Skip to main content

Modulation of Human Dendritic Cells by Highly Virulent Pathogens

  • Chapter
  • First Online:
National Institute of Allergy and Infectious Diseases, NIH

Part of the book series: Infectious Disease ((ID))

  • 730 Accesses

Abstract

Since the recognition of microorganisms as the etiological cause of disease, scientists have studied the intimate interaction between pathogen and host in hopes of developing effective vaccines, diagnostics, and therapeutics. In turn, these studies have greatly enriched our understanding of both the microbial world and our own immune system. Early on, it became apparent that successful infection, replication and dissemination of many of the most virulent pathogens was directly tied to usurpation of host pathways that regulate and temper the immune response or that directly suppress inflammation and antigen presentation in total. Here we will discuss the modulation of host immune responses, with a special emphasis on dendritic cells and in vivo models by the highly virulent pathogens, Ebola and Marburg viruses (EBOV and MARV, respectively) and the Gram negative bacterium, Francisella tularensis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith C E (1971). Lessons from Marburg disease, Sci Basis Med Annu Rev, 58–80

    Google Scholar 

  2. Emond R T, Evans B, Bowen E T, & Lloyd G (1977). A case of Ebola virus Infection, Br Med J, 2(6086) 541–544

    Article  PubMed  CAS  Google Scholar 

  3. Geisbert T W & Jahrling P B (1990). Use of immunoelectron microscopy to show Ebola virus during the 1989 United States epizootic, J Clin Pathol, 43(10) 813–816

    Article  PubMed  CAS  Google Scholar 

  4. Hayes C G, Burans J P, Ksiazek T G, & et al (1992). Outbreak of fatal illness among captive macaques in the Philippines caused by an Ebola-related filovirus, Am J Trop Med Hyg, 46(6), 664–671

    PubMed  CAS  Google Scholar 

  5. Elliott L H, Kiley M P, & McCormick J B (1985). Descriptive analysis of Ebola virus proteins, Virology, 147(1), 169–176

    Article  PubMed  CAS  Google Scholar 

  6. Kiley M P, Cox N J, Elliott L H, & et al (1988). Physicochemical properties of Marburg virus: evidence for three distinct virus strains and their relationship to Ebola virus, J. Gen Virol, 69(Part 8), 1957–1967

    Article  PubMed  Google Scholar 

  7. Becker S, Rinne C, Hofsass U, & et al (1998). Interactions of Marburg virus nucleocapsid proteins, Virology, 249(2), 406–417

    Article  PubMed  CAS  Google Scholar 

  8. Volchkov V E, Blinov V M, & Netesov S V (1992). The envelope glycoprotein of Ebola virus contains an immunosuppressive-like domain similar to oncogenic retroviruses, FEBS Lett, 305(3), 181–184

    Article  PubMed  CAS  Google Scholar 

  9. Will C, Muhlberger E, Linder D, & et al (1993). Marburg virus gene 4 encodes the virion membrane protein, a type I transmembrane glycoprotein, J Virol, 67(3), 1203–1210

    PubMed  CAS  Google Scholar 

  10. Feldmann H, Will C, Schikore M, & et al (1991). Glycosylation and oligomerization of the spike protein of Marburg virus, Virology, 182(1), 353–356

    Article  PubMed  CAS  Google Scholar 

  11. Harty R N, Brown M E, Wang G H, & et al (2000). A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding, Proc Natl Acad Sci USA, 97(25), 13871–13876

    Article  PubMed  CAS  Google Scholar 

  12. Sanchez A, Kiley M P, Holloway B P, & et al (1993). Sequence analysis of the Ebola virus genome: organization, genetic elements, and comparison with the genome of Marburg virus, Virus Res, 29(3), 215–240

    Article  PubMed  CAS  Google Scholar 

  13. Sanchez A, Trappier S G, Mahy B W, & et al (1996). The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing, Proc Natl Acad Sci USA, 93(8), 3602–3607

    Article  PubMed  CAS  Google Scholar 

  14. Volchkov V E, Becker S, Volchkova V A, & et al (1995). GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases, Virology, 214(2), 421–430

    Article  PubMed  CAS  Google Scholar 

  15. Yang Z, Delgado R, Xu L, & et al (1998). Distinct cellular interactions of secreted and transmembrane Ebola virus glycoproteins, Science, 279(5353), 1034–1037

    Article  PubMed  CAS  Google Scholar 

  16. McCoy G W & Chapin C W (1912). Bacterium tularense the cause of a plague-like disease of rodents, J Infect Dis, 10(1), 17–23

