Skip to main content

Drug–Nutrient Interactions in Patients Receiving Enteral Nutrition

  • Chapter
  • First Online:
Handbook of Drug-Nutrient Interactions

Part of the book series: Nutrition and Health ((NH))

  • 3018 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.S.P.E.N. Board of Directors. Guidelines for the use of parenteral and enteral nutrition in adult and pediatric patients. J Parenter Enteral Nutr 2002;26(Suppl.):S1–S138. (Errata J Parenter Enteral Nutr 2002;26:144).

    Google Scholar 

  2. Howard L, Hassan Home parenteral nutrition 25 years later. Clin Nutr 1998;27:481–512.

    CAS  Google Scholar 

  3. DeLegge MH. Enteral access: the foundation of feeding. J Parenter Enteral Nutr 2001;25:S8–S13.

    Article  CAS  Google Scholar 

  4. Bankhead RR, Fang JC. Enteral access devices. In: Gottschlich MM et al., eds. The A.S.P.E.N. Nutrition support core curriculum: a case-based approach – the adult patient. Silver Spring: American Society for Parenteral and Enteral Nutrition, 2007:233–245.

    Google Scholar 

  5. Heyland DK, Drover JW, Dhaliwal R, et al. Optimizing the benefits and minimizing the risks of enteral nutrition in the critically ill:role of small bowel feeding. North American summit on aspiration in the critically ill patient: consensus statement. J Parenter Enteral Nutr 2002;26(Suppl):S51–57.

    Article  Google Scholar 

  6. Heyland DK, Dhaliwal R, Drover JW, et al. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. J Parent Enteral Nutr 2003; 27:355–373.

    Article  Google Scholar 

  7. McClave SA et al. North American summit on aspiration in the critically ill patient: consensus statement. J Parenter Enteral Nutr 2002;26(Suppl):S80–85.

    Article  Google Scholar 

  8. Spain DA, DeWeese C, Reynolds MA, Richardson JD. Transpyloric passage of feeding tubes in patients with head injuries does not decrease complications. J Trauma 1995;39:1100–1102.

    Article  CAS  Google Scholar 

  9. Bankhead R, Boullata J, Brantley S, et al. and the A.S.P.E.N. Board of Directors. Enteral nutrition practice recommendations. JPEN J Parenter Enteral Nutr 2009;33:122–167.

    Google Scholar 

  10. White R, Bradnam V. Handbook of Drug Administration via Enteral feeding tubes. London, UK: Pharmaceutical Press, 2007.

    Google Scholar 

  11. Nicolau DP, Davis SK. Carbonated beverages as irrigants for feeding tubes. Ann Pharmacother 1990;24:840.

    CAS  Google Scholar 

  12. Wilson MF, Haynes-Johnson V. Cranberry juice or water? A comparison of feeding-tube irrigants, Nutr Support Serv 1987;7:23–24.

    Google Scholar 

  13. Metheny N, Eisenberg P, McSweeney M. Effect of feeding tube properties and three irrigants on clogging rates. Nurs Res 1988;37:165–169.

    CAS  Google Scholar 

  14. Seifert CF, Johnson BA. A nationwide survey of long-term care facilities to determine the characteristics of medication administration through enteral feeding catheters. Nutr Clin Pract 2005;20:354–362.

    Article  Google Scholar 

  15. Semple HA, Koo W, Tam YK, Ngo LY, Coutts RT. Interactions between hydralazine and oral nutrients in humans. Ther Drug Monit 1991;13:304–308.

    Article  CAS  Google Scholar 

  16. Mitchell JF. Oral dosage forms that should not be crushed. Updated Feb 18, 2008. http://www.ismp.org/Tools/DoNotCrush.pdf, accessed Feb 22, 2008.

  17. Beckwith C, Feddema SS, Barton RG, Graves C. A guide to drug therapy in patients with enteral feeding tubes: dosage form selection and administration methods. Hosp Pharm 2004;39:225–237.

    Google Scholar 

  18. Hyams JS. Sorbitol intolerance. An unappreciated cause of functional gastrointestinal complaints. Gastroenterology 1983;84:30–33.

    CAS  Google Scholar 

  19. Duncan B, Barton LL, Eicher ML, Chmielarczyk VT. Medication induced pneumatosis intestinalis. Pediatrics 1997;99:633–636.

    Article  CAS  Google Scholar 

  20. Houlihan GM, Calhoon PH. Ingredient labeling of prescription drug products. Am J Hosp Pharm 1993;50:443.

    CAS  Google Scholar 

  21. Veerman MW. Excipients in valproic acid syrup may cause diarrhea: case report. Drug Intell Clin Pharm 1990;24:832–833.

    CAS  Google Scholar 

  22. Kumar A, Weatherly MR, Beaman DC. Sweeteners, flavorings, and dye in antibiotic preparations. Pediatrics 1991;87:352–360.

    CAS  Google Scholar 

  23. Feldstein TJ. Carbohydrate and alcohol content of 200 oral liquid medications for use in patients receiving ketogenic diets. Pediatrics 1996;97(4):506–511.

    CAS  Google Scholar 

  24. Johnston KR, Govel LA, Andritz MH. Gastrointestinal effects of sorbitol as an additive in liquid medications. Am J Med 1994;97:185–191.

    Article  CAS  Google Scholar 

  25. Lutomski DM, Gora ML, Wright SM, Martin JE. Sorbitol content of selected oral liquids. Ann Pharmacother 1993;27:269–274.

    CAS  Google Scholar 

  26. Dickerson RN, Melnick G. Osmolality of oral drug solutions and suspensions. Am J Hosp Pharm 1988;45:832–834.

    CAS  Google Scholar 

  27. Niemec PW, Vanderveen TW, Morrison JL, Hohenwarter MW. Gastrointestinal disorders caused by medication and electrolyte solution osmolality during enteral nutrition. J Parenter Enteral Nutr 1983;7:387–389.

    Article  Google Scholar 

  28. White KC, Harkavy KL. Hypertonic formula resulting from added oral medications. Am J Dis Child 1982;136:931–933.

    CAS  Google Scholar 

  29. Dickerson RN. Medication administration considerations for patients receiving enteral tube feedings. Hosp Pharm 2004;39:84–89,96.

    Google Scholar 

  30. Rollins C, Thomson C, Crane T. Pharmacotherapeutic issues. In: Rolandelli RH, Bankhead R, Boullata JI, Compher CW, eds. Clinical nutrition: enteral and tube feeding, 4th ed. Philadelphia, PA: Elsevier/Saunders, 2005:291–305.

    Google Scholar 

  31. Altman E, Cutie AJ. Compatibility of enteral products with commonly employed drug additives. Nutr Support Serv 1984;4:8–17.

    Google Scholar 

  32. Cutie AJ, Altman E, Lenkel L. Compatibility of enteral products with commonly employed drug additives. J Parenter Enteral Nutr 1983;7:186–191.

    Article  CAS  Google Scholar 

  33. Fagerman KE, Ballou AE. Drug compatibilities with enteral feeding solutions co-administered by tube. Nutr Support Serv 1988;8:31–32.

    Google Scholar 

  34. Burns PE, McCall L, Wirsching R. Physical compatibility of enteral formulas with various common medications. J Am Diet Assoc 1988;88:1094–1096.

    CAS  Google Scholar 

  35. Strom JG, Miller SW. Stability of drugs with enteral nutrient formulas. Drug Intell Clin Pharm 1990;24:130–134.

    CAS  Google Scholar 

  36. Holtz L, Milton J, Sturek JK. Compatibility of medications with enteral feedings. J Parenter Enteral Nutr 1987;11:183–186.

    Article  CAS  Google Scholar 

  37. Rollins CJ. Tube feeding formula and medication characteristics contributing to undesirable interactions [abstract]. J Parenter Enteral Nutr 1999;21:S13.

    Google Scholar 

  38. Clark-Schmidt AL, Garnett WR, Lowe DR, et al. Loss of carbamazepine suspension through nasogastric feeding tubes. Am J Hosp Pharm 1990;47:2034–2037.

    CAS  Google Scholar 

  39. McGoodwin PE, Seifert CF, Bradberry JC, Allen LV. Recovery of phenytoin from a percutaneous endoscopic gastrostomy pezzar catheter following in vitro delivery of multiple doses of phenytoin suspension and phenytoin capsules. [abstract from American College of Clinical Pharmacy 11th Annual Meeting, San Francisco, CA] Pharmacotherapy 1990;10:233, 152.

    Google Scholar 

  40. Cacek AT, DeVito JM, Koonce JR. In vitro evaluation of nasogastric administration methods for phenytoin. Am J Hosp Pharm 1986;43:689–692.

    CAS  Google Scholar 

  41. Splinter MY, Seifert CF, Bradberry JC. Recovery of phenytoin suspension after in vitro administration through percutaneous endoscopic gastrostomy Pezzer catheters. Am J Hosp Pharm 1990;47:373–377.

    CAS  Google Scholar 

  42. Cullen J, Kelly K. Gastric motor physiology and pathophysiology. Surg Clin North Am 1993;73:1145–1160.

    CAS  Google Scholar 

  43. Fleischer D, Li C, Zhou Y. Drug, meal and formulation interactions influencing drug absorption after oral administration. Clin Pharmacokinet 1999;36:233–254.

    Article  Google Scholar 

  44. Singh BN. Effects of food on clinical pharmacokinetics. Clin Pharmacokinet 1999;37:213–255.

    Article  CAS  Google Scholar 

  45. Kintzel PE, Rollins CJ, Yee WJ, List A. Low itraconazole serum levels following administration of itraconazole suspension to critically ill allogeneic bone marrow transplant recipients. Ann Pharmacother 1995;29:140–143.

    CAS  Google Scholar 

  46. Magnusson JO. Metabolism of digoxin after oral and intrajejunal administration. Br J Clin Pharmacol 1983;16:741–742.

    CAS  Google Scholar 

  47. Staib AH, Beerman D, Harder S, Fuhr U, Lierman D. Absorption differences of ciprofloxacin along the human gastrointestinal tract determined using a remote-control drug delivery device. Am J Med 1989;87(Suppl 5A):66S–69S.

    CAS  Google Scholar 

  48. Yuk JH, Nightingale CH, Quintiliani R, Yeston NS, Orlando R III, Dobkin ED, Kambe JC, Sweeney KR, Buonpane EA. Absorption of ciprofloxacin administered through a nasogastric or a nasoduodenal tube in volunteers and patients receiving enteral nutrition. Diag Microbiol Infect Dis 1990;13:99–102.

    Article  CAS  Google Scholar 

  49. Sahai J, Memish Z, Conway B. Ciprofloxacin pharmacokinetics after administration via a jejunostomy tube. J Antimicrob Chemother 1991;28:936–937.

    Article  CAS  Google Scholar 

  50. Healy DP, Brodbeck MC, Clendening CE. Ciprofloxacin absorption is impaired in patients given enteral feedings orally and via gastrostomy and jejunostomy tubes. Antimicrob Agents Chemother 1996;40:6–10.

    CAS  Google Scholar 

  51. Williams L, Davis JA, Lowenthal DT. The influence of food on the absorption and metabolism of drugs. Med Clin N Am 1993;77:815–829.

    CAS  Google Scholar 

  52. Anderson KE. Influences of diet and nutrition on clinical pharmacokinetics. Clin Pharmacokinet 1988;14:325–346.

    Article  CAS  Google Scholar 

  53. Dietary intake data from the U.S. Food and Drug Administration Total Diet Study, 1991–1997. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vandium, and Zinc. 2000 Available at http://books.nap.edu/openbook.php?record_id=100268&page=654. Accessed November 1, 2007.

  54. Mean vitamin K from food. NHANES III (1988–1994). Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vandium, and Zinc. 2000 Available at http://books.nap.edu/openbook.php?record_id=100268&page=614. Accessed November 1, 2007.

  55. National Research Council. Recommended Dietary Allowances, 10th ed. Washington, DC: National Academy Press, 1989.

    Google Scholar 

  56. O’Reilly RA, Rytand DA. “Resistance” to warfarin due to unrecognized vitamin K supplementation. [letter] N Engl J Med 1980;303:160–161.

    Google Scholar 

  57. Lader E, Yang L, Clarke A. Warfarin dosage and vitamin K in Osmolite. [letter] Ann Intern Med 1980;93:373–374.

    CAS  Google Scholar 

  58. Lee M, Schwartz RN, Sharifi R. Warfarin resistance and vitamin K. [letter] Ann Intern Med 1981;94:140–141.

    CAS  Google Scholar 

  59. Watson AJM, Pegg M, Green JRB. Enteral feeds may antagonize warfarin. Br Med J 1984;288:557.

    Article  CAS  Google Scholar 

  60. Kutsup JJ. Update on vitamin K content of enteral products. [letter] Am J Hosp Pharm 1984;41:1762.

    Google Scholar 

  61. Petretich DA. Reversal of Osmolite-warfarin interaction by changing warfarin administration time. [letter] Clin Pharm 1990;9:93.

    CAS  Google Scholar 

  62. Penrod LE, Allen JB, Cabacungan LR. Warfarin resistance and enteral feedings: 2 case reports and a supporting in vitro study. Arch Phys Med Rehabil 2001;82:1270–1271.

    Article  CAS  Google Scholar 

  63. Dickerson RN, Garmon WM, Kuhl DA, Minard G, Brown RO. Vitamin K-dependent warfarin resistance after concurrent administration of warfarin and continuous enteral nutrition. Pharmacotherapy 2008;28:308–313.

    Article  CAS  Google Scholar 

  64. Stevens AM, Then JE, Frock KM, et al. Evaluation of feeding intolerance in patients with pentobarbital-induced coma. Ann Pharmacother 2008;42:516–522.

    Article  CAS  Google Scholar 

  65. Finch C, Self TH. Medication and enteral tube feedings: clinically significant interactions. J Crit Illness 2001;16:20–21.

    Google Scholar 

  66. Bauer LA. Interference of oral phenytoin absorption by continuous nasogastric feedings. Neurology 1982;32:570–572.

    CAS  Google Scholar 

  67. Au Yeung SC, Ensom MHH. Phenytoin and enteral feedings: does evidence support an interaction? Ann Pharmacother 2000;34:896–905.

    Article  CAS  Google Scholar 

  68. Doak KK, Curtis EH, Dunnigan KJ, Reiss RA, Reiser JR, Huntress J, et al. Bioavailability of phenytoin acid and phenytoin sodium with enteral feedings. Pharmacotherapy 1998;18:637–645.

    CAS  Google Scholar 

  69. Guidry JR, Eastwood TF, Curry SC. Phenytoin absorption on volunteers receiving selected enteral feedings. West J Med 1989;150:659–661.

    CAS  Google Scholar 

  70. Fleisher D, Sheth N, Kou JH. Phenytoin interaction with enteral feedings administered through nasogastric tubes. J Parenter Enteral Nutr 1990;14:513–516.

    Article  CAS  Google Scholar 

  71. Hooks MA, Longe RL, Taylor AT, Francisco GE. Recovery of phenytoin from an enteral nutrient formula. Am J Hosp Pharm 1986;43:685–688.

    CAS  Google Scholar 

  72. Olsen KM, Hiller FC, Ackerman BH, McCabe BJ. Effect of enteral feedings on oral phenytoin absorption. Nutr Clin Pract 1989;4:176–178.

    Article  CAS  Google Scholar 

  73. Marvel ME, Bertino JS: Comparative effects of an elemental and a complex enteral feeding formulation on the absorption of phenytoin suspension. JPEN 1991;15:316–318.

    CAS  Google Scholar 

  74. Hatton J, Magnuson B. How to minimize interaction between phenytoin and enteral feedings: two approaches – therapeutic options. Nutr Clin Pract 1996;11:30–31.

    Google Scholar 

  75. Faraji B, Yu PP. Serum phenytoin levels of patients on gastrostomy tube feeding. J Neurosci Nurs 1998;30:55–59.

    Article  CAS  Google Scholar 

  76. Nishimura LY, Armstrong EP, Plezia PM, Iacono RP. Influence of enteral feeding on phenytoin sodium absorption from capsules. Drug Intell Clin Pharm 1988;22:130–133.

    CAS  Google Scholar 

  77. Magnuson BL, Clifford TM, Hoskins LA, Bernard AC. Enteral nutrition and drug administration, interactions, and complications. Nutr Clin Pract 2005;20:618–624.

    Article  Google Scholar 

  78. Bass J, Miles MV, Tennison MB, Holcombe BJ, Thorn MD. Effects of enteral tube feeding on the absorption and pharmacokinetic profile of carbamazepine. Epilepsia 1989;30:364–369.

    Article  CAS  Google Scholar 

  79. Kassam RM, Friesen E, Locock RA. In vitro recovery of carbamazepine from Ensure. JPEN 1989;13:272–276.

    CAS  Google Scholar 

  80. Estoup M. Approaches and limitations of medication delivery in patients with enteral feeding tubes. Crit Care Nurse 1994;14:68–79.

    CAS  Google Scholar 

  81. Engle KK, Hannawa TE. Techniques for administering oral medications to critical care patients receiving continuous enteral nutrition. Am Society Health-Syst Pharm 1999;56:1441–1444.

    CAS  Google Scholar 

  82. Yuk JH, Nightingale CH, Sweeney KR, Quintiliani R, Lettieri JT, Frost RW. Relative bioavailability in healthy volunteers of ciprofloxacin administered through a nasogastric tube with and without enteral feeding. Antimicrob Agents Chemother 1989;33:1118–1120.

    CAS  Google Scholar 

  83. Mueller BA, Brierton DG, Abel S, Bowman L. Effect of enteral feeding with ensure on oral bioavailabilities of ofloxacin and ciprofloxacin. Antimicrob Agents Chemother 1994;38:2101–2105.

    CAS  Google Scholar 

  84. Piccolo ML, Toossi Z, Goldman M. Effect of coadministration of a nutritional supplement on ciprofloxacin absorption. Am J Hosp Pharm 1994;51:2697–2699.

    CAS  Google Scholar 

  85. Mimoz O. Binter V, Jacolot A, Edourd A, Tod M, Petitjean O, Samii K. Pharmacokinetics and absolute bioavailability of ciprofloxacin administered through a nasogastric tube with continuous enteral feeding to critically ill patients. Int Care Med 1998;24:1047–1051.

    Article  CAS  Google Scholar 

  86. de Marie S, VandenBergh MFQ, Buijk SL, Bruining HA, van Vliet A, Kluytmans JA, Mouton JW. Bioavailability of ciprofloxacin after multiple enteral and intravenous doses in ICU patients with severe gram-negative intra-abdominal infections. Int Care Med 1998;24:343–346.

    Article  Google Scholar 

  87. Cohn SM, Sawyer MD, Burns GA, Tolomeo C, Miller KA. Enteric absorption of ciprofloxacin during tube feeding in the critically ill. J Antimicrob Chemother 1996;38:871–876.

    Article  CAS  Google Scholar 

  88. Kanji S, McKinnon PS, Barletta JF, et al. Bioavailability of gatifloxacin by gastric tube administration with and without concomitant enteral feeding in critically ill patients. Crit Care Med 2003;31:1347–1352.

    Article  CAS  Google Scholar 

  89. Wright DH, Pietz SL, Konstantinides MT, Rotschafer JC. Decreased in vitro fluoroquinolone concentrations after admixture with an enteral feeding formulation. J Parenter Enteral Nutr 2000;24:42–48.

    Article  CAS  Google Scholar 

  90. Druckenbrod RW, Healy DP. In vitro delivery of crushed ciprofloxacin through a feeding tube. Ann Pharmacother 1992;26:494–495.

    CAS  Google Scholar 

  91. CIPRO (ciprofloxacin) 5 and 10% oral suspension. Bayer Corporation Pharmaceutical Division, West Haven, CT.

    Google Scholar 

  92. Welling PG, Lyons LL, Craig WA, Trochta GA. Influence of diet and fluid on bioavailability of theophylline. Clin Pharmacol Ther 1975;7:45–480.

    Google Scholar 

  93. Gal P, Layson R. Interference with oral theophylline absorption by continuous nasogastric feedings. Ther Drug Monit 1986;8:421–423.

    Article  CAS  Google Scholar 

  94. Plezia PM, Thronley SM, Kramer TH, Armstrong EP. The influence of enteral feedings on sustained-release theophylline absorption. Pharmacother 1990;10:356–361.

    CAS  Google Scholar 

  95. Bhargava VO, Schaaf LJ, Berlinger WG, Jungnickel PW. Effect of an enteral nutrient formula on sustained-release theophylline absorption. Ther Drug Monit 1989;11:515–519.

    Article  CAS  Google Scholar 

  96. Maka DA, Murphy LK. Drug–nutrient interactions: a review. Nutrition 2000;11:580–589.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rollins, C.J. (2009). Drug–Nutrient Interactions in Patients Receiving Enteral Nutrition. In: Boullata, J., Armenti, V. (eds) Handbook of Drug-Nutrient Interactions. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-60327-362-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-362-6_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-363-3

  • Online ISBN: 978-1-60327-362-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics