist-induced immediate-early gene expression in striatal neurons. Neuroscience, 1999. 88(3): p. 795–810.

    PubMed  CAS  Google Scholar 

  52. Grofova, I., Types of striatonigral neurons labeled by retrograde transport of horseradish peroxidase. Appl Neurophysiol, 1979. 42(1–2): p. 25–8.

    PubMed  CAS  Google Scholar 

  53. Cepeda, C., et al., Differential electrophysiological properties of dopamine D1 and D2 receptor-containing medium-sized spiny neurons. Eur J Neurosci, 2008. 27: p. 671–682.

    PubMed  Google Scholar 

  54. Kreitzer, A.C. and R.C. Malenka, Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models. Nature, 2007. 445(7128): p. 643–7.

    PubMed  CAS  Google Scholar 

  55. Day, M., et al., Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci, 2006. 9(2): p. 251–9.

    PubMed  CAS  Google Scholar 

  56. Lei, W., et al., Evidence for differential cortical input to direct pathway versus indirect pathway striatal projection neurons in rats. J Neurosci, 2004. 24(38): p. 8289–99.

    PubMed  CAS  Google Scholar 

  57. Morishima, M. and Y. Kawaguchi, Recurrent connection patterns of corticostriatal pyramidal cells in frontal cortex. J Neurosci, 2006. 26(16): p. 4394–405.

    PubMed  CAS  Google Scholar 

  58. Berretta, S., H.B. Parthasarathy, and A.M. Graybiel, Local release of GABAergic inhibition in the motor cortex induces immediate-early gene expression in indirect pathway neurons of the striatum. J Neurosci, 1997. 17(12): p. 4752–63.

    PubMed  CAS  Google Scholar 

  59. Smith, Y., et al., The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci, 2004. 27(9): p. 520–7.

    PubMed  CAS  Google Scholar 

  60. Sidibe, M. and Y. Smith, Differential synaptic innervation of striatofugal neurones projecting to the internal or external segments of the globus pallidus by thalamic afferents in the squirrel monkey. J Comp Neurol, 1996. 365(3): p. 445–65.

    PubMed  CAS  Google Scholar 

  61. Ungerstedt, U., 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol, 1968. 5(1): p. 107–10.

    PubMed  CAS  Google Scholar 

  62. Fischer, E. and B. Heller, Pharmacology of the mechanism of certain effects of reserpine in the rat. Nature, 1967. 216(121): p. 1221–2.

    PubMed  CAS  Google Scholar 

  63. Paladini, C.A., et al., Dopamine controls the firing pattern of dopamine neurons via a network feedback mechanism. Proc Natl Acad Sci U S A, 2003. 100(5): p. 2866–71.

    PubMed  CAS  Google Scholar 

  64. Kim, D.S., M.S. Szczypka, and R.D. Palmiter, Dopamine-deficient mice are hypersensitive to dopamine receptor agonists. J Neurosci, 2000. 20(12): p. 4405–13.

    PubMed  CAS  Google Scholar 

  65. Chartoff, E.H., et al., Induction of stereotypy in dopamine-deficient mice requires striatal D1 receptor activation. Proc Natl Acad Sci U S A, 2001. 98(18): p. 10451–6.

    PubMed  CAS  Google Scholar 

  66. Levine, M.S., et al., Genetic mouse models of Huntington's and Parkinson's diseases: illuminating but imperfect. Trends Neurosci, 2004. 27(11): p. 691–7.

    PubMed  CAS  Google Scholar 

  67. Polymeropoulos, M.H., et al., Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science, 1997. 276(5321): p. 2045–7.

    PubMed  CAS  Google Scholar 

  68. Spillantini, M.G., et al., Alpha-synuclein in Lewy bodies. Nature, 1997. 388(6645): p. 839–40.

    PubMed  CAS  Google Scholar 

  69. Hashimoto, M., E. Rockenstein, and E. Masliah, Transgenic models of alpha-synuclein pathology: past, present, and future. Ann N Y Acad Sci, 2003. 991: p. 171–88.

    PubMed  CAS  Google Scholar 

  70. Masliah, E., et al., Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science, 2000. 287(5456): p. 1265–9.

    PubMed  CAS  Google Scholar 

  71. Richfield, E.K., et al., Behavioral and neurochemical effects of wild-type and mutated human alpha-synuclein in transgenic mice. Exp Neurol, 2002. 175(1): p. 35–48.

    PubMed  CAS  Google Scholar 

  72. Wu, N., et al., Abnormal glutamate and dopamine receptor function in the striatum of α-synuclein-overexpressing mice Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2005. Program No. 85.12.

    Google Scholar 

  73. Shimura, H., et al., Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet, 2000. 25(3): p. 302–5.

    PubMed  CAS  Google Scholar 

  74. Goldberg, M.S., et al., Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem, 2003. 278(44): p. 43628–35.

    PubMed  CAS  Google Scholar 

  75. Itier, J.M., et al., Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet, 2003. 12(18): p. 2277–91.

    PubMed  CAS  Google Scholar 

  76. O'Donnell, P. and A.A. Grace, Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. J Neurosci, 1995. 15(5 Pt 1): p. 3622–39.

    PubMed  Google Scholar 

  77. Wilson, C.J. and Y. Kawaguchi, The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J Neurosci, 1996. 16(7): p. 2397–410.

    PubMed  CAS  Google Scholar 

  78. Stern, E.A., A.E. Kincaid, and C.J. Wilson, Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. J Neurophysiol, 1997. 77(4): p. 1697–715.

    PubMed  CAS  Google Scholar 

  79. Wilson, C.J., The generation of natural firing patterns in neostriatal neurons. Prog Brain Res, 1993. 99: p. 277–97.

    PubMed  CAS  Google Scholar 

  80. Cepeda, C., et al., Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances. J Neurophysiol, 1998. 79(1): p. 82–94.

    PubMed  CAS  Google Scholar 

  81. Flores-Hernández, J., et al., Multiple pathways are involved in the enhancement of NMDA responses by activation of dopamine D1 receptors in neostriatal neurons. Soc Neurosci Abstr, 1999. 25: p. 1156.

    Google Scholar 

  82. Horvitz, J.C., Dopamine gating of glutamatergic sensorimotor and incentive motivational input signals to the striatum. Behav Brain Res, 2002. 137(1–2): p. 65–74.

    PubMed  CAS  Google Scholar 

  83. Dani, J.A. and F.M. Zhou, Selective dopamine filter of glutamate striatal afferents. Neuron, 2004. 42(4): p. 522–4.

    PubMed  CAS  Google Scholar 

  84. Calabresi, P., N.B. Mercuri, and G. Bernardi, Synaptic and intrinsic control of membrane excitability of neostriatal neurons. II. An in vitro analysis. J Neurophysiol, 1990. 63(4): p. 663–75.

    PubMed  CAS  Google Scholar 

  85. Kiyatkin, E.A. and G.V. Rebec, Dopaminergic modulation of glutamate-induced excitations of neurons in the neostriatum and nucleus accumbens of awake, unrestrained rats. J Neurophysiol, 1996. 75(1): p. 142–53.

    PubMed  CAS  Google Scholar 

  86. Nicola, S.M., J. Surmeier, and R.C. Malenka, Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci, 2000. 23: p. 185–215.

    PubMed  CAS  Google Scholar 

  87. Cepeda, C. and M.S. Levine, Where do you think you are going? The NMDA-D1 receptor trap. Sci STKE, 2006. 2006(333): p. pe20.

    PubMed  Google Scholar 

  88. Cepeda, C., et al., Dye-coupling in the neostriatum of the rat: I. Modulation by dopamine-depleting lesions. Synapse, 1989. 4(3): p. 229–37.

    PubMed  CAS  Google Scholar 

  89. Cepeda, C., et al., Intracellular neurophysiological analysis reveals alterations in excitation in striatal neurons in aged rats. Brain Res, 1989. 494(2): p. 215–26.

    PubMed  CAS  Google Scholar 

  90. Hull, C.D., et al., The spontaneous firing pattern of forebrain neurons. I. The effects of dopamine and non-dopamine depleting lesions on caudate unit firing patterns. Brain Res, 1974. 73(2): p. 241–62.

    PubMed  CAS  Google Scholar 

  91. Schultz, W. and U. Ungerstedt, Short-term increase and long-term reversion of striatal cell activity after degeneration of the nigrostriatal dopamine system. Exp Brain Res, 1978. 33(2): p. 159–71.

    PubMed  CAS  Google Scholar 

  92. Calabresi, P., et al., Electrophysiology of dopamine-denervated striatal neurons. Implications for Parkinson's disease. Brain, 1993. 116 (Pt 2): p. 433–52.

    PubMed  Google Scholar 

  93. Mallet, N., et al., Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats. J Neurosci, 2006. 26(14): p. 3875–84.

    PubMed  CAS  Google Scholar 

  94. Florio, T., et al., Influence of prelimbic and sensorimotor cortices on striatal neurons in the rat: electrophysiological evidence for converging inputs and the effects of 6-OHDA-induced degeneration of the substantia nigra. Brain Res, 1993. 619(1–2): p. 180–8.

    PubMed  CAS  Google Scholar 

  95. Tseng, K.Y., et al., Cortical slow oscillatory activity is reflected in the membrane potential and spike trains of striatal neurons in rats with chronic nigrostriatal lesions. J Neurosci, 2001. 21(16): p. 6430–9.

    PubMed  CAS  Google Scholar 

  96. Neely, M.D., D.E. Schmidt, and A.Y. Deutch, Cortical regulation of dopamine depletion-induced dendritic spine loss in striatal medium spiny neurons. Neuroscience, 2007. 149(2): p. 457–64.

    PubMed  CAS  Google Scholar 

  97. Schultz, W., Depletion of dopamine in the striatum as an experimental model of Parkinsonism: direct effects and adaptive mechanisms. Prog Neurobiol, 1982. 18(2–3): p. 121–66.

    PubMed  CAS  Google Scholar 

  98. Ito, K., et al., Sequestration of dopamine D2 receptors depends on coexpression of G-protein-coupled receptor kinases 2 or 5. Eur J Biochem, 1999. 260(1): p. 112–9.

    PubMed  CAS  Google Scholar 

  99. Brotchie, J.M., CB1 cannabinoid receptor signalling in Parkinson's disease. Curr Opin Pharmacol, 2003. 3(1): p. 54–61.

    PubMed  CAS  Google Scholar 

  100. van der Stelt, M. and V. Di Marzo, The endocannabinoid system in the basal ganglia and in the mesolimbic reward system: implications for neurological and psychiatric disorders. Eur J Pharmacol, 2003. 480(1–3): p. 133–50.

    PubMed  Google Scholar 

  101. Fernandez-Ruiz, J. and S. Gonzales, Cannabinoid control of motor function at the basal ganglia. Handb Exp Pharmacol, 2005(168): p. 479–507.

    Google Scholar 

  102. Maccarrone, M., et al., Levodopa treatment reverses endocannabinoid system abnormalities in experimental parkinsonism. J Neurochem, 2003. 85(4): p. 1018–25.

    PubMed  CAS  Google Scholar 

  103. Lastres-Becker, I., et al., Increased cannabinoid CB1 receptor binding and activation of GTP-binding proteins in the basal ganglia of patients with Parkinson's syndrome and of MPTP-treated marmosets. Eur J Neurosci, 2001. 14(11): p. 1827–32.

    PubMed  CAS  Google Scholar 

  104. Fox, S.H., et al., Stimulation of cannabinoid receptors reduces levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate model of Parkinson's disease. Mov Disord, 2002. 17(6): p. 1180–7.

    PubMed  Google Scholar 

  105. Mackie, K., Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb Exp Pharmacol, 2005(168): p. 299–325.

    Google Scholar 

  106. Glass, M., J.M. Brotchie, and Y.P. Maneuf, Modulation of neurotransmission by cannabinoids in the basal ganglia. Eur J Neurosci, 1997. 9(2): p. 199–203.

    PubMed  CAS  Google Scholar 

  107. Rodriguez, J.J., K. Mackie, and V.M. Pickel, Ultrastructural localization of the CB1 cannabinoid receptor in mu-opioid receptor patches of the rat Caudate putamen nucleus. J Neurosci, 2001. 21(3): p. 823–33.

    PubMed  CAS  Google Scholar 

  108. Herkenham, M., et al., Neuronal localization of cannabinoid receptors in the basal ganglia of the rat. Brain Res, 1991. 547(2): p. 267–74.

    PubMed  CAS  Google Scholar 

  109. Ferrer, B., et al., Effects of levodopa on endocannabinoid levels in rat basal ganglia: implications for the treatment of levodopa-induced dyskinesias. Eur J Neurosci, 2003. 18(6): p. 1607–14.

    PubMed  Google Scholar 

  110. Giuffrida, A., et al., Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat Neurosci, 1999. 2(4): p. 358–63.

    PubMed  CAS  Google Scholar 

  111. Beltramo, M., et al., Reversal of dopamine D(2) receptor responses by an anandamide transport inhibitor. J Neurosci, 2000. 20(9): p. 3401–7.

    PubMed  CAS  Google Scholar 

  112. Wilson, R.I. and R.A. Nicoll, Endocannabinoid signaling in the brain. Science, 2002. 296(5568): p. 678–82.

    PubMed  CAS  Google Scholar 

  113. Yin, H.H. and D.M. Lovinger, Frequency-specific and D2 receptor-mediated inhibition of glutamate release by retrograde endocannabinoid signaling. Proc Natl Acad Sci U S A, 2006. 103(21): p. 8251–6.

    PubMed  CAS  Google Scholar 

  114. Pertwee, R.G. and A.P. Wickens, Enhancement by chlordiazepoxide of catalepsy induced in rats by intravenous or intrapallidal injections of enantiomeric cannabinoids. Neuropharmacology, 1991. 30(3): p. 237–44.

    PubMed  CAS  Google Scholar 

  115. Maneuf, Y.P., et al., Activation of the cannabinoid receptor by delta 9-tetrahydrocannabinol reduces gamma-aminobutyric acid uptake in the globus pallidus. Eur J Pharmacol, 1996. 308(2): p. 161–4.

    PubMed  CAS  Google Scholar 

  116. Di Marzo, V., et al., Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson's disease. Faseb J, 2000. 14(10): p. 1432–8.

    Google Scholar 

  117. Silverdale, M.A., et al., Striatal cannabinoid CB1 receptor mRNA expression is decreased in the reserpine-treated rat model of Parkinson's disease. Exp Neurol, 2001. 169(2): p. 400–6.

    PubMed  CAS  Google Scholar 

  118. Brotchie, J., et al., Chemical signalling in the globus pallidus in parkinsonism. Prog Brain Res, 1993. 99: p. 125–39.

    PubMed  CAS  Google Scholar 

  119. DeLong, M.R., Primate models of movement disorders of basal ganglia origin. Trends Neurosci, 1990. 13(7): p. 281–5.

    PubMed  CAS  Google Scholar 

  120. Mitchell, I.J., et al., Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neuroscience, 1989. 32(1): p. 213–26.

    PubMed  CAS  Google Scholar 

  121. Barbeau, A., The pathogenesis of Parkinson's disease: a new hypothesis. Can Med Assoc J, 1962. 87: p. 802–7.

    PubMed  CAS  Google Scholar 

  122. Woolf, N.J. and L.L. Butcher, Cholinergic neurons in the caudate-putamen complex proper are intrinsically organized: a combined Evans blue and acetylcholinesterase analysis. Brain Res Bull, 1981. 7(5): p. 487–507.

    PubMed  CAS  Google Scholar 

  123. Aosaki, T., A.M. Graybiel, and M. Kimura, Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys. Science, 1994. 265(5170): p. 412–5.

    PubMed  CAS  Google Scholar 

  124. De Vries, G.J., et al., A model system for study of sex chromosome effects on sexually dimorphic neural and behavioral traits. J Neurosci, 2002. 22(20): p. 9005–14.

    PubMed  Google Scholar 

  125. Wilson, C.J., H.T. Chang, and S.T. Kitai, Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. J Neurosci, 1990. 10(2): p. 508–19.

    PubMed  CAS  Google Scholar 

  126. Yan, Z., W.J. Song, and J. Surmeier, D2 dopamine receptors reduce N-type Ca2+ currents in rat neostriatal cholinergic interneurons through a membrane-delimited, protein-kinase-C-insensitive pathway. J Neurophysiol, 1997. 77(2): p. 1003–15.

    PubMed  CAS  Google Scholar 

  127. Pisani, A., et al., Activation of D2-like dopamine receptors reduces synaptic inputs to striatal cholinergic interneurons. J Neurosci, 2000. 20(7): p. RC69.

    PubMed  CAS  Google Scholar 

  128. DeBoer, P. and E.D. Abercrombie, Physiological release of striatal acetylcholine in vivo: modulation by D1 and D2 dopamine receptor subtypes. J Pharmacol Exp Ther, 1996. 277(2): p. 775–83.

    PubMed  CAS  Google Scholar 

  129. Le Moine, C., E. Normand, and B. Bloch, Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene. Proc Natl Acad Sci U S A, 1991. 88(10): p. 4205–9.

    PubMed  Google Scholar 

  130. Bergson, C., et al., Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J Neurosci, 1995. 15(12): p. 7821–36.

    PubMed  CAS  Google Scholar 

  131. Malenka, R.C. and J.D. Kocsis, Presynaptic actions of carbachol and adenosine on corticostriatal synaptic transmission studied in vitro. J Neurosci, 1988. 8(10): p. 3750–6.

    PubMed  CAS  Google Scholar 

  132. Wang, Z., et al., Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons. Neuron, 2006. 50(3): p. 443–52.

    PubMed  CAS  Google Scholar 

  133. Zhang, H. and D. Sulzer, Frequency-dependent modulation of dopamine release by nicotine. Nat Neurosci, 2004. 7(6): p. 581–2.

    PubMed  CAS  Google Scholar 

  134. Gomeza, J., et al., Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M(4) muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci U S A, 1999. 96(18): p. 10483–8.

    PubMed  CAS  Google Scholar 

  135. MacKenzie, R.G., M.K. Stachowiak, and M.J. Zigmond, Dopaminergic inhibition of striatal acetylcholine release after 6-hydroxydopamine. Eur J Pharmacol, 1989. 168(1): p. 43–52.

    PubMed  CAS  Google Scholar 

  136. DeBoer, P., M.J. Heeringa, and E.D. Abercrombie, Spontaneous release of acetylcholine in striatum is preferentially regulated by inhibitory dopamine D2 receptors. Eur J Pharmacol, 1996. 317(2–3): p. 257–62.

    PubMed  CAS  Google Scholar 

  137. Ding, J., et al., RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. Nat Neurosci, 2006. 9(6): p. 832–42.

    PubMed  CAS  Google Scholar 

  138. Costa, R.M., et al., Rapid alterations in corticostriatal ensemble coordination during acute dopamine-dependent motor dysfunction. Neuron, 2006. 52(2): p. 359–69.

    PubMed  CAS  Google Scholar 

  139. Maggio, R., et al., Nicotine prevents experimental parkinsonism in rodents and induces striatal increase of neurotrophic factors. J Neurochem, 1998. 71(6): p. 2439–46.

    PubMed  CAS  Google Scholar 

  140. Kase, H., et al., Progress in pursuit of therapeutic A2A antagonists: the adenosine A2A receptor selective antagonist KW6002: research and development toward a novel nondopaminergic therapy for Parkinson's disease. Neurology, 2003. 61(11 Suppl 6): p. S97–100.

    PubMed  CAS  Google Scholar 

  141. Rozas, G., et al., Sprouting of the serotonergic afferents into striatum after selective lesion of the dopaminergic system by MPTP in adult mice. Neurosci Lett, 1998. 245(3): p. 151–4.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel S. Bamford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bamford, N.S., Cepeda, C. (2009). The Corticostriatal Pathway in Parkinson’s Disease. In: Tseng, KY. (eds) Cortico-Subcortical Dynamics in Parkinson's Disease. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-60327-252-0_6

Download citation

Publish with us

Policies and ethics