    Article  Google Scholar 

  17. Wherry W B & Lamb B H (1914). Infection of man with Bacterium tularense. J Infect Dis, 15, 331–340

    Article  Google Scholar 

  18. Aikimbaev M A (1966). Taxonomy of genus Francisella, edn, Rep Acad Sci Kaz Ser Biol, 1966

    Google Scholar 

  19. Hollis D G, Weaver R E, Steigerwalt A G, & et al (1989). Francisella philomiragia comb. nov. (formerly Yersinia philomiragia) and Francisella tularensis biogroup novicida (formerly Francisella novicida) associated with human disease, J Clin Microbiol, 27(7), 1601–1608

    PubMed  CAS  Google Scholar 

  20. Oyston P C, Sjostedt A, & Titball R W (2004). Tularaemia: bioterrorism defence renews interest in Francisella tularensis, Nat Rev Microbiol, 2(12), 967–978

    Article  PubMed  CAS  Google Scholar 

  21. Tarnvik A & Berglund L (2003). Tularaemia, Eur Respir J, 21(2), 361–373

    Article  PubMed  CAS  Google Scholar 

  22. Eigelsbach H T & Downs C M (1961). Prophylactic effectiveness of live and killed tularemia vaccines. I. Production of vaccine and evaluation in the white mouse and guinea pig, J Immunol, 87, 415–425

    PubMed  CAS  Google Scholar 

  23. McCrumb F R (1961). Aerosol Infection of man with Pasteurella tularensis, Bacteriol Rev, 25(3), 262–267

    PubMed  CAS  Google Scholar 

  24. Fortier A H, Slayter M V, Ziemba R, & et al (1991). Live vaccine strain of Francisella tularensis: infection and immunity in mice, Infect Immun, 59(9), 2922–2928

    PubMed  CAS  Google Scholar 

  25. Paul W E (ed.) (2003). Fundamental Immunology, Lippincott Williams and Wilkins, New York

    Google Scholar 

  26. Steinman R M, Adams J C, & Cohn Z A (1975). Identification of a novel cell type in peripheral lymphoid organs of mice. IV. Identification and distribution in mouse spleen, J Exp Med, 141(4), 804–820

    PubMed  CAS  Google Scholar 

  27. Caux C, Ait-Yahia S, Chemin K, & et al (2000). Dendritic cell biology and regulation of dendritic cell trafficking by chemokines, Springer Semin Immunopathol, 22(4), 345–369

    Article  PubMed  CAS  Google Scholar 

  28. Liu F, Yang J, Huang L, & Liu D (1996). New cationic lipid formulations for gene transfer, Pharm Res, 13(12), 1856–1860

    Article  PubMed  CAS  Google Scholar 

  29. Foshay L (1950). Tularemia, Annu Rev Microbiol, 4, 313–330

    Article  PubMed  CAS  Google Scholar 

  30. Zampieri C A, Sullivan N J, & Nabel G J (2007). Immunopathology of highly virulent pathogens: insights from Ebola virus, Nat Immunol, 8(11), 1159–1164

    Article  PubMed  CAS  Google Scholar 

  31. Dowell S F, Mukunu R, Ksiazek T G, & et al (1999). Transmission of Ebola hemorrhagic fever: a study of risk factors in family members, Kikwit, Democratic Republic of the Congo, 1995. Commission de Lutte contre les Epidemies a Kikwit, J Infect Dis, 179(Suppl 1), S87–S91

    Article  PubMed  Google Scholar 

  32. Saslaw S, Eigelsbach H T, Prior J A, & et al (1961). Tularemia vaccine study. II. Respiratory challenge, Arch Intern Med, 107, 702–714

    Article  PubMed  CAS  Google Scholar 

  33. Parker R R & Spencer R R (1926). Six additional cases of laboratory infection of tularemia in man, Publ Health Rep, 41, 1341–1357

    Article  Google Scholar 

  34. Peters C J & LeDuc J W (1999). An introduction to Ebola: the virus and the Disease, J Infect Dis, 179(Suppl. 1), ix–xvi

    PubMed  Google Scholar 

  35. Feldmann H, Bugany H, Mahner F, & et al (1996). Filovirus-induced endothelial leakage triggered by infected monocytes/macrophages, J Virol, 70(4), 2208–2214

    PubMed  CAS  Google Scholar 

  36. Gupta M, Mahanty S, Ahmed, R, & et al (2001). Monocyte-derived human macrophages and peripheral blood mononuclear cells infected with ebola virus secrete MIP-1alpha and TNF-alpha and inhibit poly-IC-induced IFN-alpha in vitro, Virology, 284(1), 20–25

    Article  PubMed  CAS  Google Scholar 

  37. Harcourt B H, Sanchez A, & Offermann M K (1999). Ebola virus selectively inhibits responses to interferons, but not to interleukin-1beta, in endothelial cells, J Virol, 73(4), 3491–3496

    PubMed  CAS  Google Scholar 

  38. Stroher U, West E, Bugany H, & et al (2001). Infection and activation of monocytes by Marburg and Ebola viruses, J Virol, 75(22), 11025–11033

    Article  PubMed  CAS  Google Scholar 

  39. Geisbert T W, Hensley L E, Larsen T, & et al (2003). Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection, Am J Pathol, 163(6), 2347–2370

    Article  PubMed  CAS  Google Scholar 

  40. Bosio C M, Aman M J, Grogan C, & et al (2003). Ebola and Marburg viruses replicate in monocyte-derived dendritic cells without inducing the production of cytokines and full maturation, J Infect Dis, 188 (11), 1630–1638

    Article  PubMed  CAS  Google Scholar 

  41. Mahanty S, Hutchinson K, Agarwal S, & et al (2003). Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses, J Immunol, 170(6), 2797–2801

    PubMed  CAS  Google Scholar 

  42. Basler C F, Mikulasova A, Martinez-Sobrido L, & et al (2003). The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3, J Virol, 77(14), 7945–7956

    Article  PubMed  CAS  Google Scholar 

  43. Jahrling P B, Geisbert T W., Geisbert J B, et al (1999). Evaluation of immune globulin and recombinant interferon-alpha2b for treatment of experimental Ebola virus infections, J Infect Dis, 179(Suppl. 1), S224–S234

    Article  PubMed  CAS  Google Scholar 

  44. Reid S P, Leung L W, Hartman A L, & et al (2006). Ebola virus VP24 binds karyopherin alpha1 and blocks STAT1 nuclear accumulation, J Virol, 80(11), 5156–5167

    Article  PubMed  CAS  Google Scholar 

  45. Reid S P, Valmas C, Martinez O, & et al (2007). Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin alpha proteins with activated STAT1, J Virol, 81(24), 13469–13477

    Article  PubMed  CAS  Google Scholar 

  46. Greisman S E, Hornick R B, Wagner H N Jr, & et al (1969). The role of endotoxin during typhoid fever and tularemia in man. IV. The integrity of the endotoxin tolerance mechanisms during infection, J Clin Invest, 48(4), 613–629

    Article  PubMed  CAS  Google Scholar 

  47. Butchar J P, Cremer T J, Clay C D, & et al (2008). Microarray analysis of human monocytes infected with Francisella tularensis identifies new targets of host response subversion, PLoS ONE, 3(8), e2924

    Article  PubMed  Google Scholar 

  48. Bosio C M, Bielefeldt-Ohmann H, & Belisle J T (2007). Active suppression of the pulmonary immune response by Francisella tularensis Schu4, J Immunol, 178(7), 4538–4547

    PubMed  CAS  Google Scholar 

  49. Conlan J W, Zhao X, Harris G, & et al (2008). Molecular immunology of experimental primary tularemia in mice infected by respiratory or intradermal routes with type A Francisella tularensis, Mol Immunol, 45(10), 2962–2969

    Article  PubMed  CAS  Google Scholar 

  50. Chase J C, Celli J, & Bosio C M (2009). Direct and indirect impairment of human dendritic cell function by virulent Francisella tularensis Schu S4, Infect Immun, 77(1), 180–195

    Article  PubMed  CAS  Google Scholar 

  51. Dobrovolskaia M A & Vogel S N (2002). Toll receptors, CD14, and macrophage activation and deactivation by LPS, Microbes Infect., 4(9), 903–914.

    Article  PubMed  CAS  Google Scholar 

  52. Fan, H. and Cook, J. A. (2004) Molecular mechanisms of endotoxin tolerance, J Endotoxin Res, 10(2), 71–84

    Article  PubMed  CAS  Google Scholar 

  53. Ancuta P, Pedron T, Girard R, & et al (1996). Inability of the Francisella tularensis lipopolysaccharide to mimic or to antagonize the induction of cell activation by endotoxins, Infect Immun, 64(6), 2041–2046

    PubMed  CAS  Google Scholar 

  54. Duenas A I, Aceves M, Orduna A, & et al (2006). Francisella tularensis LPS induces the production of cytokines in human monocytes and signals via Toll-like receptor 4 with much lower potency than E. coli LPS, Int Immunol, 18(5), 785–795

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bosio, C.M. (2010). Modulation of Human Dendritic Cells by Highly Virulent Pathogens. In: Georgiev, V. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-512-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-512-5_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-511-8

  • Online ISBN: 978-1-60761-512-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics