Skip to main content

Ischemia-Reperfusion Induces ROS Production from Three Distinct Sources

  • Chapter
  • First Online:
Oxidative Neural Injury

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 576 Accesses

Abstract

Most neurodegenerative disorders are insidious with substantial neural injury present well before symptoms are revealed. Thus, at the time of evident disability or impairment, secondary injuries may obscure the inciting neuropathology. This is not true of stroke, where the onset of injury and symptomatology typically coincide. Moreover, there is a distinct and relatively brief temporal pattern of injury. Therefore, models of ischemia/reperfusion can provide significant insight into early and late injuries and the specific mechanisms of each component of injury. Modelling hypoxia and reoxygenation in primary cultures of hippocampal and cortical neurons to examine temporally the source of reactive oxygen species has identified three phases of reactive oxygen species production in hypoxia/reoxygenation. Mitochondria respond first but are quickly limited by the insufficient oxygen. At this point in ischemia, xanthine oxidase becomes an important source of superoxide, whereas during reperfusion NADPH oxidase is a major source of superoxide. This work highlights the value of a model of early and temporally distinct phases of injury and supports the concept that multitarget approaches will be necessary to effectively prevent or reduce neural injury of stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feigin VL. Stroke epidemiology in the developing world. Lancet. 2005 Jun 25–Jul 1;365(9478):2160–2161.

    Google Scholar 

  2. Martin RL, Lloyd HG, Cowan AI. The early events of oxygen and glucose deprivation: setting the scene for neuronal death? Trends Neurosci. 1994 Jun;17(6):251–257.

    Google Scholar 

  3. Rossi DJ, Brady JD, Mohr C. Astrocyte metabolism and signaling during brain ischemia. Nat Neurosci. 2007 Nov;10(11):1377–1386.

    Google Scholar 

  4. Flamm ES, Demopoulos HB, Seligman ML, Poser RG, Ransohoff J. Free radicals in cerebral ischemia. Stroke. 1978 Sep–Oct;9(5):445–447.

    Google Scholar 

  5. Kinouchi H, Epstein CJ, Mizui T, Carlson E, Chen SF, Chan PH. Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11158–11162.

    Google Scholar 

  6. Kawase M, Murakami K, Fujimura M, Morita-Fujimura Y, Gasche Y, Kondo T, Scott RW, Chan PH. Exacerbation of delayed cell injury after transient global ischemia in mutant mice with CuZn superoxide dismutase deficiency. Stroke. 1999 Sep;30(9):1962–1968.

    Google Scholar 

  7. Kondo T, Reaume AG, Huang TT, Carlson E, Murakami K, Chen SF, Hoffman EK, Scott RW, Epstein CJ, Chan PH. Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. J Neurosci. 1997 Jun 1;17(11):4180–4189.

    Google Scholar 

  8. Crack PJ, Taylor JM, de Haan JB, Kola I, Hertzog P, Iannello RC. Glutathione peroxidase-1 contributes to the neuroprotection seen in the superoxide dismutase-1 transgenic mouse in response to ischemia/reperfusion injury. J Cereb Blood Flow Metab. 2003 Jan;23(1):19–22.

    Google Scholar 

  9. Eliasson MJ, Huang Z, Ferrante RJ, Sasamata M, Molliver ME, Snyder SH, Moskowitz MA. Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. J Neurosci. 1999 Jul 15;19(14):5910–5918.

    Google Scholar 

  10. Hara H, Huang PL, Panahian N, Fishman MC, Moskowitz MA. Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. J Cereb Blood Flow Metab. 1996 Jul;16(4):605–611.

    Google Scholar 

  11. Jensen PK. Antimycin-insensitive oxidation of succinate and reduced nicotinamide-adenine dinucleotide in electron-transport particles. I. pH dependency and hydrogen peroxide formation. Biochim Biophys Acta. 1966 Aug 10;122(2):157–166.

    Google Scholar 

  12. Loschen G, Flohe L, Chance B. Respiratory chain linked H(2)O(2) production in pigeon heart mitochondria. FEBS Lett. 1971 Nov 1;18(2):261–264.

    Google Scholar 

  13. Smeitink J, van den Heuvel L. Human mitochondrial complex I in health and disease. Am J Hum Genet. 1999 Jun;64(6):1505–1510.

