Skip to main content

Mu Opioid Receptor Mediated Analgesia and Reward

  • Chapter
  • First Online:
The Opiate Receptors

Part of the book series: The Receptors ((REC))

Abstract

Agonists acting at the mu-opioid receptor (MOP-R) have two important functions related to motivational systems: (i) to suppress pain and (ii) to promote reward seeking. Their most important clinical application is for pain relief. In fact, MOP-R agonists are the most powerful analgesic agents currently available. The unparalleled therapeutic efficacy of MOP-R agonists undoubtedly results from the fact that they have several pain-inhibitory actions. They directly inhibit pain transmitting neurons in the periphery and central nervous system. They also act on descending pain modulatory circuits that control spinal cord pain transmission. In addition, MOP-R agonists produce powerful positive motivational effects. These effects are mediated by a circuit that includes dopaminergic neurons in the midbrain ventral tegmental area and their connections to limbic forebrain regions including sub-cortical areas such as the nucleus accumbens and amygdala. Because MOP-R agonists produce robust positive reinforcement, their repeated use can lead to addiction, which limits their use as analgesics. In this chapter, I will outline the actions of MOP-R agonists on the neural systems that transmit and modulate pain and at the central nervous system sites that underlie analgesia and reward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bushnell MC, Apkarian AV (2006) Representation of pain in the brain. In: McMahon SB, Koltzenburg M (eds) Wall and Melzack’s textbook of pain, 5th edn. Elsevier Churchill Livingstone, Edinburgh, pp 107–24

    Google Scholar 

  2. Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3(8):655–666

    PubMed  CAS  Google Scholar 

  3. Stein C, Schafer M, Machelska H (2003) Attacking pain at its source: new perspectives on opioids. Nat Med 9(8):1003–1008

    PubMed  CAS  Google Scholar 

  4. Gold MS, Levine JD (1996) DAMGO inhibits prostaglandin E2-induced potentiation of a TTX-resistant Na+ current in rat sensory neurons in vitro. Neurosci Lett 212(2):83–86

    PubMed  CAS  Google Scholar 

  5. Joris JL, Dubner R, Hargreaves KM (1987) Opioid analgesia at peripheral sites: a target for opioids released during stress and inflammation? Anesth Analg 66(12):1277–1281

    PubMed  CAS  Google Scholar 

  6. Kolesnikov YA, Jain S, Wilson R, Pasternak GW (1996) Peripheral morphine analgesia: synergy with central sites and a target of morphine tolerance. J Pharmacol Exp Ther 279(2):502–506

    PubMed  CAS  Google Scholar 

  7. Stein C, Millan MJ, Shippenberg TS, Herz A (1988) Peripheral effect of fentanyl upon nociception in inflamed tissue of the rat. Neurosci Lett 84(2):225–228

    PubMed  CAS  Google Scholar 

  8. Zhou L, Zhang Q, Stein C, Schafer M (1998) Contribution of opioid receptors on primary afferent versus sympathetic neurons to peripheral opioid analgesia. J Pharmacol Exp Ther 286(2):1000–1006

    PubMed  CAS  Google Scholar 

  9. Smith EM (2003) Opioid peptides in immune cells. Adv Exp Med Biol 521:51–68

    PubMed  CAS  Google Scholar 

  10. Labuz D, Mousa SA, Schafer M, Stein C, Machelska H (2007) Relative contribution of peripheral versus central opioid receptors to antinociception. Brain Res 1160:30–38

    PubMed  CAS  Google Scholar 

  11. King M, Su W, Chang A, Zuckerman A, Pasternak GW (2001) Transport of opioids from the brain to the periphery by P-glycoprotein: peripheral actions of central drugs. Nat Neurosci 4(3):268–274

    PubMed  CAS  Google Scholar 

  12. Yaksh TL, Noueihed R (1985) The physiology and pharmacology of spinal opiates. Annu Rev Pharmacol Toxicol 25:433–462

    PubMed  CAS  Google Scholar 

  13. Yaksh TL, Rudy TA (1976) Analgesia mediated by a direct spinal action of narcotics. Science 192(4246):1357–1358

    PubMed  CAS  Google Scholar 

  14. Cousins M, Mather L (1984) Intrathecal and epidural administration of opioids. Anesthesiology 61:276–310

    PubMed  CAS  Google Scholar 

  15. Giovannelli M, Bedforth N, Aitkenhead A (2007) Survey of intrathecal opioid usage in the UK. Eur J Anaesthesiol 1–5

    Google Scholar 

  16. Todd AJK, Koerber HR (2006) Neuroanatomical substrates of spinal nociception. In: McMahon SB, Koltzenburg M (eds) Wall and Melzack’s textbook of pain, 5th edn. Elsevier Churchill Livingstone, Edinburgh, pp 73–90

    Google Scholar 

  17. Duggan AW, Hall JG, Headley PM (1976) Morphine, enkephalin and the substantia gelatinosa. Nature 264(5585):456–458

    PubMed  CAS  Google Scholar 

  18. Fields HL, Emson PC, Leigh BK, Gilbert RFT, Iverson LL (1980) Multiple opiate receptor sites on primary afferent fibres. Nature 284:351–353

    PubMed  CAS  Google Scholar 

  19. Grudt TJ, Williams JT (1994) μ-Opioid agonists inhibit spinal trigeminal substantia gelatinosa neurons in guinea pig and rat. J Neurosci 14:1646–1654

    PubMed  CAS  Google Scholar 

  20. Glaum SR, Miller RJ, Hammond DL (1994) Inhibitory actions of δ1 δ2, and μ-opioid receptor agonists on excitatory transmission in lamina II neurons of adult rat spinal cord. J Neurosci 14:4965–4971

    PubMed  CAS  Google Scholar 

  21. Allen BJ, Rogers SD, Ghilardi JR et al (1997) Noxious cutaneous thermal stimuli induce a graded release of endogenous substance P in the spinal cord: imaging peptide action in vivo. J Neurosci 17(15):5921–5927

    PubMed  CAS  Google Scholar 

  22. Fields HL, Heinricher MM, Mason P (1991) Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci 14:219–245

    PubMed  CAS  Google Scholar 

  23. Nichols ML, Allen BJ, Rogers SD et al (1999) Transmission of chronic nociception by spinal neurons expressing the substance P receptor. Science 286(5444):1558–1561

    PubMed  CAS  Google Scholar 

  24. Jessell TM, Iversen LL (1977) Opiate analgesics inhibit substance P release from rat trigeminal nucleus. Nature 268:549–551

    PubMed  CAS  Google Scholar 

  25. Mudge AW, Leeman SE, Fischbach GD (1979) Enkephalin inhibits release of substrate P from sensory neurons in culture and decreases action potential duration. Proc Nat Acad Sci USA 76:526–530

    CAS  Google Scholar 

  26. Di Chiara G, North RA (1992) Neurobiology of opiate abuse. Trends Pharmacol Sci 13(5):185–193

    PubMed  Google Scholar 

  27. Yoshimura M, North RA (1983) Sustantia gelantinosa neurones hyperpolarised in vitro by enkephalin. Nature 305:529–530

    PubMed  CAS  Google Scholar 

  28. Eckert WA III, McNaughton KK, Light AR (2003) Morphology and axonal arborization of rat spinal inner lamina II neurons hyperpolarized by mu-opioid-selective agonists. J Comp Neurol 458(3):240–256

    PubMed  CAS  Google Scholar 

  29. Bennett GJ, Hayashi H, Abdelmoumene M, Dubner R (1979) Physiological properties of stalked cells of the substantia gelatinosa intracellularly stained with horseradish peroxidase. Brain Res 164:285–289

    PubMed  CAS  Google Scholar 

  30. Light AR, Kavookjian AM (1988) Morphology and ultrastructure of physiologically identified substantia gelatinosa (lamina II) neurons with axons that terminate in deeper dorsal horn laminae (III–V). J Comp Neurol 267:172–189

    PubMed  CAS  Google Scholar 

  31. North RA, Williams JT, Surprenant A, Christie MJ (1987) Mu and delta receptors belong to a family of receptors that are coupled to potassium channels. Proc Nat Acad Sci USA 84(15):5487–5491

    CAS  Google Scholar 

  32. Mansour A, Fox CA, Thompson RC, Akil H, Watson SJ (1994) mu-Opioid receptor mRNA expression in the rat CNS: comparison to mu-receptor binding. Brain Res 643(1–2):245–265

    PubMed  CAS  Google Scholar 

  33. Yaksh TL (2006) Central pharmacology of nociceptive transmission. In: McMahon SB, Koltzenburg M (eds) Melzack & Wall’s textbook of pain, 5th edn. Elsevier Churchill Livingstone, Edinburgh, pp 371–414

    Google Scholar 

  34. Burkey AR, Carstens E, Wenniger JJ, Tang J, Jasmin L (1996) An opioidergic cortical antinociception triggering site in the agranular insular cortex of the rat that contributes to morphine antinociception. J Neurosci 16:6612–6623

    PubMed  CAS  Google Scholar 

  35. Fields H (2004) State-dependent opioid control of pain. Nat Rev Neurosci 5(7):565–575

    PubMed  CAS  Google Scholar 

  36. Fields HL, Basbaum AI, Heinricher MM (2006) Central nervous system mechanisms of pain modulation. In: McMahon SB, Koltzenburg M (eds) Melzack & Wall’s textbook of pain, 5th edn. Edinburgh, Elsevier Churchill Livingstone, pp 125–42

    Google Scholar 

  37. Mansour A, Fox CA, Watson SJ (1995) Opioid-receptor mRNA expression tn the rat CNS: anatomical and functional implications. Trends Neurosci 18:22–29

    PubMed  CAS  Google Scholar 

  38. Darland T, Heinricher MM, Grandy DK (1998) Orphanin FQ/nociceptin: a role in pain and analgesia, but so much more. Trends Neurosci 21(5):215–221

    PubMed  CAS  Google Scholar 

  39. Yaksh TL, Rudy TA (1978) Narcotic analgetics: CNS sites and mechanisms of action as revealed by intracerebral injection techniques. Pain 4:299–359

    PubMed  CAS  Google Scholar 

  40. Mayer DJ, Price DD (1976) Central nervous system mechanisms of analgesia. Pain 2:379–404

    PubMed  CAS  Google Scholar 

  41. Zemlan FP, Behbehani MM (1988) Nucleus cuneiformis and pain modulation: anatomy and behavioral pharmacology. Brain Res 453:89–102

    PubMed  CAS  Google Scholar 

  42. Akil H, Mayer DJ, Liebeskind JC (1976) Antagonism of stimulation-produced analgesia by naloxone, a narcotic antagonist. Science 191(4230):961–962

    PubMed  CAS  Google Scholar 

  43. Boivie J, Meyerson BA (1982) A correlative anatomical and clinical study of pain suppression by deep brain stimulation. Pain 13:113–126

    PubMed  CAS  Google Scholar 

  44. Baskin DS, Mehler WR, Hosobuchi Y, Richardson DE, Adams JE, Flitter MA (1986) Autopsy analysis of the safety, efficacy and cartography of electrical stimulation of the central gray in humans. Brain Res 371:231–236

    PubMed  CAS  Google Scholar 

  45. Bandler R, Keay KA (1996) Columnar organization in the midbrain periaqueductal gray and the integration of emotional expression. Prog Brain Res 107:285–300

    PubMed  CAS  Google Scholar 

  46. Wager TD, Rilling JK, Smith EE et al (2004) Placebo-induced changes in FMRI in the anticipation and experience of pain. Science 303(5661):1162–1167

    PubMed  CAS  Google Scholar 

  47. Aggleton JP (ed) (1992) The Amygdala: neurobiological aspects of emotion, memory and mental dysfunction. Wiley-Liss, New York

    Google Scholar 

  48. Rizvi TA, Ennis M, Behbehani MM, Shipley MT (1991) Connections between the central nucleus of the amygdala and the midbrain periaqueductal gray: topography and reciprocity. J Comp Neurol 303:121–131

    PubMed  CAS  Google Scholar 

  49. Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ (1988) Anatomy of CNS opioid receptors. Trends Neurosci 11(7):308–314

    PubMed  CAS  Google Scholar 

  50. Pavlovic Z, Cooper M, Bodnar R (1996) Opioid antagonists in the periaqueductal gray inhibit morphine and betendorphin analgesia elicited form the amygdala of rats. Brain Res 741(1–2):13–26

    PubMed  CAS  Google Scholar 

  51. Helmstetter FJ, Tershner SA, Poore LH, Bellgowan PSF (1998) Antinociception following opioid stimulation of the basolateral amygdala is expressed through the periaquaductal gray and rostal ventromedial medulla. Brain Res 779:104–118

    PubMed  CAS  Google Scholar 

  52. Burstein R, Potrebic S (1993) Retrograde labeling of neurons in the spinal cord that project directly to the amygdala or the orbital cortex in the rat. J Comp Neurol 335:469–485

    PubMed  CAS  Google Scholar 

  53. Gauriau C, Bernard JF (2004) A comparative reappraisal of projections from the superficial laminae of the dorsal horn in the rat: the forebrain. J Comp Neurol 468:24–56

    PubMed  Google Scholar 

  54. Gauriau C, Bernard JF (2002) Pain pathways and parabrachial circuits in the rat. Exp Physiol 87(2):251–258

    PubMed  Google Scholar 

  55. Gear RW, Aley KO, Levine JD (1999) Pain-induced analgesia mediated by mesolimbic reward circuits. J Neurosci 19(16):7175–7181

    PubMed  CAS  Google Scholar 

  56. Zahm DS, Jensen SL, Williams ES, Martin JR III (1999) Direct comparison of projections from the central amygdaloid region and nucleus accumbens shell. Eur J Neurosci 11(4):1119–1126

    PubMed  CAS  Google Scholar 

  57. Rhodes DL, Liebeskind JC (1978) Analgesia from rostral brain stem stimulation in the rat. Brain Res 143:521–532

    PubMed  CAS  Google Scholar 

  58. Manning BH, Morgan MJ, Franklin KBJ (1994) Morphine analgesia in the formalin test: evidence for forebrain and midbrain sites of action. Neuroscience 63:289–294

    PubMed  CAS  Google Scholar 

  59. Holden JE, Van Poppel AY, Thomas S (2002) Antinociception from lateral hypothalamic stimulation may be mediated by NK1 receptors in the A7 catecholamine cell group in rat. Brain Res 953(1–2):195–204

    PubMed  CAS  Google Scholar 

  60. Beitz AJ (1982) The organisation of afferent projections to the midbrain periaqueductal grey of the rat. Neuroscience 7:133–159

    PubMed  CAS  Google Scholar 

  61. Herbert H, Saper CB (1992) Organization of medullary adrenergic and noradrenergic projections to the periaqueductal gray matter in the rat. J Comp Neurol 315:34–52

    PubMed  CAS  Google Scholar 

  62. Menetrey DA, Chaouch A, Binder D, Besson JM (1982) The origin of the spinomesencephalic tract in the rat: an anatomical study using the retrograde transport of horseradish peroxidase. J Comp Neurol 206:193–207

    PubMed  CAS  Google Scholar 

  63. Keay KA, Feil K, Gordon BD, Herbert H, Bandler R (1997) Spinal afferents to functionally distinct periaqueductal gray columns in the rat: an anterograde and retrograde tracing study. J Comp Neurol 385(2):207–229

    PubMed  CAS  Google Scholar 

  64. Chieng B, Christie MJ (1994) Hyperpolarization by opioids acting on mu-receptors of a sub-population of rat periaqueductal gray neurones in vitro. Br J Pharmacol 113:121–128

    PubMed  CAS  Google Scholar 

  65. Chieng B, Christie MJ (1994) Inhibition by opioids acting on mu-receptors of GABAergic and glutamatergic postsynaptic potentials in single rat periaqueductal gray neurones in vitro. Br J Pharmacol 113(1):303–309

    PubMed  CAS  Google Scholar 

  66. Williams JT, Christie MJ, Manzoni O (2001) Cellular and synaptic adaptations mediating opioid dependence. Phys Rev 81(1):299–343

    CAS  Google Scholar 

  67. Christie MJ, Vaughan CW, Ingram SL (1999) Opioids, NSAIDs and 5-lipoxygenase inhibitors act synergistically in brain via arachidonic acid metabolism. Inflamm Res 48(1):1–4

    PubMed  CAS  Google Scholar 

  68. Moreau J-L, Fields HL (1986) Evidence for GABA involvement in midbrain control of medullary neurons that modulate nociceptive transmission. Brain Res 397:37–46

    PubMed  CAS  Google Scholar 

  69. Beitz AJ (1982) The sites of origin of brainstem neurotensin and serotonin projections to the rodent nucleus raphe magnus. J Neurosci 2(7):829–842

    PubMed  CAS  Google Scholar 

  70. Sagen J, Proudfit HK (1981) Hypoalgesia induced by blockade of noradrenergic projections to the raphe magnus: reversal by blockade of noradrenergic projections to the spinal cord. Brain Res 223:391–396

    PubMed  CAS  Google Scholar 

  71. Rizvi TA, Murphy AZ, Ennis M, Behbehani MM, Shipley MT (1996) Medial preoptic area afferents to periaqueductal gray medullo-output neurons: a combined Fos and tract tracing study. J Neurosci 16(1):333–344

    PubMed  CAS  Google Scholar 

  72. Hermann DM, Luppi PH, Peyron C, Hinckel P, Jouvet M (1997) Afferent projections to the rat nuclei raphe magnus, raphe pallidus and reticularis gigantocellularis pars alpha demonstrated by iontophoretic application of choleratoxin (subunit b). J Chem Neuroanat 13(1):1–21

    PubMed  CAS  Google Scholar 

  73. Rossi GC, Pasternak GW, Bodnar RJ (1994) Mu and delta opioid synergy between the periaqueductal gray and the rostro-ventral medulla. Brain Res 665:85–93

    PubMed  CAS  Google Scholar 

  74. Gebhart GF (1992) Can endogeneous systems produce pain? APS J 1:79–81

    Google Scholar 

  75. Fields HL, Heinricher MM (1985) Anatomy and physiology of a nociceptive modulatory system. Philos Trans R Soc Lond B 308:361–374

    CAS  Google Scholar 

  76. Fields HL, Malick A, Burstein R (1995) Dorsal horn projection targets of on and off cells in the rostral ventromedial medulla. J Neurophysiol 74:1742–1759

    PubMed  CAS  Google Scholar 

  77. Heinricher MM, Morgan MM, Tortorici V, Fields HL (1994) Disinhibition of off-cells and antinociception produced by an opioid action within the rostral ventromedial medulla. Neuroscience 63:279–288

    PubMed  CAS  Google Scholar 

  78. Bederson JB, Fields HL, Barbaro NM (1990) Hyperalgesia during naloxone-precipitated withdrawal from morphine is associated with increased on-cell activity in the rostral ventromedial medulla. Somatosens Motor Res 7:185–203

    CAS  Google Scholar 

  79. Heinricher MM, Barbaro NM, Fields HL (1989) Putative nociceptive modulating neurons in the rostral ventromedial medulla of the rat: firing of on- and off-cells is related to nociceptive responsiveness. Somatosens Motor Res 6(4):427–439

    CAS  Google Scholar 

  80. Ramirez F, Vanegas H (1989) Tooth pulp stimulation advances both medullary off–cell pause and tail flick. Neurosci Lett 100:153–156

    PubMed  CAS  Google Scholar 

  81. Foo H, Mason P (2003) Discharge of raphe magnus on and off cells is predictive of the motor facilitation evoked by repeated laser stimulation. J Neurosci 23(5):1933–1940

    PubMed  CAS  Google Scholar 

  82. Neubert MJ, Kincaid W, Heinricher MM. (2004) Nociceptive facilitating neurons in the rostral ventromedial medulla. Pain 110:158–165

    Google Scholar 

  83. Haws CM, Williamson AM, Fields HL (1989) Putative nociceptive modulatory neurons in the dorsolateral pontomesencephalic reticular formation. Brain Res 483:272–282

    PubMed  CAS  Google Scholar 

  84. Pan ZZ, Williams JT, Osborne PB (1990) Opioid actions on single nucleus raphe magnus neurons from rat and guinea-pig in vitro. J Physiol 427:519–532

    PubMed  CAS  Google Scholar 

  85. Heinricher MM, Morgan MM, Fields HL (1992) Direct and indirect action of morphine on medullary neurons that modulate nociception. Neuroscience 48(3):533–543

    PubMed  CAS  Google Scholar 

  86. Heinricher MM, McGaraughty S, Farr DA (1999) The role of excitatory amino acid transmission within the rostral ventromedial medulla in the antinociceptive actions of systemically administered morphine. Pain 81:57–65

    PubMed  CAS  Google Scholar 

  87. Porreca F, Ossipov MH, Gebhart GF (2002) Chronic pain and medullary descending facilitation. Trends Neurosci 25(6):319–325

    PubMed  CAS  Google Scholar 

  88. Heinricher MM, Pertovaara A, Ossipov MH (2003) Descending modulation after injury. In: Koltzenburg M (ed) Proceedings of the 10th World Congress on Pain, Progress in Pain Research and Management. IASP Press, Seattle, pp 251–260

    Google Scholar 

  89. Moore RY (1981) The anatomy of central serotonin neuron systems in the rat brain. In: Jacobs BL, Gelperin A (eds) Serotonin neurotransmission and behavior. MIT, Cambridge, pp 35–71

    Google Scholar 

  90. Potrebic SB, Fields HL, Mason P (1994) Serotonin immunoreactivity is contained in one physiological cell class in the rat rostral ventromedial medulla. J Neurosci 14:1655–1665

    PubMed  CAS  Google Scholar 

  91. Gao K, Mason P (2000) Serotonergic raphe magnus cells that respond to noxious tail heat are not ON or OFF cells. J Neurophysiol 84(4):1719–1725

    PubMed  CAS  Google Scholar 

  92. Gao K, Kim YH, Mason P (1997) Serotonergic pontomedullary neurons are not activated by antinociceptive stimulation in the periaqueductal gray. J Neurosci 17:3285–3292

    PubMed  CAS  Google Scholar 

  93. Gao K, Chen DO, Genzen JR, Mason P (1998) Activation of serotonergic neurons in the raphe magnus is not necessary for morphine analgesia. J Neurosci 18(5):1860–1868

    PubMed  CAS  Google Scholar 

  94. Le Bars D (1988) Neuronal serotonin. In: Osborne NM, Hamon M (eds) Serotonin and pain. Wiley, New York, pp 171–226

    Google Scholar 

  95. Headley PM, Duggan AW, Griersmith BT (1978) Selective reduction by noradrenaline and 5HT of nociceptive responses of cat dorsal horn neurons. Brain Res 145:185–189

    PubMed  CAS  Google Scholar 

  96. Jordan LM, Kenshao DR, Martin RF, Haber LH, Willis WD (1978) Depression of primate spinothalamic tract neurons by iontophoretic application of 5-hydroxytryptamine. Pain 5:135–142

    PubMed  CAS  Google Scholar 

  97. Hylden JLK, Wilcox GL (1983) Intrathecal serotonin in mice: analgesia and inhibition of a spinal action of substance P. Life Sci 33:789–795

    PubMed  CAS  Google Scholar 

  98. Mason P, Gao K (1998) Raphe magnus serotonergic neurons tonically modulate nociceptive transmission. Pain Forum 7:143–150

    Google Scholar 

  99. Mason P (1997) Physiological identification of pontomedullary serotonergic neurons in the rat. J Neurophysiol 77:1087–1098

    PubMed  CAS  Google Scholar 

  100. Mason P (2001) Contributions of the medullary raphe and ventromedial reticular region to pain modulation and other homeostatic functions. Annu Rev Neurosci 24:737–777

    PubMed  CAS  Google Scholar 

  101. Proudfit HK (1992) The behavioural pharmacology of the noradrenergic system. In: Guilbaud G (ed) Towards the use of noradrenergic agonists for the treatment of pain. Elsevier, Amsterdam, pp 119–136

    Google Scholar 

  102. Budai D, Harasawa I, Fields HL (1998) Midbrain periaqueductal gray (PAG) inhibits nociceptive inputs to sacral dorsal horn nociceptive neurons through α2-adrenergic receptors. J Neurophysiol 80(5):2244–2254

    PubMed  CAS  Google Scholar 

  103. Bajic D, Proudfit HK (1999) Projections of neurons in the periaqueductal gray to pontine and medullary catecholamine cell groups involved in the modulation of nociception. J Comp Neurol 405(3):359–379

    PubMed  CAS  Google Scholar 

  104. Holden JE, Proudfit HK (1998) Enkephalin neurons that project to the A7 catecholamine cell group are located in nuclei that modulate nociception: ventromedial medulla. Neuroscience 83(3):929–947

    PubMed  CAS  Google Scholar 

  105. Yeomans DC, Proudfit HK (1990) Projections of substance P–immunoreactive neurons located in the ventromedial medulla to the A7 noradrenergic nucleus of the rat demonstrated using retrograde tracing combined with immunocytochemistry. Brain Res 532(1–2):329–332

    PubMed  CAS  Google Scholar 

  106. Hammond DL, Tyce GM, Yaksh TL (1985) Efflux of 5-hydroxytryptamine and noradrenaline into spinal cord superfusates during stimulation of the rat medulla. J Physiol 359:151–162

    PubMed  CAS  Google Scholar 

  107. Yaksh TL (1979) Direct evidence that spinal serotonin and noradrenaline terminals mediate the spinal antinociceptive effects of morphine in the periaqueductal grey. Brain Res 160:180–185

    PubMed  CAS  Google Scholar 

  108. Barbaro NM, Hammond DL, Fields HL (1985) Effects of intrathecally administered methysergide and yohimbine on microstimulation-produced antinociception in the rat. Brain Res 343:223–229

    PubMed  CAS  Google Scholar 

  109. Yeomans DC, Proudfit HK (1992) Antinociception induced by microinjection of substance P into the A7 catecholamine cell group in the rat. Neuroscience 49:681–691

    PubMed  CAS  Google Scholar 

  110. Fields HL, Levine JD (1984) Placebo analgesia: a role for endorphins? Trends in Neurosci 7:271–273

    Google Scholar 

  111. Akil H, Meng F, Devine DP, Watson SJ (1997) Molecular and neuroanatomical properties of the endogenous opioid system: implications for treatment of opiate addiction. Semin Neurosci 9:70–83

    CAS  Google Scholar 

  112. Millan MJ (2002) Descending control of pain. Prog Neurobiol 66(6):355–474

    PubMed  CAS  Google Scholar 

  113. Zadina JE, Hackler L, Ge L, Kastin AJ (1997) A potent and selective endogenous agonist for the mu-opiate receptor. Nature 386:499–502

    PubMed  CAS  Google Scholar 

  114. Chapman V, Diaz A, Dickenson AH (1997) Distinct inhibitory effects of spinal endomorphin-1 and endomorphin-2 on evoked dorsal horn neuronal responses in the rat. Br J Pharmacol 122(8):1537–1539

    PubMed  CAS  Google Scholar 

  115. Stone LS, Fairbanks CA, Laughlin TM et al (1997) Spinal analgesic actions of the new endogenous opioid peptides endomorphin-1 and -2. Neuroreport 8:3131–3135

    PubMed  CAS  Google Scholar 

  116. Goldberg IE, Rossi GC, Letchworth SR et al (1998) Pharmacological characterization of endomorphin-1 and endomorphin-2 in mouse brain. J Pharmacol Exp Ther 286:1007–1013

    PubMed  CAS  Google Scholar 

  117. Schreff M, Schulz S, Wiborny D, Höllt V (1998) Immunofluorescent identification of endomorphin-2-containing nerve fibers and terminals in the rat brain and spinal cord. Neuroreport 9:1031–1034

    PubMed  CAS  Google Scholar 

  118. Minami M, Maekawa K, Yabuuchi K, Satoh M (1995) Double in situ hybridization study on coexistence of m-, d- and k-opioid receptor mRNAs with preprotachykinin A mRNA in the rat dorsal root ganglia. Brain Res Mol Brain Res 30(2):203–210

    PubMed  CAS  Google Scholar 

  119. Sanderson-Nydahl K, Skinner K, Julius D, Basbaum AI. (2004) Co-localization of endomorphin-2 and substance P in primary afferent nociceptors and effects of injury: a light and electron microscopic study in the rat. Eur J Neurosci 19:1789–1799

    Google Scholar 

  120. Tershner SA, Helmstetter FJ (2000) Antinociception produced by mu-opioid receptor activation in the amygdala is partly dependent on activation of mu-opioid and neurotensin receptors in the ventral periaqueductal gray. Brain Res 865(1):17–26

    PubMed  CAS  Google Scholar 

  121. Kiefel JM, Rossi GC, Bodnar RJ (1993) Medullary μ and δ opioid receptors modulate mesencephalic morphine analgesia in rats. Brain Res 624:151–161

    PubMed  CAS  Google Scholar 

  122. Roychowdhury SM, Fields HL (1996) Endogenous opioids acting at a medullary mu-opioid receptor contribute to the behavioral antinociception produced by GABA antagonism in the midbrain periaqueductal gray. Neuroscience 74:863–872

    PubMed  CAS  Google Scholar 

  123. Al-Rodhan N, Chipkin R, Yaksh TL (1990) The antinociceptive effects of SCH-32615, a neutral endopeptidase (enkephalinase) inhibitor, microinjected into the periaqueductal, ventral medulla and amygdala. Brain Res 520:123–130

    PubMed  CAS  Google Scholar 

  124. Gogas KR, Presley RW, Levine JD, Basbaum AI (1991) The antinociceptive action of supraspinal opioids results from an increase in descending inhibitory control: correlation of nociceptive behavior and c-fos expression. Neuroscience 42:617–628

    PubMed  CAS  Google Scholar 

  125. Hammond DL, Presley R, Gogas KR, Basbaum AI (1992) Morphine or U-50, 488 suppresses Fos protein-like immunoreactivity in the spinal cord and nucleus tractus solitarii evoked by a noxious visceral stimulus in the rat. J Comp Neurol 315:244–253

    PubMed  CAS  Google Scholar 

  126. Hôkfelt T, Terenius T, Kuypers HGJM, Dann O (1979) Evidence for enkephalin immunoreactive neurons in the medulla oblongata projecting to the spinal cord. Neurosci Lett 14:55–60

    PubMed  Google Scholar 

  127. Fleetwood-Walker SM, Hope PJ, Mitchell R, El-Yassir N, Molony V (1988) The influence of opioid receptor subtypes on the processing of nociceptive inputs in the spinal dorsal horn of the cat. Brain Res 451:213–26

    PubMed  CAS  Google Scholar 

  128. Zorman G, Belcher G, Adams JE, Fields HL (1982) Lumbar intrathecal naloxone blocks analgesia produced by microstimulation of the ventromedial medulla in the rat. Brain Res 236:77–84

    PubMed  CAS  Google Scholar 

  129. Aimone LD, Jones SL, Gebhart GF (1987) Stimulation-produced descending inhibition from the periaqueductal gray and nucleus raphe magnus in the rat: mediation by spinal monoamines but not opioids. Pain 31:123–136

    PubMed  CAS  Google Scholar 

  130. Levine JD, Lane SR, Gordon NC, Fields HL (1982) A spinal opioid synapse mediates the interaction of spinal and brain stem sites in morphine analgesia. Brain Res 236:85–91

    PubMed  CAS  Google Scholar 

  131. Oshita S, Yaksh TL, Chipkin R (1990) The antinociceptive effects of intrathecally administered SCH32615, an enkephalinase inhibitor, in the rat. Brain Res 515:143–148

    PubMed  CAS  Google Scholar 

  132. Dickenson AH, Sullivan AF, Fournie-Zaluski MC, Roques BP (1987) Prevention of degredation of endogenous enkephalins produces inhibition of nociceptive neurones in rat spinal cord. Brain Res 408:185–191

    PubMed  CAS  Google Scholar 

  133. Budai D, Fields HL (1998) Endogenous opioid peptides acting at mu-opioid receptors in the dorsal horn contribute to midbrain modulation of spinal nociceptive neurons. J Neurosci 79:677–687

    CAS  Google Scholar 

  134. Watkins LR, Mayer DJ (1982) Organization of endogenous opiate and nonopiate pain control systems. Science 216:1185–1192

    PubMed  CAS  Google Scholar 

  135. Watkins LR, Young EG, Kinscheck IB, Mayer JD (1983) The neural basis of footshock analgesia: the role of specific ventral medullary nuclei. Brain Res 276:305–315

    PubMed  CAS  Google Scholar 

  136. Fanselow MS (1991) The midbrain periaqueductal gray as a coordinator of action in response to fear and anxiety. In: Depaulis A, Bandler R (eds) The midbrain periaqueductal gray matter. Plenum, New York, pp 151–173

    Google Scholar 

  137. Watkins LR, Cobelli DA, Mayer DJ (1982) Classical conditioning of front paw and hind paw footshock induced analgesia (FSIA): naloxone reversibility and descending pathways. Brain Res 243:119–132

    PubMed  CAS  Google Scholar 

  138. Helmstetter FJ, Tershner SA (1994) Lesions of the periaqueductal gray and rostral ventromedial medulla disrupt antinociceptive but not cardiovascular aversive conditional responses. J Neurosci 14:7099–7108

    PubMed  CAS  Google Scholar 

  139. Helmstetter FJ (1992) The amygdala is essential for the expression of conditioned hypoalgesia. Behav Neurosci 106:518–528

    PubMed  CAS  Google Scholar 

  140. Helmstetter FJ, Landeira-Fernandez J (1990) Conditional hypoalgesia is attenuated by naltrexone applied to the periaqueductal gray. Brain Res 537:88–92

    PubMed  CAS  Google Scholar 

  141. Foo H, Helmstetter FJ (1999) Hypoalgesia elicited by a conditioned stimulus is blocked by a μ, but not a δ or a k, opioid antagonist injected into the rostral ventromedial medulla. Pain 83(3):427–431

    PubMed  CAS  Google Scholar 

  142. Emson PC, Corder R, Ratter SJ et al (1984) Regional distribution of pro-opiomelanocortin-derived peptides in the human brain. Neuroendocrinol 38:45–50

    CAS  Google Scholar 

  143. Pittius CW, Seizinger BR, Pasi A, Mehraein P, Herz A (1984) Distribution and characterization of opioid peptides derived from proenkephalin A in human and rat central nervous system. Brain Res 304:127–136

    PubMed  CAS  Google Scholar 

  144. Levine JD, Gordon NC, Jones RT, Fields HL (1978) The narcotic antagonist naloxone enhances clinical pain. Nature 272:826–827

    PubMed  CAS  Google Scholar 

  145. Gracely RH, Dubner R, Wolskee PJ, Deeter WR (1983) Placebo and naloxone can alter post-surgical pain by separate mechansims. Nature 306:264–265

    PubMed  CAS  Google Scholar 

  146. Grevert P, Goldstein A (1985) Placebo analgesia, naloxone and the role of endogenous opioids. In: White L, Tursky B, Shwartz GE (eds) Placebo: theory, research and mechanisms. Guilford, New York, pp 332–350

    Google Scholar 

  147. Levine JD, Gordon NC, Fields HL (1978) The mechanism of placebo analgesia. Lancet 2:654–657

    PubMed  CAS  Google Scholar 

  148. Benedetti F (1996) The opposite effects of the opiate antagonist naloxone and the cholecystokinin antagonist proglumide on placebo analgesia. Pain 64:535–543

    PubMed  CAS  Google Scholar 

  149. Benedetti F, Mayberg HS, Wager TD, Stohler CS, Zubieta JK (2005) Neurobiological mechanisms of the placebo effect. J Neurosci 25(45):10390–10402

    PubMed  CAS  Google Scholar 

  150. Petrovic P, Kalso E, Petersson KM, Ingvar M (2002) Placebo and opioid analgesia: imaging a shared neuronal network. Science 295(5560):1737–1740

    PubMed  CAS  Google Scholar 

  151. Wager TD, Scott DJ, Zubieta JK (2007) Placebo effects on human mu-opioid activity during pain. Proc Natl Acad Sci USA 104(26):11056–11061

    PubMed  CAS  Google Scholar 

  152. Fields HL (2007) Should we be reluctant to prescribe opioids for chronic non-malignant pain? Pain 129(3):233–234

    PubMed  Google Scholar 

  153. Kieffer BL (1999) Opioids: first lessons from knockout mice. Trends Pharmacol Sci 20(1):19–26

    PubMed  CAS  Google Scholar 

  154. Matthes HW, Maldonado R, Simonin F et al (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid–receptor gene. Nature 383(6603):819–823

    PubMed  CAS  Google Scholar 

  155. Tzschentke TM (1998) Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog Neurobiol 56(6):613–672

    PubMed  CAS  Google Scholar 

  156. Tzschentke TM (2007) Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 12(3–4):227–462

    PubMed  CAS  Google Scholar 

  157. Hall FS, Sora I, Uhl GR (2001) Ethanol consumption and reward are decreased in mu-opiate receptor knockout mice. Psychopharmacol (Berl) 154(1):43–49

    CAS  Google Scholar 

  158. Koob GF, Le Moal M (2006) Neurobiology of addiction. Elsevier, Amsterdam

    Google Scholar 

  159. Liebman JM, Cooper SJ (1989) The neuropharmacological basis of reward. Clarenden, Oxford

    Google Scholar 

  160. Fields HL, Hjelmstad GO, Margolis EB, Nicola SM (2007) Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu Rev Neurosci 30:289–316

    PubMed  CAS  Google Scholar 

  161. van der Kooy D, Mucha RF, O’Shaughnessy M, Bucenieks P (1982) Reinforcing effects of brain microinjections of morphine revealed by conditioned place preference. Brain Res 243(1):107–117

    PubMed  Google Scholar 

  162. Bozarth MA, Wise RA (1984) Anatomically distinct opiate receptor fields mediate reward and physical dependence. Science 224(4648):516–517

    PubMed  CAS  Google Scholar 

  163. Bozarth MA, Wise RA (1981) Intracranial self-administration of morphine into the ventral tegmental area in rats. Life Sci 28(5):551–555

    PubMed  CAS  Google Scholar 

  164. Zangen A, Ikemoto S, Zadina JE, Wise RA (2002) Rewarding and psychomotor stimulant effects of endomorphin-1: anteroposterior differences within the ventral tegmental area and lack of effect in nucleus accumbens. J Neurosci 22(16):7225–7233

    PubMed  CAS  Google Scholar 

  165. Olmstead MC, Franklin KB (1997) The development of a conditioned place preference to morphine: effects of microinjections into various CNS sites. Behav Neurosci 111(6):1324–1334

    PubMed  CAS  Google Scholar 

  166. Laviolette SR, Nader K, van der Kooy D (2002) Motivational state determines the functional role of the mesolimbic dopamine system in the mediation of opiate reward processes. Behav Brain Res 129(1–2):17–29

    PubMed  CAS  Google Scholar 

  167. Latimer LG, Duffy P, Kalivas PW (1987) mu-opioid receptor involvement in enkephalin activation of dopamine neurons in the ventral tegmental area. J Pharmacol Exp Ther 241(1):328–337

    PubMed  CAS  Google Scholar 

  168. David V, Durkin TP, Cazala P (2002) Differential effects of the dopamine D2/D3 receptor antagonist sulpiride on self-administration of morphine into the ventral tegmental area or the nucleus accumbens. Psychopharmacology 160(3):307–317

    PubMed  CAS  Google Scholar 

  169. Fenu S, Spina L, Rivas E, Longoni R, Di Chiara G (2006) Morphine-conditioned single-trial place preference: role of nucleus accumbens shell dopamine receptors in acquisition, but not expression. Psychopharmacology (Berl) 187(2):143–153

    CAS  Google Scholar 

  170. Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598

    PubMed  CAS  Google Scholar 

  171. Johnson SW, North RA (1992) Two types of neurone in the rat ventral tegmental area and their synaptic inputs. J Physiol 450:455–468

    PubMed  CAS  Google Scholar 

  172. Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12(2):483–488

    PubMed  CAS  Google Scholar 

  173. Shoji Y, Delfs J, Williams JT (1999) Presynaptic inhibition of GABA(B)-mediated synaptic potentials in the ventral tegmental area during morphine withdrawal. J Neurosci 19(6):2347–2355

    PubMed  CAS  Google Scholar 

  174. Wise RA (1996) Neurobiology of addiction. Curr Opin Neurobiol 6(2):243–251

    PubMed  CAS  Google Scholar 

  175. Fantino M, Hosotte J, Apfelbaum M (1986) An opioid antagonist, naltrexone, reduces preference for sucrose in humans. Am J Physiol 251(1 pt 2):R91–R96

    PubMed  CAS  Google Scholar 

  176. Yeomans MR, Gray RW (1997) Effects of naltrexone on food intake and changes in subjective appetite during eating: evidence for opioid involvement in the appetizer effect. Physiol Behav 62(1):15–21

    PubMed  CAS  Google Scholar 

  177. Kelley AE, Baldo BA, Pratt WE, Will MJ (2005) Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav 86(5):773–795

    PubMed  CAS  Google Scholar 

  178. Zhang M, Kelley AE (2002) Intake of saccharin, salt, and ethanol solutions is increased by infusion of a mu-opioid agonist into the nucleus accumbens. Psychopharmacology (Berl) 159(4):415–423

    CAS  Google Scholar 

  179. Levine AS, Billington CJ (2004) Opioids as agents of reward-related feeding: a consideration of the evidence. Physiol Behav 82(1):57–61

    PubMed  CAS  Google Scholar 

  180. Bodnar RJ, Lamonte N, Israel Y, Kandov Y, Ackerman TF, Khaimova E (2005) Reciprocal opioid-opioid interactions between the ventral tegmental area and nucleus accumbens regions in mediating mu agonist-induced feeding in rats. Peptides 26(4):621–629

    PubMed  CAS  Google Scholar 

  181. Smith KS, Berridge KC (2007) Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J Neurosci 27(7):1594–1605

    PubMed  CAS  Google Scholar 

  182. Tanda G, Di Chiara G (1998) A dopamine-mu1 opioid link in the rat ventral tegmentum shared by palatable food (Fonzies) and non-psychostimulant drugs of abuse. Eur J Neurosci 10(3):1179–1187

    PubMed  CAS  Google Scholar 

  183. Yoshida M, Yokoo H, Mizoguchi K et al (1992) Eating and drinking cause increased dopamine release in the nucleus accumbens and ventral tegmental area in the rat: measurement by in vivo microdialysis. Neurosci Lett 139(1):73–76

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard L. Fields .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fields, H.L. (2011). Mu Opioid Receptor Mediated Analgesia and Reward. In: Pasternak, G. (eds) The Opiate Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-993-2_10

Download citation

Publish with us

Policies and ethics