Skip to main content

Thioredoxin in the Cardiovascular System—Towards a Thioredoxin-Based Antioxidative Therapy

  • Chapter
  • First Online:
Studies on Cardiovascular Disorders

Abstract

Oxidative stress results from an imbalance between the production of reactive oxygen species (ROS) and the endogenous antioxidant systems, which detoxify the reactive intermediates. Diseases of the cardiovascular system, including atherosclerosis, diabetes, cardiac hypertrophy, and congestive heart disease are characterized by enhanced production of ROS. In these conditions ROS promote cardiovascular pathology in part by activating inflammatory signaling pathways. One of the principal antioxidant defense mechanisms is the small 12 kDa oxidoreductase, thioredoxin (TRX), that catalyzes the conversion of disulfide oxidized proteins to their thiol-reduced forms. TRX via this catalytic activity confers a protective effect by the ability to regulate pathological signal transduction, inhibit apoptosis, and reduce inflammation. Recent studies using transgenic mice have shown that overexpression of TRX within vascular tissue exerts a protective effect, while injection of recombinant TRX has similarly been demonstrated to possess therapeutic value for the treatment of various vascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Powis G, Mustacich D, Coon A (2000) The role of the redox protein thioredoxin in cell growth and cancer. Free Radic Biol Med 29:312–322

    Article  PubMed  CAS  Google Scholar 

  2. Miranda-Vizuete A, Damdimopoulos AE, Spyrou G (2000) The mitochondrial thioredoxin system. Antioxid Redox Signal 2:801–810

    Article  PubMed  CAS  Google Scholar 

  3. Fourquet S, Huang ME, D’Autreaux B, Toledano MB (2008) The dual functions of thiol-based peroxidases in H2O2 scavenging and signaling. Antioxid Redox Signal 10:1565–1576

    Article  PubMed  CAS  Google Scholar 

  4. Choi MH, Lee IK, Kim GW et al (2005) Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature 435:347–353

    Article  PubMed  CAS  Google Scholar 

  5. Uwayama J, Hirayama A, Yanagawa T et al (2006) Tissue Prx I in the protection against Fe-NTA and the reduction of nitroxyl radicals. Biochem Biophys Res Commun 339:226–231

    Article  PubMed  CAS  Google Scholar 

  6. Matsushima S, Ide T, Yamato M et al (2006) Overexpression of mitochondrial peroxiredoxin-3 prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation 113:1779–1786

    Article  PubMed  CAS  Google Scholar 

  7. Ichijo H, Nishida E, Irie K et al (1997) Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275:90–94

    Article  PubMed  CAS  Google Scholar 

  8. Saitoh M, Nishitoh H, Fujii M et al (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17:2596–2606

    Article  PubMed  CAS  Google Scholar 

  9. Yamawaki H, Pan S, Lee RT, Berk BC (2005) Fluid shear stress inhibits vascular inflammation by decreasing thioredoxin-interacting protein in endothelial cells. J Clin Invest 115:733–738

    PubMed  CAS  Google Scholar 

  10. Hirota K, Murata M, Itoh T, Yodoi J, Fukuda K (2001) Redox-sensitive transactivation of epidermal growth factor receptor by tumor necrosis factor confers the NF-kappa B activation. J Biol Chem 276:25953–25958

    Article  PubMed  CAS  Google Scholar 

  11. Hirota K, Murata M, Itoh T, Yodoi J, Fukuda K (2001) An endogenous redox molecule, thioredoxin, regulates transactivation of epidermal growth factor receptor and activation of NF-kappaB by lysophosphatidic acid. FEBS Lett 489:134–138

    Article  PubMed  CAS  Google Scholar 

  12. Watson JA, Rumsby MG, Wolowacz RG (1999) Phage display identifies thioredoxin and superoxide dismutase as novel protein kinase C-interacting proteins: thioredoxin inhibits protein kinase C-mediated phosphorylation of histone. Biochem J 343(Pt 2):301–305

    Article  PubMed  CAS  Google Scholar 

  13. Das Evcimen N, King GL (2007) The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res 55:498–510

    Article  PubMed  CAS  Google Scholar 

  14. Magid R, Davies PF (2005) Endothelial protein kinase C isoform identity and differential activity of PKCzeta in an athero-susceptible region of porcine aorta. Circ Res 97:443–449

    Article  PubMed  CAS  Google Scholar 

  15. Gimbrone MA Jr, Topper JN, Nagel T, Anderson KR, Garcia-Cardena G (2000) Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N Y Acad Sci 902:230–239; discussion 239–240

    Article  PubMed  CAS  Google Scholar 

  16. Garin G, Abe J, Mohan A et al (2007) Flow antagonizes TNF-alpha signaling in endothelial cells by inhibiting caspase-dependent PKC zeta processing. Circ Res 101:97–105

    Article  PubMed  CAS  Google Scholar 

  17. Lee SR, Yang KS, Kwon J et al (2002) Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 277:20336–20342

    Article  PubMed  CAS  Google Scholar 

  18. Sohn J, Rudolph J (2003) Catalytic and chemical competence of regulation of cdc25 phosphatase by oxidation/reduction. Biochemistry 42:10060–10070

    Article  PubMed  CAS  Google Scholar 

  19. Bogumil R, Namgaladze D, Schaarschmidt D et al (2000) Inactivation of calcineurin by hydrogen peroxide and phenylarsine oxide. Evidence for a dithiol-disulfide equilibrium and implications for redox regulation. Eur J Biochem 267:1407–1415

    Article  PubMed  CAS  Google Scholar 

  20. Lee SR, Kwon KS, Kim SR, Rhee SG (1998) Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 273:15366–15372

    Article  PubMed  CAS  Google Scholar 

  21. Cho SH, Lee CH, Ahn Y et al (2004) Redox regulation of PTEN and protein tyrosine phosphatases in H(2)O(2) mediated cell signaling. FEBS Lett 560:7–13

    Article  PubMed  CAS  Google Scholar 

  22. Hirota K, Matsui M, Iwata S et al (1997) AP-1 transcriptional activity is regulated by a direct association between thioredoxin and ref-1. Proc Natl Acad Sci U S A 94:3633–3638

    Article  PubMed  CAS  Google Scholar 

  23. Hirota K, Murata M, Sachi Y et al (1999) Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaB. J Biol Chem 274:27891–27897

    Article  PubMed  CAS  Google Scholar 

  24. Schroeder P, Popp R, Wiegand B, Altschmied J, Haendeler J (2007) Nuclear redox-signaling is essential for apoptosis inhibition in endothelial cells—important role for nuclear thioredoxin-1. Arterioscler Thromb Vasc Biol 27:2325–2331

    Article  PubMed  CAS  Google Scholar 

  25. Karimpour S, Lou J, Lin LL et al (2002) Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation. Oncogene 21:6317–6327

    Article  PubMed  CAS  Google Scholar 

  26. Arai RJ, Masutani H, Yodoi J et al (2006) Nitric oxide induces thioredoxin-1 nuclear translocation: possible association with the p21Ras survival pathway. Biochem Biophys Res Commun 348:1254–1260

    Article  PubMed  CAS  Google Scholar 

  27. Lander HM, Hajjar DP, Hempstead BL et al (1997) A molecular redox switch on p21(ras). Structural basis for the nitric oxide-p21(ras) interaction. J Biol Chem 272:4323–4326

    Article  PubMed  CAS  Google Scholar 

  28. Matthews JR, Wakasugi N, Virelizier JL, Yodoi J, Hay RT (1992) Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res 20:3821–3830

    Article  PubMed  CAS  Google Scholar 

  29. Makino Y, Yoshikawa N, Okamoto K et al (1999) Direct association with thioredoxin allows redox regulation of glucocorticoid receptor function. J Biol Chem 274:3182–3188

    Article  PubMed  CAS  Google Scholar 

  30. Hayashi S, Hajiro-Nakanishi K, Makino Y et al (1997) Functional modulation of estrogen receptor by redox state with reference to thioredoxin as a mediator. Nucleic Acids Res 25:4035–4040

    Article  PubMed  CAS  Google Scholar 

  31. Chakraborti PK, Garabedian MJ, Yamamoto KR, Simons SS Jr (1992) Role of cysteines 640, 656, and 661 in steroid binding to rat glucocorticoid receptors. J Biol Chem 267:11366–11373

    PubMed  CAS  Google Scholar 

  32. Hutchison KA, Matic G, Czar MJ, Pratt WB (1992) DNA-binding and non-DNA-binding forms of the transformed glucocorticoid receptor. J Steroid Biochem Mol Biol 41:715–718

    Article  PubMed  CAS  Google Scholar 

  33. Mikkola T, Ranta V, Orpana A, Ylikorkala O, Viinikka L (1996) Effect of physiological concentrations of estradiol on PGI2 and NO in endothelial cells. Maturitas 25:141–147

    Article  PubMed  CAS  Google Scholar 

  34. Liu GH, Qu J, Shen X (2006) Thioredoxin-mediated negative autoregulation of peroxisome proliferator-activated receptor alpha transcriptional activity. Mol Biol Cell 17:1822–1833

    Article  PubMed  CAS  Google Scholar 

  35. Yuan J, Wu J, Hang ZG et al (2008) Role of peroxisome proliferator-activated receptor alpha activation in acute myocardial damage induced by isoproterenol in rats. Chin Med J (Engl) 121:1569–1573

    CAS  Google Scholar 

  36. Finck BN, Lehman JJ, Leone TC et al (2002) The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 109:121–130

    PubMed  CAS  Google Scholar 

  37. Liang F, Wang F, Zhang S, Gardner DG (2003) Peroxisome proliferator activated receptor (PPAR)alpha agonists inhibit hypertrophy of neonatal rat cardiac myocytes. Endocrinology 144:4187–4194

    Article  PubMed  CAS  Google Scholar 

  38. Ema M, Hirota K, Mimura J et al (1999) Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J 18:1905–1914

    Article  PubMed  CAS  Google Scholar 

  39. Fujii S, Nanbu Y, Nonogaki H et al (1991) Coexpression of adult T-cell leukemia-derived factor, a human thioredoxin homologue, and human papillomavirus DNA in neoplastic cervical squamous epithelium. Cancer 68:1583–1591

    Article  PubMed  CAS  Google Scholar 

  40. Kawahara N, Tanaka T, Yokomizo A et al (1996) Enhanced coexpression of thioredoxin and high mobility group protein 1 genes in human hepatocellular carcinoma and the possible association with decreased sensitivity to cisplatin. Cancer Res 56:5330–5333

    PubMed  CAS  Google Scholar 

  41. Briehl MM, Cotgreave IA, Powis G (1995) Downregulation of the antioxidant defence during glucocorticoid-mediated apoptosis. Cell Death Differ 2:41–46

    PubMed  CAS  Google Scholar 

  42. Baker A, Payne CM, Briehl MM, Powis G (1997) Thioredoxin, a gene found overexpressed in human cancer, inhibits apoptosis in vitro and in vivo. Cancer Res 57:5162–5167

    PubMed  CAS  Google Scholar 

  43. Haendeler J, Tischler V, Hoffmann J, Zeiher AM, Dimmeler S (2004) Low doses of reactive oxygen species protect endothelial cells from apoptosis by increasing thioredoxin-1 expression. FEBS Lett 577:427–433

    Article  PubMed  CAS  Google Scholar 

  44. Haendeler J, Popp R, Goy C et al (2005) Cathepsin D and H2O2 stimulate degradation of thioredoxin-1: implication for endothelial cell apoptosis. J Biol Chem 280:42945–42951

    Article  PubMed  CAS  Google Scholar 

  45. Mitchell DA, Marletta MA (2005) Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine. Nat Chem Biol 1:154–158

    Article  PubMed  CAS  Google Scholar 

  46. Mitchell DA, Morton SU, Fernhoff NB, Marletta MA (2007) Thioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells. Proc Natl Acad Sci U S A 104:11609–11614

    Article  PubMed  CAS  Google Scholar 

  47. Arai RJ, Ogata FT, Batista WL et al (2008) Thioredoxin-1 promotes survival in cells exposed to S-nitrosoglutathione: Correlation with reduction of intracellular levels of nitrosothiols and up-regulation of the ERK1/2 MAP Kinases. Toxicol Appl Pharmacol 233(2):227–237

    Article  PubMed  CAS  Google Scholar 

  48. Watson WH, Pohl J, Montfort WR et al (2003) Redox potential of human thioredoxin 1 and identification of a second dithiol/disulfide motif. J Biol Chem 278:33408–33415

    Article  PubMed  CAS  Google Scholar 

  49. Weichsel A, Gasdaska JR, Powis G, Montfort WR (1996) Crystal structures of reduced, oxidized, and mutated human thioredoxins: evidence for a regulatory homodimer. Structure 4:735–751

    Article  PubMed  CAS  Google Scholar 

  50. Haendeler J, Hoffmann J, Tischler V et al (2002) Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nat Cell Biol 4:743–749

    Article  PubMed  CAS  Google Scholar 

  51. Haendeler J, Hoffmann J, Zeiher AM, Dimmeler S (2004) Antioxidant effects of statins via S-nitrosylation and activation of thioredoxin in Endothelial Cells: A novel vasculoprotective function of statins. Circulation 110:856–861

    Article  PubMed  CAS  Google Scholar 

  52. Hashemy SI, Holmgren A (2008) Regulation of the catalytic activity and structure of human thioredoxin 1 via oxidation and S-nitrosylation of cysteine residues. J Biol Chem 283:21890–21898

    Article  PubMed  CAS  Google Scholar 

  53. Li J, Billiar TR, Talanian RV, Kim YM (1997) Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem Biophys Res Commun 240:419–424

    Article  PubMed  CAS  Google Scholar 

  54. Li J, Huang FL, Huang KP (2001) Glutathiolation of proteins by glutathione disulfide S-oxide derived from S-nitrosoglutathione. Modifications of rat brain neurogranin/RC3 and neuromodulin/GAP-43. J Biol Chem 276:3098–3105

    Article  PubMed  CAS  Google Scholar 

  55. Klatt P, Pineda Molina E, Perez-Sala D, Lamas S (2000) Novel application of S-nitrosoglutathione-Sepharose to identify proteins that are potential targets for S-nitrosoglutathione-induced mixed-disulphide formation. Biochem J 349:567–578

    Article  PubMed  CAS  Google Scholar 

  56. Holmgren A, Johansson C, Berndt C et al (2005) Thiol redox control via thioredoxin and glutaredoxin systems. Biochem Soc Trans 33:1375–1377

    Article  PubMed  CAS  Google Scholar 

  57. Casagrande S, Bonetto V, Fratelli M et al (2002) Glutathionylation of human thioredoxin: a possible crosstalk between the glutathione and thioredoxin systems. Proc Natl Acad Sci U S A 99:9745–9749

    Article  PubMed  CAS  Google Scholar 

  58. Adachi T, Pimentel DR, Heibeck T et al (2004) S-glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells. J Biol Chem 279:29857–29862

    Article  PubMed  CAS  Google Scholar 

  59. Clavreul N, Adachi T, Pimental DR et al (2006) S-glutathiolation by peroxynitrite of p21ras at cysteine-118 mediates its direct activation and downstream signaling in endothelial cells. FASEB J 20:518–520

    PubMed  CAS  Google Scholar 

  60. Clavreul N, Bachschmid MM, Hou X et al (2006) S-glutathiolation of p21ras by peroxynitrite mediates endothelial insulin resistance caused by oxidized low-density lipoprotein. Arterioscler Thromb Vasc Biol 26:2454–2461

    Article  PubMed  CAS  Google Scholar 

  61. Turko IV, Li L, Aulak KS et al (2003) Protein tyrosine nitration in the mitochondria from diabetic mouse heart. Implications to dysfunctional mitochondria in diabetes. J Biol Chem 278:33972–33977

    Article  PubMed  CAS  Google Scholar 

  62. Tao L, Jiao X, Gao E et al (2006) Nitrative inactivation of thioredoxin-1 and its role in postischemic myocardial apoptosis. Circulation 114:1395–1402

    Article  PubMed  CAS  Google Scholar 

  63. Berggren M, Gallegos A, Gasdaska JR et al (1996) Thioredoxin and thioredoxin reductase gene expression in human tumors and cell lines, and the effects of serum stimulation and hypoxia. Anticancer Res 16:3459–3466

    PubMed  CAS  Google Scholar 

  64. Nakamura H, Matsuda M, Furuke K et al (1994) Adult T cell leukemia-derived factor/human thioredoxin protects endothelial F-2 cell injury caused by activated neutrophils or hydrogen peroxide. Immunol Lett 42:75–80

    Article  PubMed  CAS  Google Scholar 

  65. Sachi Y, Hirota K, Masutani H et al (1995) Induction of ADF/TRX by oxidative stress in keratinocytes and lymphoid cells. Immunol Lett 44:189–193

    Article  PubMed  CAS  Google Scholar 

  66. Nakamura H, De Rosa S, Roederer M et al (1996) Elevation of plasma thioredoxin levels in HIV-infected individuals. Int Immunol 8:603–611

    Article  PubMed  CAS  Google Scholar 

  67. Yoshida S, Katoh T, Tetsuka T et al (1999) Involvement of thioredoxin in rheumatoid arthritis: its costimulatory roles in the TNF-alpha-induced production of IL-6 and IL-8 from cultured synovial fibroblasts. J Immunol 163:351–358

    PubMed  CAS  Google Scholar 

  68. Kishimoto C, Shioji K, Nakamura H et al (2001) Serum thioredoxin (TRX) levels in patients with heart failure. Jpn Circ J 65:491–494

    Article  PubMed  CAS  Google Scholar 

  69. Wahlgren CM, Pekkari K (2005) Elevated thioredoxin after angioplasty in peripheral arterial disease. Eur J Vasc Endovasc Surg 29:281–286

    Article  PubMed  Google Scholar 

  70. Miyamoto M, Kishimoto C, Shioji K et al (2003) Cutaneous arteriolar thioredoxin expression in patients with heart failure. Circ J 67:116–118

    Article  PubMed  CAS  Google Scholar 

  71. Hokamaki J, Kawano H, Soejima H et al (2005) Plasma thioredoxin levels in patients with unstable angina. Int J Cardiol 99:225–231

    Article  PubMed  Google Scholar 

  72. Tanito M, Nakamura H, Kwon YW et al (2004) Enhanced oxidative stress and impaired thioredoxin expression in spontaneously hypertensive rats. Antioxid Redox Signal 6:89–97

    Article  PubMed  CAS  Google Scholar 

  73. Takagi Y, Gon Y, Todaka T et al (1998) Expression of thioredoxin is enhanced in atherosclerotic plaques and during neointima formation in rat arteries. Lab Invest 78:957–966

    PubMed  CAS  Google Scholar 

  74. Farina AR, Tacconelli A, Cappabianca L et al (2003) Thioredoxin inhibits microvascular endothelial capillary tubule formation. Exp Cell Res 291:474–483

    Article  PubMed  CAS  Google Scholar 

  75. Haudenschild CC, Schwartz SM (1979) Endothelial regeneration. II. Restitution of endothelial continuity. Lab Invest 41:407–418

    PubMed  CAS  Google Scholar 

  76. Das DK, Maulik N (2004) Conversion of death signal into survival signal by redox signaling. Biochemistry (Mosc) 69:10–17

    Article  CAS  Google Scholar 

  77. Okami N, Kawamata T, Yamamoto G et al (2008) Laser microdissection-based analysis of hypoxia- and thioredoxin-related genes in human stable carotid plaques. Cardiovasc Pathol 18(5):294–300

    Article  PubMed  CAS  Google Scholar 

  78. Nishihira K, Yamashita A, Imamura T et al (2008) Thioredoxin in coronary culprit lesions: Possible relationship to oxidative stress and intraplaque hemorrhage. Atherosclerosis 201(2):360–367

    Article  PubMed  CAS  Google Scholar 

  79. Nishiyama A, Matsui M, Iwata S et al (1999) Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J Biol Chem 274:21645–21650

    Article  PubMed  CAS  Google Scholar 

  80. Yamanaka H, Maehira F, Oshiro M et al (2000) A possible interaction of thioredoxin with VDUP1 in HeLa cells detected in a yeast two-hybrid system. Biochem Biophys Res Commun 271:796–800

    Article  PubMed  CAS  Google Scholar 

  81. Chen KS, DeLuca HF (1994) Isolation and characterization of a novel cDNA from HL-60 cells treated with 1,25-dihydroxyvitamin D-3. Biochim Biophys Acta 1219:26–32

    Article  PubMed  CAS  Google Scholar 

  82. Junn E, Han SH, Im JY et al (2000) Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J Immunol 164:6287–6295

    PubMed  CAS  Google Scholar 

  83. Wang Y, De Keulenaer GW, Lee RT (2002) Vitamin D(3)-up-regulated protein-1 is a stress-responsive gene that regulates cardiomyocyte viability through interaction with thioredoxin. J Biol Chem 277:26496–26500

    Article  PubMed  CAS  Google Scholar 

  84. Xiang G, Seki T, Schuster MD et al (2005) Catalytic degradation of vitamin D up-regulated protein 1 mRNA enhances cardiomyocyte survival and prevents left ventricular remodeling after myocardial ischemia. J Biol Chem 280:39394–39402

    Article  PubMed  CAS  Google Scholar 

  85. Yoshioka J, Imahashi K, Gabel SA et al (2007) Targeted deletion of thioredoxin-interacting protein regulates cardiac dysfunction in response to pressure overload. Circ Res 101:1328–1338

    Article  PubMed  CAS  Google Scholar 

  86. Cheng DW, Jiang Y, Shalev A et al (2006) An analysis of high glucose and glucosamine-induced gene expression and oxidative stress in renal mesangial cells. Arch Physiol Biochem 112:189–218

    Article  PubMed  CAS  Google Scholar 

  87. Qi W, Chen X, Gilbert RE et al (2007) High glucose-induced thioredoxin-interacting protein in renal proximal tubule cells is independent of transforming growth factor-beta1. Am J Pathol 171:744–754

    Article  PubMed  CAS  Google Scholar 

  88. Schulze PC, Yoshioka J, Takahashi T et al (2004) Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. J Biol Chem 279:30369–30374

    Article  PubMed  CAS  Google Scholar 

  89. Schulze PC, Liu H, Choe E et al (2006) Nitric oxide-dependent suppression of thioredoxin-interacting protein expression enhances thioredoxin activity. Arterioscler Thromb Vasc Biol 26:2666–2672

    Article  PubMed  CAS  Google Scholar 

  90. Yamamoto M, Yang G, Hong C et al (2003) Inhibition of endogenous thioredoxin in the heart increases oxidative stress and cardiac hypertrophy. J Clin Invest 112:1395–1406

    PubMed  CAS  Google Scholar 

  91. Pimentel DR, Adachi T, Ido Y et al (2006) Strain-stimulated hypertrophy in cardiac myocytes is mediated by reactive oxygen species-dependent Ras S-glutathiolation. J Mol Cell Cardiol 41:613–622

    Article  PubMed  CAS  Google Scholar 

  92. Kuster GM, Pimentel DR, Adachi T et al (2005) Alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes is mediated via thioredoxin-1-sensitive oxidative modification of thiols on Ras. Circulation 111:1192–1198

    Article  PubMed  CAS  Google Scholar 

  93. Turoczi T, Chang VW, Engelman RM et al (2003) Thioredoxin redox signaling in the ischemic heart: an insight with transgenic mice overexpressing Trx1. J Mol Cell Cardiol 35:695–704

    Article  PubMed  CAS  Google Scholar 

  94. Shioji K, Kishimoto C, Nakamura H et al (2002) Overexpression of thioredoxin-1 in transgenic mice attenuates adriamycin-induced cardiotoxicity. Circulation 106:1403–1409

    Article  PubMed  CAS  Google Scholar 

  95. Doroshow JH (1983) Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Cancer Res 43:460–472

    PubMed  CAS  Google Scholar 

  96. Hotta M, Tashiro F, Ikegami H et al (1998) Pancreatic beta cell-specific expression of thioredoxin, an antioxidative and antiapoptotic protein, prevents autoimmune and streptozotocin-induced diabetes. J Exp Med 188:1445–1451

    Article  PubMed  CAS  Google Scholar 

  97. Yamamoto M, Yamato E, Toyoda S et al (2008) Transgenic expression of antioxidant protein thioredoxin in pancreatic beta cells prevents progression of type 2 diabetes mellitus. Antioxid Redox Signal 10:43–49

    Article  PubMed  CAS  Google Scholar 

  98. Kasuno K, Nakamura H, Ono T, Muso E, Yodoi J (2003) Protective roles of thioredoxin, a redox-regulating protein, in renal ischemia/reperfusion injury. Kidney Int 64:1273–1282

    Article  PubMed  CAS  Google Scholar 

  99. Tsuji G, Koshiba M, Nakamura H et al (2006) Thioredoxin protects against joint destruction in a murine arthritis model. Free Radic Biol Med 40:1721–1731

    Article  PubMed  CAS  Google Scholar 

  100. Tanito M, Masutani H, Nakamura H et al (2002) Attenuation of retinal photooxidative damage in thioredoxin transgenic mice. Neurosci Lett 326:142–146

    Article  PubMed  CAS  Google Scholar 

  101. Okuyama H, Nakamura H, Shimahara Y et al (2003) Overexpression of thioredoxin prevents acute hepatitis caused by thioacetamide or lipopolysaccharide in mice. Hepatology 37:1015–1025

    Article  PubMed  CAS  Google Scholar 

  102. Yokomise H, Fukuse T, Hirata T et al (1994) Effect of recombinant human adult T cell leukemia-derived factor on rat lung reperfusion injury. Respiration 61:99–104

    Article  PubMed  CAS  Google Scholar 

  103. Yagi K, Liu C, Bando T et al (1994) Inhibition of reperfusion injury by human thioredoxin (adult T-cell leukemia-derived factor) in canine lung transplantation. J Thorac Cardiovasc Surg 108:913–921

    PubMed  CAS  Google Scholar 

  104. Fukuse T, Hirata T, Yokomise H et al (1995) Attenuation of ischaemia reperfusion injury by human thioredoxin. Thorax 50:387–391

    Article  PubMed  CAS  Google Scholar 

  105. Okubo K, Kosaka S, Isowa N et al (1997) Amelioration of ischemia-reperfusion injury by human thioredoxin in rabbit lung. J Thorac Cardiovasc Surg 113:1–9

    Article  PubMed  CAS  Google Scholar 

  106. Lefer DJ, Granger DN (2000) Oxidative stress and cardiac disease. Am J Med 109:315–323

    Article  PubMed  CAS  Google Scholar 

  107. Aota M, Matsuda K, Isowa N et al (1996) Protection against reperfusion-induced arrhythmias by human thioredoxin. J Cardiovasc Pharmacol 27:727–732

    Article  PubMed  CAS  Google Scholar 

  108. Tao L, Gao E, Hu A et al (2006) Thioredoxin reduces post-ischemic myocardial apoptosis by reducing oxidative/nitrative stress. Br J Pharmacol 149:311–318

    Article  PubMed  CAS  Google Scholar 

  109. Das KC, Lewis-Molock Y, White CW (1997) Elevation of manganese superoxide dismutase gene expression by thioredoxin. Am J Respir Cell Mol Biol 17:713–726

    PubMed  CAS  Google Scholar 

  110. Chiueh CC, Andoh T, Chock PB (2005) Induction of thioredoxin and mitochondrial survival proteins mediates preconditioning-induced cardioprotection and neuroprotection. Ann N Y Acad Sci 1042:403–418

    Article  PubMed  CAS  Google Scholar 

  111. Wu XW, Teng ZY, Jiang LH et al (2008) Human thioredoxin exerts cardioprotective effect and attenuates reperfusion injury in rats partially via inhibiting apoptosis. Chin Med J (Engl) 121:819–826

    CAS  Google Scholar 

  112. Yamada T, Iwasaki Y, Nagata K et al (2007) Thioredoxin-1 protects against hyperoxia-induced apoptosis in cells of the alveolar walls. Pulm Pharmacol Ther 20:650–659

    Article  PubMed  CAS  Google Scholar 

  113. Tao L, Gao E, Bryan NS et al (2004) Cardioprotective effects of thioredoxin in myocardial ischemia and reperfusion: role of S-nitrosation [corrected]. Proc Natl Acad Sci U S A 101:11471–11476

    Article  PubMed  Google Scholar 

  114. Laurent TC, Moore EC, Reichard P (1964) Enzymatic synthesis of deoxyribonucleotides. IV. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B. J Biol Chem 239:3436–3444

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

World, C., Berk, B.C. (2010). Thioredoxin in the Cardiovascular System—Towards a Thioredoxin-Based Antioxidative Therapy. In: Sauer, H., Shah, A., Laurindo, F. (eds) Studies on Cardiovascular Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-600-9_26

Download citation

Publish with us

Policies and ethics