Skip to main content

Embryonic Stem Cells, Cardiomyoplasty, and the Risk of Teratoma Formation

  • Chapter
  • First Online:
Trends in Stem Cell Biology and Technology

Abstract

Embryonic, fetal, and adult stem cells have been extensively tested in the past decade as candidates for cell replacement therapy of severe heart failure. Among them, embryonic stem (ES) cells have been regarded as an especially valuable source of therapeutic cells due to their unlimited growth in culture and well-established cardiogenic potential in vitro. ES cell preparations that were tested in animal models of heart infarction ranged from fully undifferentiated and cardiac-committed ES cells to partially or highly enriched ES cell-derived cardiomyocytes. Here we critically review the current literature on use of fully undifferentiated ES cells for cardiac repair, elaborate on the tumorigenic risk of ES cells and pluripotent cells in general, and summarize strategies for elimination of this threat as an important step toward translation of ES cell-based therapies to clinic. This discussion is also highly relevant for clinical applicability of newly developed autologous ES cell-like stem cells, so-called induced pluripotent stem cells, which circumvent ethical and, to some extent, immunological concerns linked to the use of blastocyst-derived ES cells, but still possess high tumorigenic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thom T, Haase N, Rosamund W, et al Heart disease and stroke statistics—2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2006;113:e85–151.

    Article  PubMed  Google Scholar 

  2. Lechler RI, Sykes M, Thomson AW, Turka LA. Organ transplantation—how much of the promise has been realized. Nat Med 2005;11:605–13.

    Article  PubMed  CAS  Google Scholar 

  3. Laflamme MA, Murry CE. Regenerating the heart. Nat Biotechnol 2005;23:845–56.

    Article  PubMed  CAS  Google Scholar 

  4. Murry CE, Field LJ, Menasche P. Cell-based cardiac repair: reflections at the 10-year point. Circulation 2005;112:3174–83.

    Article  PubMed  Google Scholar 

  5. Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004;428:664–8.

    Article  PubMed  CAS  Google Scholar 

  6. Nygren JM, Jovinge S, Breitbach M, et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 2004;10:494–501.

    Article  PubMed  CAS  Google Scholar 

  7. Reinecke H, Poppa V, Murry CE. Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J Mol Cell Cardiol 2002;34:241–9.

    Article  PubMed  CAS  Google Scholar 

  8. Roell W, Lewalter T, Sasse P, et al. Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature 2007;450:819–24.

    Article  PubMed  CAS  Google Scholar 

  9. Leobon B, Garcin I, Menasche P, Vilquin JT, Audinat E, Charpak S. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Natl Acad Sci U S A 2003;100:7808–11.

    Article  PubMed  CAS  Google Scholar 

  10. Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004;364:141–8.

    Article  PubMed  Google Scholar 

  11. Janssens S, Dubois C, Bogaert J, et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 2006;367:113–21.

    Article  PubMed  Google Scholar 

  12. Smits PC, van Geuns RJ, Poldermans D, et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J Am Coll Cardiol 2003;42:2063–9.

    Article  PubMed  Google Scholar 

  13. Breitbach M, Bostani T, Roell W, et al. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 2007;110:1362–9.

    Article  PubMed  CAS  Google Scholar 

  14. Noiseux N, Gnecchi M, Lopez-Ilasaca M, et al. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther 2006;14:840–50.

    Article  PubMed  CAS  Google Scholar 

  15. Iso Y, Spees JL, Serrano C, et al. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Biophys Res Commun 2007;354:700–6.

    Article  PubMed  CAS  Google Scholar 

  16. Xu M, Uemura R, Dai Y, Wang Y, Pasha Z, Ashraf M. In vitro and in vivo effects of bone marrow stem cells on cardiac structure and function. J Mol Cell Cardiol 2007;42:441–8.

    Article  PubMed  CAS  Google Scholar 

  17. Mazhari R, Hare JM. Mechanisms of action of mesenchymal stem cells in cardiac repair: potential influences on the cardiac stem cell niche. Nat Clin Pract Cardiovasc Med 2007;4 Suppl 1:S21–6.

    Article  PubMed  Google Scholar 

  18. Behfar A, Zingman LV, Hodgson DM, et al. Stem cell differentiation requires a paracrine pathway in the heart. FASEB J 2002;16:1558–66.

    Article  PubMed  Google Scholar 

  19. Hodgson DM, Behfar A, Zingman LV, et al. Stable benefit of embryonic stem cell therapy in myocardial infarction. Am J Physiol Heart Circ Physiol 2004;287:H471–9.

    Article  PubMed  CAS  Google Scholar 

  20. Xie CQ, Zhang J, Xiao Y, et al. Transplantation of human undifferentiated embryonic stem cells into a myocardial infarction rat model. Stem Cells Dev 2007;16:25–9.

    Article  PubMed  CAS  Google Scholar 

  21. Behfar A, Perez-Terzic C, Faustino RS, et al. Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. J Exp Med 2007;204:405–20.

    Article  PubMed  CAS  Google Scholar 

  22. Singla DK, Hacker TA, Ma L, et al. Transplantation of embryonic stem cells into the infarcted mouse heart: formation of multiple cell types. J Mol Cell Cardiol 2006;40:195–200.

    Article  PubMed  CAS  Google Scholar 

  23. Singla DK, Lyons GE, Kamp TJ. Transplanted embryonic stem cells following mouse myocardial infarction inhibit apoptosis and cardiac remodeling. Am J Physiol Heart Circ Physiol 2007;293:H1308–14.

    Article  PubMed  CAS  Google Scholar 

  24. Itskovitz-Eldor J, Schuldiner M, Karsenti D, et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 2000;6:88–95.

    PubMed  CAS  Google Scholar 

  25. Lavon N, Yanuka O, Benvenisty N. Differentiation and isolation of hepatic-like cells from human embryonic stem cells. Differentiation 2004;72:230–8.

    Article  PubMed  CAS  Google Scholar 

  26. Stevens LC, Little CC. Spontaneous testicular teratomas in an inbred strain of mice. Proc Natl Acad Sci U S A 1954;40:1080–7.

    Article  PubMed  CAS  Google Scholar 

  27. Stevens LC. Experimental production of testicular teratomas in mice. Proc Natl Acad Sci U S A 1964;52:654–61.

    Article  PubMed  CAS  Google Scholar 

  28. Solter D, Skreb N, Damjanov I. Extrauterine growth of mouse egg-cylinders results in malignant teratoma. Nature 1970;227:503–4.

    Article  PubMed  CAS  Google Scholar 

  29. Eventov-Friedman S, Katchman H, Shezen E, et al. Embryonic pig liver, pancreas, and lung as a source for transplantation: optimal organogenesis without teratoma depends on distinct time windows. Proc Natl Acad Sci U S A 2005;102:2928–33.

    Article  PubMed  CAS  Google Scholar 

  30. Dekel B, Burakova T, Arditti FD, et al. Human and porcine early kidney precursors as a new source for transplantation. Nat Med 2003;9:53–60.

    Article  PubMed  CAS  Google Scholar 

  31. Kleinsmith LJ, Pierce GB Jr. Multipotentiality of single embryonal carcinoma cells. Cancer Res 1964;24:1544–51.

    PubMed  CAS  Google Scholar 

  32. Finch BW, Ephrussi B. Retention of multiple developmental potentialities by cells of a mouse testicular teratocarcinoma during prolonged culture in vitro and their extinction upon hybridization with cells of permanent lines. Proc Natl Acad Sci U S A 1967;57:615–21.

    Article  PubMed  CAS  Google Scholar 

  33. Fogh J, Trempe G. New human tumor cell lines. In Human Tumor Cells in Vitro (ed. J Fogh). Plenum, New York, 1975:115–59.

    Google Scholar 

  34. Hogan B, Fellous M, Avner P, Jacob F. Isolation of a human teratoma cell line which expresses F9 antigen. Nature 1977;270:515–8.

    Article  PubMed  CAS  Google Scholar 

  35. Martin GR, Evans MJ. The morphology and growth of a pluripotent teratocarcinoma cell line and its derivatives in tissue culture. Cell 1974;2:163–72.

    Article  PubMed  CAS  Google Scholar 

  36. Martin GR, Evans MJ. Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc Natl Acad Sci U S A 1975;72:1441–5.

    Article  PubMed  CAS  Google Scholar 

  37. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 1981;78:7634–8.

    Article  PubMed  CAS  Google Scholar 

  38. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981;292:154–6.

    Article  PubMed  CAS  Google Scholar 

  39. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145–7.

    Article  PubMed  CAS  Google Scholar 

  40. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 2000;18:399–404.

    Article  PubMed  CAS  Google Scholar 

  41. Solter D. From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nat Rev Genet 2006;7:319–27.

    Article  PubMed  CAS  Google Scholar 

  42. Andrews PW. From teratocarcinomas to embryonic stem cells. Philos Trans R Soc Lond B Biol Sci 2002;357:405–17.

    Article  PubMed  Google Scholar 

  43. Schuldiner M, Itskovitz-Eldor J, Benvenisty N. Selective ablation of human embryonic stem cells expressing a “suicide” gene. Stem Cells 2003;21:257–65.

    Article  PubMed  CAS  Google Scholar 

  44. Gertow K, Wolbank S, Rozell B, et al. Organized development from human embryonic stem cells after injection into immunodeficient mice. Stem Cells Dev 2004;13:421–35.

    Article  PubMed  Google Scholar 

  45. Lawrenz B, Schiller H, Willbold E, Ruediger M, Muhs A, Esser S. Highly sensitive biosafety model for stem-cell-derived grafts. Cytotherapy 2004;6:212–22.

    Article  PubMed  CAS  Google Scholar 

  46. Przyborski SA. Differentiation of human embryonic stem cells after transplantation in immune-deficient mice. Stem Cells 2005;23:1242–50.

    Article  PubMed  Google Scholar 

  47. Drukker M, Katchman H, Katz G, et al. Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells 2006;24:221–9.

    Article  PubMed  Google Scholar 

  48. Koch CA, Jordan CE, Platt JL. Complement-dependent control of teratoma formation by embryonic stem cells. J Immunol 2006;177:4803–9.

    PubMed  CAS  Google Scholar 

  49. Blum B, Benvenisty N. Clonal analysis of human embryonic stem cell differentiation into teratomas. Stem Cells 2007;25:1924–30.

    Article  PubMed  CAS  Google Scholar 

  50. Nussbaum J, Minami E, Laflamme MA, et al. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 2007;21:1345–57.

    Article  PubMed  CAS  Google Scholar 

  51. Magliocca JF, Held IK, Odorico JS. Undifferentiated murine embryonic stem cells cannot induce portal tolerance but may possess immune privilege secondary to reduced major histocompatibility complex antigen expression. Stem Cells Dev 2006;15:707–17.

    Article  PubMed  CAS  Google Scholar 

  52. Cao F, Lin S, Xie X, et al. In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 2006;113:1005–14.

    Article  PubMed  Google Scholar 

  53. Gidekel S, Pizov G, Bergman Y, Pikarsky E. Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell 2003;4:361–70.

    Article  PubMed  CAS  Google Scholar 

  54. Cooke MJ, Stojkovic M, Przyborski SA. Growth of teratomas derived from human pluripotent stem cells is influenced by the graft site. Stem Cells Dev 2006;15:254–9.

    Article  PubMed  CAS  Google Scholar 

  55. Erdö F, Buhrle C, Blunk J, et al. Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab 2003;23:780–5.

    Article  PubMed  Google Scholar 

  56. Riess P, Molcanyi M, Bentz K, et al. Embryonic stem cell transplantation after experimental traumatic brain injury dramatically improves neurological outcome, but may cause tumors. J Neurotrauma 2007;24:216–25.

    Article  PubMed  Google Scholar 

  57. Grinnemo KH, Kumagai-Braesch M, Mansson-Broberg A, et al. Human embryonic stem cells are immunogenic in allogeneic and xenogeneic settings. Reprod Biomed Online 2006;13:712–24.

    Article  PubMed  CAS  Google Scholar 

  58. Bonnevie L, Bel A, Sabbah L, et al. Is xenotransplantation of embryonic stem cells a realistic option. Transplantation 2007;83:333–5.

    Article  PubMed  Google Scholar 

  59. Kofidis T, de Bruin JL, Tanaka M, et al. They are not stealthy in the heart: embryonic stem cells trigger cell infiltration, humoral and T-lymphocyte-based host immune response. Eur J Cardiothorac Surg 2005;28:461–6.

    Article  PubMed  Google Scholar 

  60. Swijnenburg RJ, Tanaka M, Vogel H, et al. Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 2005;112:I166–72.

    PubMed  Google Scholar 

  61. Drukker M, Katz G, Urbach A, et al. Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci U S A 2002;99:9864–9.

    Article  PubMed  CAS  Google Scholar 

  62. Fabricius D, Bonde S, Zavazava N. Induction of stable mixed chimerism by embryonic stem cells requires functional Fas/FasL engagement. Transplantation 2005;79:1040–4.

    Article  PubMed  CAS  Google Scholar 

  63. Bonde S, Zavazava N. Immunogenicity and engraftment of mouse embryonic stem cells in allogeneic recipients. Stem Cells 2006;24:2192–201.

    Article  PubMed  CAS  Google Scholar 

  64. Abdullah Z, Saric T, Kashkar H, et al. Serpin-6 expression protects embryonic stem cells from lysis by antigen-specific CTL. J Immunol 2007;178:3390–9.

    PubMed  CAS  Google Scholar 

  65. Li L, Baroja ML, Majumdar A, et al. Human embryonic stem cells possess immune-privileged properties. Stem Cells 2004;22:448–56.

    Article  PubMed  CAS  Google Scholar 

  66. Koch CA, Geraldes P, Platt JL. Immunosuppression by embryonic stem cells. Stem Cells 2007;26:89–98.

    Article  PubMed  CAS  Google Scholar 

  67. Zvibel I, Smets F, Soriano H. Anoikis: roadblock to cell transplantation. Cell Transplant 2002;11:621–30.

    PubMed  Google Scholar 

  68. Cao F, Van Der Bogt KE, Sadrzadeh A, et al. Spatial and temporal kinetics of teratoma formation from murine embryonic stem cell transplantation. Stem Cells Dev 2007;16:883–91.

    Article  PubMed  CAS  Google Scholar 

  69. Penn I. Post-transplant malignancy: the role of immunosuppression. Drug Saf 2000;23:101–13.

    Article  PubMed  CAS  Google Scholar 

  70. Wakitani S, Takaoka K, Hattori T, et al. Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint. Rheumatology (Oxford) 2003;42:162–5.

    Article  CAS  Google Scholar 

  71. Hochedlinger K, Jaenisch R. Nuclear reprogramming and pluripotency. Nature 2006;441:1061–7.

    Article  PubMed  CAS  Google Scholar 

  72. Goldstein RS, Drukker M, Reubinoff BE, et al. Integration and differentiation of human embryonic stem cells transplanted to the chick embryo. Dev Dyn 2002;225:80–6.

    Article  PubMed  CAS  Google Scholar 

  73. Chinzei R, Tanaka Y, Shimizu-Saito K, et al. Embryoid-body cells derived from a mouse embryonic stem cell line show differentiation into functional hepatocytes. Hepatology 2002;36:22–9.

    Article  PubMed  Google Scholar 

  74. Brederlau A, Correia AS, Anisimov SV, et al. Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells 2006;24:1433–40.

    Article  PubMed  CAS  Google Scholar 

  75. Kolossov E, Bostani T, Roell W, et al. Engraftment of engineered ES cell-derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium. J Exp Med 2006;203:2315–27.

    Article  PubMed  CAS  Google Scholar 

  76. Caspi O, Huber I, Kehat I, et al. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol 2007;50:1884–93.

    Article  PubMed  Google Scholar 

  77. Leor J, Gerecht S, Cohen S, et al. Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart 2007;93:1278–84.

    Article  PubMed  Google Scholar 

  78. Zweigerdt R. The art of cobbling a running pump-Will human embryonic stem cells mend broken hearts. Semin Cell Dev Biol 2007;18:794–804.

    Article  PubMed  CAS  Google Scholar 

  79. Teramoto K, Hara Y, Kumashiro Y, et al. Teratoma formation and hepatocyte differentiation in mouse liver transplanted with mouse embryonic stem cell-derived embryoid bodies. Transplant Proc 2005;37:285–6.

    Article  PubMed  CAS  Google Scholar 

  80. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:701–5.

    Article  PubMed  CAS  Google Scholar 

  81. McDonald JW, Liu XZ, Qu Y, et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 1999;5:1410–2.

    Article  PubMed  CAS  Google Scholar 

  82. Tomescot A, Leschik J, Bellamy V, et al. Differentiation in vivo of cardiac committed human embryonic stem cells in postmyocardial infarcted rats. Stem Cells 2007;25:2200–5.

    Article  PubMed  CAS  Google Scholar 

  83. Ménard C, Hagege AA, Agbulut O, et al. Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: a preclinical study. Lancet 2005;366:1005–12.

    Article  PubMed  Google Scholar 

  84. Kofidis T, de Bruin JL, Yamane T, et al. Insulin-like growth factor promotes engraftment, differentiation, and functional improvement after transfer of embryonic stem cells for myocardial restoration. Stem Cells 2004;22:1239–45.

    Article  PubMed  CAS  Google Scholar 

  85. Kofidis T, de Bruin JL, Yamane T, et al. Stimulation of paracrine pathways with growth factors enhances embryonic stem cell engraftment and host-specific differentiation in the heart after ischemic myocardial injury. Circulation 2005;111:2486–93.

    Article  PubMed  CAS  Google Scholar 

  86. Laflamme MA, Gold J, Xu C, et al. Formation of human myocardium in the rat heart from human embryonic stem cells. Am J Pathol 2005;167:663–71.

    Article  PubMed  CAS  Google Scholar 

  87. Dai W, Field LJ, Rubart M, et al. Survival and maturation of human embryonic stem cell-derived cardiomyocytes in rat hearts. Mol Cell Cardiol 2007;43:504–16.

    Article  CAS  Google Scholar 

  88. Min JY, Yang Y, Sullivan MF, et al. Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells. J Thorac Cardiovasc Surg 2003;125:361–9.

    Article  PubMed  Google Scholar 

  89. Laflamme MA, Chen KY, Naumova AV, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 2007;25:1015–24.

    Article  PubMed  CAS  Google Scholar 

  90. Müller M, Fleischmann BK, Selbert S, et al. Selection of ventricular-like cardiomyocytes from ES cells in vitro. FASEB J 2000;14:2540–8.

    Article  PubMed  Google Scholar 

  91. Klug MG, Soonpaa MH, Koh GY, Field LJ. Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J Clin Invest 1996;98:216–24.

    Article  PubMed  CAS  Google Scholar 

  92. Huber I, Itzhaki I, Caspi O, et al. Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB J 2007;21:2551–63.

    Article  PubMed  CAS  Google Scholar 

  93. Xu C, Police S, Hassanipour M, Gold JD. Cardiac bodies: a novel culture method for enrichment of cardiomyocytes derived from human embryonic stem cells. Stem Cells Dev 2006;15:631–9.

    Article  PubMed  CAS  Google Scholar 

  94. Anderson D, Self T, Mellor IR, Goh G, Hill SJ, Denning C. Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol Ther 2007;15:2027–36.

    Article  PubMed  CAS  Google Scholar 

  95. Li Z, Wu JC, Sheikh AY, et al. Differentiation, survival, and function of embryonic stem cell derived endothelial cells for ischemic heart disease. Circulation 2007;116:I46–54.

    PubMed  Google Scholar 

  96. Li M, Pevny L, Lovell-Badge R, Smith A. Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr Biol 1998;8:971–4.

    Article  PubMed  CAS  Google Scholar 

  97. Wernig M, Tucker KL, Gornik V, et al. Tau EGFP embryonic stem cells: an efficient tool for neuronal lineage selection and transplantation. J Neurosci Res 2002;69:918–24.

    Article  PubMed  CAS  Google Scholar 

  98. Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 2000;49:157–62.

    Article  PubMed  CAS  Google Scholar 

  99. Cao F, Drukker M, Lin S, et al. Molecular imaging of embryonic stem cell misbehavior and suicide gene ablation. Cloning Stem Cells 2007;9:107–17.

    Article  PubMed  CAS  Google Scholar 

  100. Jung J, Hackett NR, Pergolizzi RG, Pierre-Destine L, Krause A, Crystal RG. Ablation of tumor-derived stem cells transplanted to the central nervous system by genetic modification of embryonic stem cells with a suicide gene. Hum Gene Ther 2007;18:1182–92.

    Article  PubMed  CAS  Google Scholar 

  101. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663–76.

    Article  PubMed  CAS  Google Scholar 

  102. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861–72.

    Article  PubMed  CAS  Google Scholar 

  103. Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 2007;448:318–24.

    Article  PubMed  CAS  Google Scholar 

  104. Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 2007;25:1177–81.

    Article  PubMed  CAS  Google Scholar 

  105. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007;448:313–7.

    Article  PubMed  CAS  Google Scholar 

  106. Maherali N, Sridharan R, Xie W, et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 2007;1:55–70.

    Article  PubMed  CAS  Google Scholar 

  107. Qin D, Li W, Zhang J, Pei D. Direct generation of ES-like cells from unmodified mouse embryonic fibroblasts by Oct4/Sox2/Myc/Klf4. Cell Res 2007;17:959–62.

    Article  PubMed  CAS  Google Scholar 

  108. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318:1917–20.

    Article  PubMed  CAS  Google Scholar 

  109. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007;318:1920–3.

    Article  PubMed  CAS  Google Scholar 

  110. Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 2008;26:101–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from The German Research Society (DFG) to T.Š. (Grant SA 1382/2-1), The Federal Ministry of Education and Research (BMBF) to H.J. and T.Š. (Grant 01GN0541), and from Köln Fortune Program to T.Š. and L.P.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomo Saric .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Saric, T., Frenzel, L.P., Fatima, A., Gupta, M.K., Hescheler, J. (2009). Embryonic Stem Cells, Cardiomyoplasty, and the Risk of Teratoma Formation. In: Baharvand, H. (eds) Trends in Stem Cell Biology and Technology. Humana Press. https://doi.org/10.1007/978-1-60327-905-5_14

Download citation

Publish with us

Policies and ethics