    Google Scholar 

  14. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003 Oct 15;552(Pt 2):335–344.

    Google Scholar 

  15. Johnson-Cadwell LI, Jekabsons MB, Wang A, Polster BM, Nicholls DG. ‘Mild Uncoupling' does not decrease mitochondrial superoxide levels in cultured cerebellar granule neurons but decreases spare respiratory capacity and increases toxicity to glutamate and oxidative stress. J Neurochem. 2007 Jun;101(6):1619–1631.

    Google Scholar 

  16. Muller FL, Liu Y, Van Remmen H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem. 2004 Nov 19;279(47):49064–49073.

    Google Scholar 

  17. Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc). 2005 Feb;70(2):200–214.

    Google Scholar 

  18. Guzy RD, Schumacker PT. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol. 2006 Sep;91(5):807–819.

    Google Scholar 

  19. Sipos I, Tretter L, Adam-Vizi V. The production of reactive oxygen species in intact isolated nerve terminals is independent of the mitochondrial membrane potential. Neurochem Res. 2003 Oct;28(10):1575–1581.

    Google Scholar 

  20. Tretter L, Adam-Vizi V. Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase. J Neurosci. 2004 Sep 8;24(36):7771–7778.

    Google Scholar 

  21. Van Bel F, Shadid M, Moison RM, Dorrepaal CA, Fontijn J, Monteiro L, Van De Bor M, Berger HM. Effect of allopurinol on postasphyxial free radical formation, cerebral hemodynamics, and electrical brain activity. Pediatrics. 1998 Feb;101(2):185–193.

    Google Scholar 

  22. Arai T, Takeyama N, Tanaka T. Glutathione monoethyl ester and inhibition of the oxyhemoglobin-induced increase in cytosolic calcium in cultured smooth-muscle cells. J Neurosurg. 1999 Mar;90(3):527–532.

    Google Scholar 

  23. Nakashima M, Niwa M, Iwai T, Uematsu T. Involvement of free radicals in cerebral vascular reperfusion injury evaluated in a transient focal cerebral ischemia model of rat. Free Radic Biol Med. 1999 Mar;26(5–6):722–729.

    Google Scholar 

  24. Kahles T, Luedike P, Endres M, Galla HJ, Steinmetz H, Busse R, Neumann-Haefelin T, Brandes RP. NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke. 2007 Nov;38(11):3000–3006.

    Google Scholar 

  25. Walder CE, Green SP, Darbonne WC, Mathias J, Rae J, Dinauer MC, Curnutte JT, Thomas GR. Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke. 1997 Nov;28(11):2252–2258.

    Google Scholar 

  26. Wang Q, Tompkins KD, Simonyi A, Korthuis RJ, Sun AY, Sun GY. Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Res. 2006 May 23;1090(1):182–189.

    Google Scholar 

  27. Spranger M, Kiprianova I, Krempien S, Schwab S. Reoxygenation increases the release of reactive oxygen intermediates in murine microglia. J Cereb Blood Flow Metab. 1998 Jun;18(6):670–674.

    Google Scholar 

  28. Vallet P, Charnay Y, Steger K, Ogier-Denis E, Kovari E, Herrmann F, Michel JP, Szanto I. Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience. 2005;132(2):233–238.

    Article  PubMed  CAS  Google Scholar 

  29. Kunz A, Park L, Abe T, Gallo EF, Anrather J, Zhou P, Iadecola C. Neurovascular protection by ischemic tolerance: role of nitric oxide and reactive oxygen species. J Neurosci. 2007 Jul 4;27(27):7083–7093.

    Google Scholar 

  30. Abramov AY, Scorziello A, Duchen MR. Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci. 2007 Jan 31;27(5):1129–1138.

    Google Scholar 

  31. Abramov AY, Jacobson J, Wientjes F, Hothersall J, Canevari L, Duchen MR. Expression and modulation of an NADPH oxidase in mammalian astrocytes. J Neurosci. 2005 Oct 5;25(40):9176–9184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Y. Abramov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Milton, R.H., Abramov, A.Y. (2009). Ischemia-Reperfusion Induces ROS Production from Three Distinct Sources. In: Veasey, S. (eds) Oxidative Neural Injury. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-60327-342-8_6

Download citation

Publish with us

Policies and ethics