Skip to main content

Mechanisms of Drug Interactions II: Transport Proteins

  • Chapter
  • First Online:
Drug Interactions in Infectious Diseases

Part of the book series: Infectious Disease ((ID))

Abstract

Most pharmacokinetic studies so far have focused on the role of drug metabolizing enzymes as the key determinants of drug disposition and their contribution to drug-drug interactions. It has now become clear that transporters are responsible for both the uptake and efflux of drugs in various tissues. Their coordinated expression and activities at the basolateral and apical side of transporting epithelia are critical in determining the extent and direction of drug movement in major organs for drug disposition such as the intestine, liver and kidney. Thus, drug transporters represent an important mechanism by which one drug may alter the pharmacokinetic and pharmacological effects (toxicity and efficacy) of another and lead to drug-drug interactions of clinical importance. This chapter focuses on the major drug transporters involved in the disposition of anti-infective agents with special emphasis on their effect on drug disposition, their drug substrate specificities as well as their role in clinically relevant drug-drug interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hagenbuch B. Drug uptake systems in liver and kidney: a historic perspective. Clin Pharm Ther 2010;87:39–47.

    Article  CAS  Google Scholar 

  2. Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010;62:1–96.

    Article  PubMed  CAS  Google Scholar 

  3. International, Transporter, Consortium. Membranes transporters in drug development. Nat Rev Drug Discov 2010;9:215–36.

    Article  CAS  Google Scholar 

  4. Ray AS, Cihlar T, Robinson KL, et al. Mechanism of active renal tubular efflux of tenofovir. Antimicrob Agents Chemother 2006;50:3297–304.

    Article  PubMed  CAS  Google Scholar 

  5. Bonkovsky HL, Hauri HP, Marti U, Gasser R, Meyer UA. Cytochrome P450 of small intestinal epithelial cells. Immunochemical characterization of the increase in cytochrome P450 caused by phenobarbital. Gastroenterology 1985;88:458–67.

    PubMed  CAS  Google Scholar 

  6. Dietrich CG, Geier A, Oude Elferink RP. ABC of oral bioavailability: transporters as gatekeepers in the gut. Gut 2003;52:1788–95.

    Article  PubMed  CAS  Google Scholar 

  7. Katsura T, Inui K. Intestinal absorption of drugs mediated by drug transporters: mechanisms and regulation. Drug Metab Pharmacokinet 2003;18:1–15.

    Article  PubMed  CAS  Google Scholar 

  8. Glaeser H, Bailey DG, Dresser GK, et al. Intestinal drug transporter expression and the impact of grapefruit juice in humans. Clin Pharmacol Ther 2007;81:362–70.

    Article  PubMed  CAS  Google Scholar 

  9. Lin JH, Yamazaki M. Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet 2003;42:59–98.

    Article  PubMed  CAS  Google Scholar 

  10. Lee CA, Cook JA, Reyner EL, Smith DA. P-glycoprotein related drug interactions: clinical importance and a consideration of disease states. Expert Opin Drug Metab Toxicol 2010;6:603–19.

    Article  PubMed  CAS  Google Scholar 

  11. Nies AT, Schwab M, Keppler D. Interplay of conjugating enzymes with OATP uptake transporters and ABCC/MRP efflux pumps in the elimination of drugs. Expert Opin Drug Metab Toxicol 2008;4:545–68.

    Article  PubMed  CAS  Google Scholar 

  12. Smith NF, Figg WD, Sparreboom A. Role of the liver-specific transporters OATP1B1 and OATP1B3 in governing drug elimination. Expert Opin Drug Metab Toxicol 2005;1:429–45.

    Article  PubMed  CAS  Google Scholar 

  13. Kusuhara H, Sugiyama Y. Pharmacokinetic modeling of the hepatobiliary transport mediated by cooperation of uptake and efflux transporters. Drug Metab Rev 2010;42:539–50.

    Article  PubMed  CAS  Google Scholar 

  14. Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol 2009;158:693–705.

    Article  PubMed  CAS  Google Scholar 

  15. Cihlar T, Ho ES, Lin DC, Mulato AS. Human renal organic anion transporter 1 (hOAT1) and its role in the nephrotoxicity of antiviral nucleotide analogs. Nucleosides Nucleotides Nucleic Acids 2001;20:641–8.

    Article  PubMed  CAS  Google Scholar 

  16. Ho ES, Lin DC, Mendel DB, Cihlar T. Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J Am Soc Nephrol 2000;11:383–93.

    PubMed  CAS  Google Scholar 

  17. Li M, Anderson GD, Wang J. Drug-drug interactions involving membrane transporters in the human kidney. Expert Opin Drug Metab Toxicol 2006;2:505–32.

    Article  PubMed  CAS  Google Scholar 

  18. Murphy MD, O’Hearn M, Chou S. Fatal lactic acidosis and acute renal failure after addition of tenofovir to an antiretroviral regimen containing didanosine. Clin Infect Dis 2003;36:1082–5.

    Article  PubMed  Google Scholar 

  19. Maiche AG. Acute renal failure due to concomitant action of methotrexate and indomethacin. Lancet 1986;1:1390.

    Article  PubMed  CAS  Google Scholar 

  20. El-Sheikh AA, van den Heuvel JJ, Koenderink JB, Russel FG. Interaction of nonsteroidal anti-inflammatory drugs with multidrug resistance protein (MRP) 2/ABCC2- and MRP4/ABCC4-mediated methotrexate transport. J Pharmacol Exp Ther 2007;320:229–35.

    Article  PubMed  CAS  Google Scholar 

  21. Urquhart BL, Kim RB. Blood-brain barrier transporters and response to CNS-active drugs. Eur J Clin Pharmacol 2009;65:1063–70.

    Article  PubMed  CAS  Google Scholar 

  22. Ohtsuki S, Terasaki T. Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm Res 2007;24:1745–58.

    Article  PubMed  CAS  Google Scholar 

  23. Ohtsuki S. New aspects of the blood-brain barrier transporters; its physiological roles in the central nervous system. Biol Pharm Bull 2004;27:1489–96.

    Article  PubMed  CAS  Google Scholar 

  24. Kim RB, Fromm MF, Wandel C, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 1998;101:289–94.

    Article  PubMed  CAS  Google Scholar 

  25. Shaik N, Giri N, Pan G, Elmquist WF. P-glycoprotein-mediated active efflux of the anti-HIV1 nucleoside abacavir limits cellular accumulation and brain distribution. Drug Metab Dispos 2007;35:2076–85.

    Article  PubMed  CAS  Google Scholar 

  26. Best BM, Letendre SL, Brigid E, et al. Low atazanavir concentrations in cerebrospinal fluid. AIDS 2009;23:83–7.

    Article  PubMed  CAS  Google Scholar 

  27. Marra CM, Zhao Y, Clifford DB, et al. Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS 2009;23:1359–66.

    Article  PubMed  Google Scholar 

  28. Turriziani O, Gianotti N, Falasca F, et al. Expression levels of MDR1, MRP1, MRP4, and MRP5 in peripheral blood mononuclear cells from HIV infected patients failing antiretroviral therapy. J Med Virol 2008;80:766–71.

    Article  PubMed  CAS  Google Scholar 

  29. Minuesa G, Purcet S, Erkizia I, et al. Expression and functionality of anti-human immunodeficiency virus and anticancer drug uptake transporters in immune cells. J Pharmacol Exp Ther 2008;324:558–67.

    Article  PubMed  CAS  Google Scholar 

  30. Wang X, Furukawa T, Nitanda T, et al. Breast cancer resistance protein (BCRP/ABCG2) induces cellular resistance to HIV-1 nucleoside reverse transcriptase inhibitors. Mol Pharmacol 2003;63:65–72.

    Article  PubMed  CAS  Google Scholar 

  31. Janneh O, Owen A, Chandler B, et al. Modulation of the intracellular accumulation of saquinavir in peripheral blood mononuclear cells by inhibitors of MRP1, MRP2, P-gp and BCRP. AIDS 2005;19:2097–102.

    Article  PubMed  CAS  Google Scholar 

  32. Janneh O, Hartkoorn RC, Jones E, et al. Cultured CD4T cells and primary human lymphocytes express hOATPs: intracellular accumulation of saquinavir and lopinavir. Br J Pharmacol 2008;155:875–83.

    Article  PubMed  CAS  Google Scholar 

  33. Janneh O, Anwar T, Jungbauer C, et al. P-glycoprotein, multidrug resistance-associated proteins and human organic anion transporting polypeptide influence the intracellular accumulation of atazanavir. Antivir Ther 2009;14:965–74.

    Article  PubMed  CAS  Google Scholar 

  34. Tirona RG, Leake BF, Merino G, Kim RB. Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J Biol Chem 2001;276:35669–75.

    Article  PubMed  CAS  Google Scholar 

  35. Hartkoorn RC, Kwan WS, Shallcross V, et al. HIV protease inhibitors are substrates for OATP1A2, OATP1B1 and OATP1B3 and lopinavir plasma concentrations are influenced by SLCO1B1 polymorphisms Pharmacogenet Genomics 2010;20:112–20.

    Article  PubMed  CAS  Google Scholar 

  36. Lubomirov R, di Iulio J, Fayet A, et al. ADME pharmacogenetics: investigation of the pharmacokinetics of the antiretroviral agent lopinavir coformulated with ritonavir. Pharmacogenet Genomics 2010;20:217–30.

    PubMed  CAS  Google Scholar 

  37. Kiser JJ, Carten ML, Aquilante CL, et al. The effect of lopinavir/ritonavir on the renal clearance of tenofovir in HIV-infected patients. Clin Pharmacol Ther 2008;83:265–72.

    Article  PubMed  CAS  Google Scholar 

  38. Kiser JJ, Aquilante CL, Anderson PL, King TM, Carten ML, Fletcher CV. Clinical and genetic determinants of intracellular tenofovir diphosphate concentrations in HIV-infected patients. J Acquir Immune Defic Syndr 2008;47:298–303.

    Article  PubMed  CAS  Google Scholar 

  39. Rodriguez-Novoa S, Labarga P, Soriano V, et al. Predictors of kidney tubular dysfunction in HIV-infected patients treated with tenofovir: a pharmacogenetic study. Clin Infect Dis 2009;48:e108–16.

    Article  PubMed  CAS  Google Scholar 

  40. Imaoka T, Kusuhara H, Adachi M, Schuetz JD, Takeuchi K, Sugiyama Y. Functional involvement of multidrug resistance-associated protein 4 (MRP4/ABCC4) in the renal elimination of the antiviral drugs adefovir and tenofovir. Mol Pharmacol 2007;71:619–27.

    Article  PubMed  CAS  Google Scholar 

  41. Maeda K, Sugiyama Y. Impact of genetic polymorphisms of transporters on the pharmacokinetic, pharmacodynamic and toxicological properties of anionic drugs. Drug Metab Pharmacokinet 2008;23:223–35.

    Article  PubMed  CAS  Google Scholar 

  42. Ieiri I, Higuchi S, Sugiyama Y. Genetic polymorphisms of uptake (OATP1B1, 1B3) and efflux (MRP2, BCRP) transporters: implications for inter-individual differences in the pharmacokinetics and pharmacodynamics of statins and other clinically relevant drugs. Expert Opin Drug Metab Toxicol 2009;5:703–29.

    Article  PubMed  CAS  Google Scholar 

  43. Choi MK, Song IS. Organic cation transporters and their pharmacokinetic and pharmacodynamic consequences. Drug Metab Pharmacokinet 2008;23:243–53.

    Article  PubMed  Google Scholar 

  44. Marzolini C, Paus E, Buclin T, Kim RB. Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther 2004;75:13–33.

    Article  PubMed  CAS  Google Scholar 

  45. Marzolini C, Tirona RG, Kim RB. Pharmacogenomics of the OATP and OAT families. Pharmacogenomics 2004;5:273–82.

    Article  PubMed  CAS  Google Scholar 

  46. Bretschneider B, Brandsch M, Neubert R. Intestinal transport of beta-lactam antibiotics: analysis of the affinity at the H+/peptide symporter (PEPT1), the uptake into Caco-2 cell monolayers and the transepithelial flux. Pharm Res 1999;16:55–61.

    Article  PubMed  CAS  Google Scholar 

  47. Luckner P, Brandsch M. Interaction of 31 beta-lactam antibiotics with the H+/peptide symporter PEPT2: analysis of affinity constants and comparison with PEPT1. Eur J Pharm Biopharm 2005;59:17–24.

    Article  PubMed  CAS  Google Scholar 

  48. Li M, Anderson GD, Phillips BR, Kong W, Shen DD, Wang J. Interactions of amoxicillin and cefaclor with human renal organic anion and peptide transporters. Drug Metab Dispos 2006;34:547–55.

    Article  PubMed  CAS  Google Scholar 

  49. Li M, Andrew MA, Wang J, et al. Effects of cranberry juice on pharmacokinetics of beta-lactam antibiotics following oral administration. Antimicrob Agents Chemother 2009;53:2725–32.

    Article  PubMed  CAS  Google Scholar 

  50. Gupta A, Unadkat JD, Mao Q. Interactions of azole antifungal agents with the human breast cancer resistance protein (BCRP). J Pharm Sci 2007;96:3226–35.

    Article  PubMed  CAS  Google Scholar 

  51. Gupta A, Zhang Y, Unadkat JD, Mao Q. HIV protease inhibitors are inhibitors but not substrates of the human breast cancer resistance protein (BCRP/ABCG2). J Pharmacol Exp Ther 2004;310:334–41.

    Article  PubMed  CAS  Google Scholar 

  52. Seithel A, Eberl S, Singer K, et al. The influence of macrolide antibiotics on the uptake of organic anions and drugs mediated by OATP1B1 and OATP1B3. Drug Metab Dispos 2007;35:779–86.

    Article  PubMed  CAS  Google Scholar 

  53. Sakurai Y, Motohashi H, Ueo H, et al. Expression levels of renal organic anion transporters (OATs) and their correlation with anionic drug excretion in patients with renal diseases. Pharm Res 2004;21:61–7.

    Article  PubMed  CAS  Google Scholar 

  54. Hill G, Cihlar T, Oo C, et al. The anti-influenza drug oseltamivir exhibits low potential to induce pharmacokinetic drug interactions via renal secretion-correlation of in vivo and in vitro studies. Drug Metab Dispos 2002;30:13–9.

    Article  PubMed  CAS  Google Scholar 

  55. Weiss J, Rose J, Storch CH, et al. Modulation of human BCRP (ABCG2) activity by anti-HIV drugs. J Antimicrob Chemother 2007;59:238–45.

    Article  PubMed  CAS  Google Scholar 

  56. Weiss J, Theile D, Ketabi-Kiyanvash N, Lindenmaier H, Haefeli WE. Inhibition of MRP1/ABCC1, MRP2/ABCC2, and MRP3/ABCC3 by nucleoside, nucleotide, and non-nucleoside reverse transcriptase inhibitors. Drug Metab Dispos 2007;35:340–4.

    Article  PubMed  CAS  Google Scholar 

  57. Jung N, Lehmann C, Rubbert A, et al. Relevance of the organic cation transporters 1 and 2 for antiretroviral drug therapy in human immunodeficiency virus infection. Drug Metab Dispos 2008;36:1616–23.

    Article  PubMed  CAS  Google Scholar 

  58. Polli JW, Jarrett JL, Studenberg SD, et al. Role of P-glycoprotein on the CNS disposition of amprenavir (141 W94), an HIV protease inhibitor. Pharm Res 1999;16:1206–12.

    Article  PubMed  CAS  Google Scholar 

  59. Kis O, Robillard K, Chan GN, Bendayan R. The complexities of antiretroviral drug-drug interactions: role of ABC and SLC transporters. Trends Pharmacol Sci 2009;31:22–35.

    Article  PubMed  CAS  Google Scholar 

  60. Maeda T, Takahashi K, Ohtsu N, et al. Identification of influx transporter for the quinolone antibacterial agent levofloxacin. Mol Pharm 2007;4:85–94.

    Article  PubMed  CAS  Google Scholar 

  61. Minuesa G, Volk C, Molina-Arcas M, et al. Transport of lamivudine [(−)-beta-L-2’,3’-dideoxy-3’-thiacytidine] and high-affinity interaction of nucleoside reverse transcriptase inhibitors with human organic cation transporters 1, 2, and 3. J Pharmacol Exp Ther 2009;329:252–61.

    Article  PubMed  CAS  Google Scholar 

  62. Sala-Rabanal M, Loo DD, Hirayama BA, Turk E, Wright EM. Molecular interactions between dipeptides, drugs and the human intestinal H+ −oligopeptide cotransporter hPEPT1. J Physiol 2006;574:149–66.

    Article  PubMed  CAS  Google Scholar 

  63. Takeda M, Khamdang S, Narikawa S, et al. Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J Pharmacol Exp Ther 2002;300:918–24.

    Article  PubMed  CAS  Google Scholar 

  64. Babu E, Takeda M, Narikawa S, et al. Human organic anion transporters mediate the transport of tetracycline. Jpn J Pharmacol 2002;88:69–76.

    Article  PubMed  CAS  Google Scholar 

  65. Tirona RG, Leake BF, Wolkoff AW, Kim RB. Human organic anion transporting polypeptide-C (SLC21A6) is a major determinant of rifampin-mediated pregnane X receptor activation. J Pharmacol Exp Ther 2003;304:223–8.

    Article  PubMed  CAS  Google Scholar 

  66. Annaert P, Ye ZW, Stieger B, Augustijns P. Interaction of HIV protease inhibitors with OATP1B1, 1B3, and 2B1. Xenobiotica 2010;40:163–76.

    Article  PubMed  CAS  Google Scholar 

  67. Ueo H, Motohashi H, Katsura T, Inui K. Human organic anion transporter hOAT3 is a potent transporter of cephalosporin antibiotics, in comparison with hOAT1. Biochem Pharmacol 2005;70:1104–13.

    Article  PubMed  CAS  Google Scholar 

  68. Cihlar T, Lin DC, Pritchard JB, Fuller MD, Mendel DB, Sweet DH. The antiviral nucleotide analogs cidofovir and adefovir are novel substrates for human and rat renal organic anion transporter 1. Mol Pharmacol 1999;56:570–80.

    PubMed  CAS  Google Scholar 

  69. Uwai Y, Ida H, Tsuji Y, Katsura T, Inui K. Renal transport of adefovir, cidofovir, and tenofovir by SLC22A family members (hOAT1, hOAT3, and hOCT2). Pharm Res 2007;24:811–5.

    Article  PubMed  CAS  Google Scholar 

  70. Yamashita F, Ohtani H, Koyabu N, et al. Inhibitory effects of angiotensin II receptor antagonists and leukotriene receptor antagonists on the transport of human organic anion transporter 4. J Pharm Pharmacol 2006;58:1499–505.

    Article  PubMed  CAS  Google Scholar 

  71. Morimoto K, Nakakariya M, Shirasaka Y, et al. Oseltamivir (Tamiflu) efflux transport at the blood-brain barrier via P-glycoprotein. Drug Metab Dispos 2008;36:6–9.

    Article  PubMed  CAS  Google Scholar 

  72. Ogihara T, Kano T, Wagatsuma T, et al. Oseltamivir (tamiflu) is a substrate of peptide transporter 1. Drug Metab Dispos 2009;37:1676–81.

    Article  PubMed  CAS  Google Scholar 

  73. Sandhu P, Lee W, Xu X, et al. Hepatic uptake of the novel antifungal agent caspofungin. Drug Metab Dispos 2005;33:676–82.

    Article  PubMed  CAS  Google Scholar 

  74. Kobayashi Y, Sakai R, Ohshiro N, Ohbayashi M, Kohyama N, Yamamoto T. Possible involvement of organic anion transporter 2 on the interaction of theophylline with erythromycin in the human liver. Drug Metab Dispos 2005;33:619–22.

    Article  PubMed  CAS  Google Scholar 

  75. Okuda M, Kimura N, Inui K. Interactions of fluoroquinolone antibacterials, DX-619 and levofloxacin, with creatinine transport by renal organic cation transporter hOCT2. Drug Metab Pharmacokinet 2006;21:432–6.

    Article  PubMed  CAS  Google Scholar 

  76. Ye ZW, Camus S, Augustijns P, Annaert P. Interaction of eight HIV protease inhibitors with the canalicular efflux transporter ABCC2 (MRP2) in sandwich-cultured rat and human hepatocytes. Biopharm Drug Dispos 2010;31:178–88.

    PubMed  CAS  Google Scholar 

  77. Ci L, Kusuhara H, Adachi M, Schuetz JD, Takeuchi K, Sugiyama Y. Involvement of MRP4 (ABCC4) in the luminal efflux of ceftizoxime and cefazolin in the kidney. Mol Pharmacol 2007;71:1591–7.

    Article  PubMed  CAS  Google Scholar 

  78. Susanto M, Benet LZ. Can the enhanced renal clearance of antibiotics in cystic fibrosis patients be explained by P-glycoprotein transport? Pharm Res 2002;19:457–62.

    Article  PubMed  CAS  Google Scholar 

  79. VanWert AL, Gionfriddo MR, Sweet DH. Organic anion transporters: discovery, pharmacology, regulation and roles in pathophysiology. Biopharm Drug Dispos 2010;31:1–71.

    PubMed  CAS  Google Scholar 

  80. Miller DS. Nucleoside phosphonate interactions with multiple organic anion transporters in renal proximal tubule. J Pharmacol Exp Ther 2001;299:567–74.

    PubMed  CAS  Google Scholar 

  81. Ganapathy ME, Brandsch M, Prasad PD, Ganapathy V, Leibach FH. Differential recognition of beta -lactam antibiotics by intestinal and renal peptide transporters, PEPT 1 and PEPT 2. J Biol Chem 1995;270:25672–7.

    Article  PubMed  CAS  Google Scholar 

  82. Schuetz JD, Connelly MC, Sun D, et al. MRP4: A previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat Med 1999;5:1048–51.

    Article  PubMed  CAS  Google Scholar 

  83. Vavricka SR, Van Montfoort J, Ha HR, Meier PJ, Fattinger K. Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology 2002;36:164–72.

    Article  PubMed  CAS  Google Scholar 

  84. Lau YY, Huang Y, Frassetto L, Benet LZ. effect of OATP1B transporter inhibition on the pharmacokinetics of atorvastatin in healthy volunteers. Clin Pharmacol Ther 2007;81:194–204.

    Article  PubMed  CAS  Google Scholar 

  85. van Giersbergen PL, Treiber A, Schneiter R, Dietrich H, Dingemanse J. Inhibitory and inductive effects of rifampin on the pharmacokinetics of bosentan in healthy subjects. Clin Pharmacol Ther 2007;81:414–9.

    Article  PubMed  CAS  Google Scholar 

  86. Dingemanse J, van Giersbergen PL, Patat A, Nilsson PN. Mutual pharmacokinetic interactions between bosentan and lopinavir/ritonavir in healthy participants. Antivir Ther 2010;15:157–63.

    Article  PubMed  CAS  Google Scholar 

  87. Kiser JJ, Gerber JG, Predhomme JA, Wolfe P, Flynn DM, Hoody DW. Drug/Drug interaction between lopinavir/ritonavir and rosuvastatin in healthy volunteers. J Acquir Immune Defic Syndr 2008;47:570–8.

    Article  PubMed  CAS  Google Scholar 

  88. Busti AJ, Bain AM, Hall RG, 2nd, et al. Effects of atazanavir/ritonavir or fosamprenavir/ritonavir on the pharmacokinetics of rosuvastatin. J Cardiovasc Pharmacol 2008;51:605–10.

    Article  PubMed  CAS  Google Scholar 

  89. Jacobson TA. Comparative pharmacokinetic interaction profiles of pravastatin, simvastatin, and atorvastatin when coadministered with cytochrome P450 inhibitors. Am J Cardiol 2004;94:1140–6.

    Article  PubMed  CAS  Google Scholar 

  90. Moore KH, Yuen GJ, Raasch RH, et al. Pharmacokinetics of lamivudine administered alone and with trimethoprim-sulfamethoxazole. Clin Pharmacol Ther 1996;59:550–8.

    Article  PubMed  CAS  Google Scholar 

  91. Moellentin D, Picone C, Leadbetter E. Memantine-induced myoclonus and delirium exacerbated by trimethoprim. Ann Pharmacother 2008;42:443–7.

    Article  PubMed  CAS  Google Scholar 

  92. Landersdorfer CB, Kirkpatrick CM, Kinzig M, et al. Competitive inhibition of renal tubular secretion of ciprofloxacin and metabolite by probenecid. Br J Clin Pharmacol 2010;69:167–78.

    Article  PubMed  CAS  Google Scholar 

  93. Cundy KC. Clinical pharmacokinetics of the antiviral nucleotide analogues cidofovir and adefovir. Clin Pharmacokinet 1999;36:127–43.

    Article  PubMed  CAS  Google Scholar 

  94. Massarella JW, Nazareno LA, Passe S, Min B. The effect of probenecid on the pharmacokinetics of zalcitabine in HIV-positive patients. Pharm Res 1996;13:449–52.

    Article  PubMed  CAS  Google Scholar 

  95. Landersdorfer CB, Kirkpatrick CM, Kinzig M, Bulitta JB, Holzgrabe U, Sorgel F. Inhibition of flucloxacillin tubular renal secretion by piperacillin. Br J Clin Pharmacol 2008;66:648–59.

    PubMed  CAS  Google Scholar 

  96. Ding R, Tayrouz Y, Riedel KD, et al. Substantial pharmacokinetic interaction between digoxin and ritonavir in healthy volunteers. Clin Pharmacol Ther 2004;76:73–84.

    Article  PubMed  CAS  Google Scholar 

  97. Mertz D, Battegay M, Marzolini C, Mayr M. Drug-drug interaction in a kidney transplant recipient receiving HIV salvage therapy and tacrolimus. Am J Kidney Dis 2009;54:e1–4.

    Article  PubMed  Google Scholar 

  98. Capone D, Palmiero G, Gentile A, et al. A pharmacokinetic interaction between clarithromycin and sirolimus in kidney transplant recipient. Curr Drug Metab 2007;8:379–81.

    Article  PubMed  CAS  Google Scholar 

  99. Wakasugi H, Yano I, Ito T, et al. Effect of clarithromycin on renal excretion of digoxin: interaction with P-glycoprotein. Clin Pharmacol Ther 1998;64:123–8.

    Article  PubMed  CAS  Google Scholar 

  100. Rollot F, Pajot O, Chauvelot-Moachon L, Nazal EM, Kelaidi C, Blanche P. Acute colchicine intoxication during clarithromycin administration. Ann Pharmacother 2004;38:2074–7.

    Article  PubMed  Google Scholar 

  101. Jalava KM, Partanen J, Neuvonen PJ. Itraconazole decreases renal clearance of digoxin. Ther Drug Monit 1997;19:609–13.

    Article  PubMed  CAS  Google Scholar 

  102. Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest 1999;104:147–53.

    Article  PubMed  CAS  Google Scholar 

  103. Backman JT, Luurila H, Neuvonen M, Neuvonen PJ. Rifampin markedly decreases and gemfibrozil increases the plasma concentrations of atorvastatin and its metabolites. Clin Pharmacol Ther 2005;78:154–67.

    Article  PubMed  CAS  Google Scholar 

  104. Piscitelli SC, Burstein AH, Chaitt D, Alfaro RM, Falloon J. Indinavir concentrations and St John’s wort. Lancet 2000;355:547–8.

    Article  PubMed  CAS  Google Scholar 

  105. Naesens M, Kuypers DR, Streit F, et al. Rifampin induces alterations in mycophenolic acid glucuronidation and elimination: implications for drug exposure in renal allograft recipients. Clin Pharmacol Ther 2006;80:509–21.

    Article  PubMed  CAS  Google Scholar 

  106. Morelle J, Labriola L, Lambert M, Cosyns JP, Jouret F, Jadoul M. Tenofovir-related acute kidney injury and proximal tubule dysfunction precipitated by diclofenac: a case of drug-drug interaction. Clin Nephrol 2009;71:567–70.

    PubMed  CAS  Google Scholar 

  107. Urquhart BL, Tirona RG, Kim RB. Nuclear receptors and the regulation of drug-metabolizing enzymes and drug transporters: implications for interindividual variability in response to drugs. J Clin Pharmacol 2007;47:566–78.

    Article  PubMed  CAS  Google Scholar 

  108. Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily: the second decade. Cell 1995;83:835–9.

    Article  PubMed  CAS  Google Scholar 

  109. Kim RB, Wandel C, Leake B, et al. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res 1999;16:408–14.

    Article  PubMed  CAS  Google Scholar 

  110. Shitara Y, Hirano M, Sato H, Sugiyama Y. Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug-drug interaction between cerivastatin and gemfibrozil. J Pharmacol Exp Ther 2004;311:228–36.

    Article  PubMed  CAS  Google Scholar 

  111. Niemi M, Backman JT, Neuvonen M, Neuvonen PJ. Effects of gemfibrozil, itraconazole, and their combination on the pharmacokinetics and pharmacodynamics of repaglinide: potentially hazardous interaction between gemfibrozil and repaglinide. Diabetologia 2003;46:347–51.

    Article  PubMed  CAS  Google Scholar 

  112. Meyer zu Schwabedissen HE, Kim RB. Hepatic OATP1B transporters and nuclear receptors PXR and CAR: interplay, regulation of drug disposition genes, and single nucleotide polymorphisms. Mol Pharm 2009;6:1644–61.

    Article  PubMed  CAS  Google Scholar 

  113. Zhang L, Zhang Y, Huang SM. Scientific and regulatory perspectives on metabolizing enzyme-transporter interplay and its role in drug interactions: challenges in predicting drug interactions. Mol Pharm 2009;6:1766–74.

    Article  PubMed  CAS  Google Scholar 

  114. Hagenbuch B, Gui C. Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica 2008;38:778–801.

    Article  PubMed  CAS  Google Scholar 

  115. Hsiang B, Zhu Y, Wang Z, et al. A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters. J Biol Chem 1999;274:37161–8.

    Article  PubMed  CAS  Google Scholar 

  116. Kullak-Ublick GA, Hagenbuch B, Stieger B, et al. Molecular and functional characterization of an organic anion transporting polypeptide cloned from human liver. Gastroenterology 1995;109:1274–82.

    Article  PubMed  CAS  Google Scholar 

  117. Konig J, Cui Y, Nies AT, Keppler D. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am J Physiol Gastrointest Liver Physiol 2000;278:G156–64.

    PubMed  CAS  Google Scholar 

  118. Kobayashi D, Nozawa T, Imai K, Nezu J, Tsuji A, Tamai I. Involvement of human organic anion transporting polypeptide OATP-B (SLC21A9) in pH-dependent transport across intestinal apical membrane. J Pharmacol Exp Ther 2003;306:703–8.

    Article  PubMed  CAS  Google Scholar 

  119. Tamai I, Nezu J, Uchino H, et al. Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem Biophys Res Commun 2000;273:251–60.

    Article  PubMed  CAS  Google Scholar 

  120. Martin PD, Warwick MJ, Dane AL, et al. Metabolism, excretion, and pharmacokinetics of rosuvastatin in healthy adult male volunteers. Clin Ther 2003;25:2822–35.

    Article  PubMed  CAS  Google Scholar 

  121. Kitamura S, Maeda K, Wang Y, Sugiyama Y. Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin. Drug Metab Dispos 2008;36:2014–23.

    Article  PubMed  CAS  Google Scholar 

  122. Huang L, Wang Y, Grimm S. ATP-dependent transport of rosuvastatin in membrane vesicles expressing breast cancer resistance protein. Drug Metab Dispos 2006;34:738–42.

    Article  PubMed  CAS  Google Scholar 

  123. Demby VE, Harmon KA, Naqwe M, Humphreys JE, Wire M, Polli JW. OATP1B1, OATP1B3 and BCRP transporter characterization for fosamprenavir, amprenavir and lopinavir. In Abstracts of the American Association of Pharmaceutical Scientists, Atlanta, GA, September 16–20, Abstract 2355 2008.

    Google Scholar 

  124. Dingemanse J, van Giersbergen PL. Clinical pharmacology of bosentan, a dual endothelin receptor antagonist. Clin Pharmacokinet 2004;43:1089–115.

    Article  PubMed  CAS  Google Scholar 

  125. Treiber A, Schneiter R, Hausler S, Stieger B. Bosentan is a substrate of human OATP1B1 and OATP1B3: inhibition of hepatic uptake as the common mechanism of its interactions with cyclosporin A, rifampicin, and sildenafil. Drug Metab Dispos 2007;35:1400–7.

    Article  PubMed  CAS  Google Scholar 

  126. Jariyawat S, Sekine T, Takeda M, et al. The interaction and transport of beta-lactam antibiotics with the cloned rat renal organic anion transporter 1. J Pharmacol Exp Ther 1999;290:672–7.

    PubMed  CAS  Google Scholar 

  127. El-Sheikh AA, Masereeuw R, Russel FG. Mechanisms of renal anionic drug transport. Eur J Pharmacol 2008;585:245–55.

    Article  PubMed  CAS  Google Scholar 

  128. Sekine T, Cha SH, Tsuda M, et al. Identification of multispecific organic anion transporter 2 expressed predominantly in the liver. FEBS Lett 1998;429:179–82.

    Article  PubMed  CAS  Google Scholar 

  129. Sekine T, Watanabe N, Hosoyamada M, Kanai Y, Endou H. Expression cloning and characterization of a novel multispecific organic anion transporter. J Biol Chem 1997;272:18526–9.

    Article  PubMed  CAS  Google Scholar 

  130. Race JE, Grassl SM, Williams WJ, Holtzman EJ. Molecular cloning and characterization of two novel human renal organic anion transporters (hOAT1 and hOAT3). Biochem Biophys Res Commun 1999;255:508–14.

    Article  PubMed  CAS  Google Scholar 

  131. Cha SH, Sekine T, Fukushima JI, et al. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol Pharmacol 2001;59:1277–86.

    PubMed  CAS  Google Scholar 

  132. Burnell JM, Kirby WM. Effectiveness of a new compound, benemid, in elevating serum penicillin concentrations. J Clin Invest 1951;30:697–700.

    Article  PubMed  CAS  Google Scholar 

  133. Takeda M, Narikawa S, Hosoyamada M, Cha SH, Sekine T, Endou H. Characterization of organic anion transport inhibitors using cells stably expressing human organic anion transporters. Eur J Pharmacol 2001;419:113–20.

    Article  PubMed  CAS  Google Scholar 

  134. Brown GR. Cephalosporin-probenecid drug interactions. Clin Pharmacokinet 1993;24:289–300.

    Article  PubMed  CAS  Google Scholar 

  135. Cunningham RF, Israili ZH, Dayton PG. Clinical pharmacokinetics of probenecid. Clin Pharmacokinet 1981;6:135–51.

    Article  PubMed  CAS  Google Scholar 

  136. Cundy KC, Petty BG, Flaherty J, et al. Clinical pharmacokinetics of cidofovir in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 1995;39:1247–52.

    PubMed  CAS  Google Scholar 

  137. Mulato AS, Ho ES, Cihlar T. Nonsteroidal anti-inflammatory drugs efficiently reduce the transport and cytotoxicity of adefovir mediated by the human renal organic anion transporter 1. J Pharmacol Exp Ther 2000;295:10–5.

    PubMed  CAS  Google Scholar 

  138. Thyss A, Milano G, Kubar J, Namer M, Schneider M. Clinical and pharmacokinetic evidence of a life-threatening interaction between methotrexate and ketoprofen. Lancet 1986;1:256–8.

    Article  PubMed  CAS  Google Scholar 

  139. Khamdang S, Takeda M, Noshiro R, et al. Interactions of human organic anion transporters and human organic cation transporters with nonsteroidal anti-inflammatory drugs. J Pharmacol Exp Ther 2002;303:534–9.

    Article  PubMed  CAS  Google Scholar 

  140. Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 2007;24:1227–51.

    Article  PubMed  CAS  Google Scholar 

  141. Jung N, Taubert D. Organic cation transporters and their roles in antiretroviral drug disposition. Expert Opin Drug Metab Toxicol 2009;5:773–87.

    Article  PubMed  CAS  Google Scholar 

  142. Gorboulev V, Ulzheimer JC, Akhoundova A, et al. Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol 1997;16:871–81.

    Article  PubMed  CAS  Google Scholar 

  143. Grundemann D, Babin-Ebell J, Martel F, Ording N, Schmidt A, Schomig E. Primary structure and functional expression of the apical organic cation transporter from kidney epithelial LLC-PK1 cells. J Biol Chem 1997;272:10408–13.

    Article  PubMed  CAS  Google Scholar 

  144. Busch AE, Karbach U, Miska D, et al. Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol 1998;54:342–52.

    PubMed  CAS  Google Scholar 

  145. Terada T, Inui K. Peptide transporters: structure, function, regulation and application for drug delivery. Curr Drug Metab 2004;5:85–94.

    Article  PubMed  CAS  Google Scholar 

  146. Anand BS, Patel J, Mitra AK. Interactions of the dipeptide ester prodrugs of acyclovir with the intestinal oligopeptide transporter: competitive inhibition of glycylsarcosine transport in human intestinal cell line-Caco-2. J Pharmacol Exp Ther 2003;304:781–91.

    Article  PubMed  CAS  Google Scholar 

  147. Brandsch M. Transport of drugs by proton-coupled peptide transporters: pearls and pitfalls. Expert Opin Drug Metab Toxicol 2009;5:887–905.

    Article  PubMed  CAS  Google Scholar 

  148. Shen H, Smith DE, Yang T, Huang YG, Schnermann JB, Brosius FC, 3 rd. Localization of PEPT1 and PEPT2 proton-coupled oligopeptide transporter mRNA and protein in rat kidney. Am J Physiol 1999;276:F658–65.

    PubMed  CAS  Google Scholar 

  149. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 1976;455:152–62.

    Article  PubMed  CAS  Google Scholar 

  150. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci USA 1987;84:7735–8.

    Article  PubMed  CAS  Google Scholar 

  151. Cordon-Cardo C, O’Brien JP, Casals D, et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA 1989;86:695–8.

    Article  PubMed  CAS  Google Scholar 

  152. Sugawara I, Kataoka I, Morishita Y, et al. Tissue distribution of P-glycoprotein encoded by a multidrug-resistant gene as revealed by a monoclonal antibody, MRK 16. Cancer Res 1988;48:1926–9.

    PubMed  CAS  Google Scholar 

  153. Klimecki WT, Futscher BW, Grogan TM, Dalton WS. P-glycoprotein expression and ­function in circulating blood cells from normal volunteers. Blood 1994;83:2451–8.

    PubMed  CAS  Google Scholar 

  154. Schinkel AH, Smit JJ, van Tellingen O, et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 1994;77:491–502.

    Article  PubMed  CAS  Google Scholar 

  155. Schinkel AH, Wagenaar E, van Deemter L, Mol CA, Borst P. Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest 1995;96:1698–705.

    Article  PubMed  CAS  Google Scholar 

  156. Sparreboom A, van Asperen J, Mayer U, et al. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci USA 1997;94:2031–5.

    Article  PubMed  CAS  Google Scholar 

  157. Choo EF, Leake B, Wandel C, et al. Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes. Drug Metab Dispos 2000;28:655–60.

    PubMed  CAS  Google Scholar 

  158. Lin JH. Transporter-mediated drug interactions: clinical implications and in vitro assessment. Expert Opin Drug Metab Toxicol 2007;3:81–92.

    Article  PubMed  CAS  Google Scholar 

  159. de Lannoy IA, Silverman M. The MDR1 gene product, P-glycoprotein, mediates the ­transport of the cardiac glycoside, digoxin. Biochem Biophys Res Commun 1992;189:551–7.

    Article  PubMed  Google Scholar 

  160. Kawahara M, Sakata A, Miyashita T, Tamai I, Tsuji A. Physiologically based pharmacokinetics of digoxin in mdr1a knockout mice. J Pharm Sci 1999;88:1281–7.

    Article  PubMed  CAS  Google Scholar 

  161. Gutmann H, Fricker G, Drewe J, Toeroek M, Miller DS. Interactions of HIV protease inhibitors with ATP-dependent drug export proteins. Mol Pharmacol 1999;56:383–9.

    PubMed  CAS  Google Scholar 

  162. Maxwell DL, Gilmour-White SK, Hall MR. Digoxin toxicity due to interaction of digoxin with erythromycin. BMJ 1989;298:572.

    Article  PubMed  CAS  Google Scholar 

  163. Takara K, Tanigawara Y, Komada F, Nishiguchi K, Sakaeda T, Okumura K. Cellular pharmacokinetic aspects of reversal effect of itraconazole on P-glycoprotein-mediated resistance of anticancer drugs. Biol Pharm Bull 1999;22:1355–9.

    Article  PubMed  CAS  Google Scholar 

  164. Kiso S, Cai SH, Kitaichi K, et al. Inhibitory effect of erythromycin on P-glycoprotein-mediated biliary excretion of doxorubicin in rats. Anticancer Res 2000;20:2827–34.

    PubMed  CAS  Google Scholar 

  165. Hamman MA, Bruce MA, Haehner-Daniels BD, Hall SD. The effect of rifampin administration on the disposition of fexofenadine. Clin Pharmacol Ther 2001;69:114–21.

    Article  PubMed  CAS  Google Scholar 

  166. Westphal K, Weinbrenner A, Zschiesche M, et al. Induction of P-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings: a new type of drug/drug interaction. Clin Pharmacol Ther 2000;68:345–55.

    Article  PubMed  CAS  Google Scholar 

  167. Hebert MF, Roberts JP, Prueksaritanont T, Benet LZ. Bioavailability of cyclosporine with concomitant rifampin administration is markedly less than predicted by hepatic enzyme induction. Clin Pharmacol Ther 1992;52:453–7.

    Article  PubMed  CAS  Google Scholar 

  168. Hebert MF, Fisher RM, Marsh CL, Dressler D, Bekersky I. Effects of rifampin on tacrolimus pharmacokinetics in healthy volunteers. J Clin Pharmacol 1999;39:91–6.

    Article  PubMed  CAS  Google Scholar 

  169. Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 1998;95:15665–70.

    Article  PubMed  CAS  Google Scholar 

  170. Mao Q, Unadkat JD. Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS J 2005;7:E118–33.

    Article  PubMed  CAS  Google Scholar 

  171. Maliepaard M, Scheffer GL, Faneyte IF, et al. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res 2001;61:3458–64.

    PubMed  CAS  Google Scholar 

  172. Eisenblatter T, Galla HJ. A new multidrug resistance protein at the blood-brain barrier. Biochem Biophys Res Commun 2002;293:1273–8.

    Article  PubMed  CAS  Google Scholar 

  173. van Herwaarden AE, Schinkel AH. The function of breast cancer resistance protein in epithelial barriers, stem cells and milk secretion of drugs and xenotoxins. Trends Pharmacol Sci 2006;27:10–6.

    Article  PubMed  CAS  Google Scholar 

  174. Cole SP, Bhardwaj G, Gerlach JH, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 1992;258:1650–4.

    Article  PubMed  CAS  Google Scholar 

  175. Zhou SF, Wang LL, Di YM, et al. Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr Med Chem 2008;15:1981–2039.

    Article  PubMed  CAS  Google Scholar 

  176. Flens MJ, Zaman GJ, van der Valk P, et al. Tissue distribution of the multidrug resistance protein. Am J Pathol 1996;148:1237–47.

    PubMed  CAS  Google Scholar 

  177. Schaub TP, Kartenbeck J, Konig J, et al. Expression of the conjugate export pump encoded by the mrp2 gene in the apical membrane of kidney proximal tubules. J Am Soc Nephrol 1997;8:1213–21.

    PubMed  CAS  Google Scholar 

  178. Keppler D, Konig J, Buchler M. The canalicular multidrug resistance protein, cMRP/MRP2, a novel conjugate export pump expressed in the apical membrane of hepatocytes. Adv Enzyme Regul 1997;37:321–33.

    Article  PubMed  CAS  Google Scholar 

  179. Zhang Y, Han H, Elmquist WF, Miller DW. Expression of various multidrug resistance-associated protein (MRP) homologues in brain microvessel endothelial cells. Brain Res 2000;876:148–53.

    Article  PubMed  CAS  Google Scholar 

  180. van Aubel RA, Smeets PH, Peters JG, Bindels RJ, Russel FG. The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP. J Am Soc Nephrol 2002;13:595–603.

    PubMed  Google Scholar 

  181. Dazert P, Meissner K, Vogelgesang S, et al. Expression and localization of the multidrug resistance protein 5 (MRP5/ABCC5), a cellular export pump for cyclic nucleotides, in human heart. Am J Pathol 2003;163:1567–77.

    Article  PubMed  CAS  Google Scholar 

  182. Westley IS, Brogan LR, Morris RG, Evans AM, Sallustio BC. Role of Mrp2 in the hepatic disposition of mycophenolic acid and its glucuronide metabolites: effect of cyclosporine. Drug Metab Dispos 2006;34:261–6.

    Article  PubMed  CAS  Google Scholar 

  183. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet 2007;46:13–58.

    Article  PubMed  CAS  Google Scholar 

  184. Wolff NA, Burckhardt BC, Burckhardt G, Oellerich M, Armstrong VW. Mycophenolic acid (MPA) and its glucuronide metabolites interact with transport systems responsible for excretion of organic anions in the basolateral membrane of the human kidney. Nephrol Dial Transplant 2007;22:2497–503.

    Article  PubMed  CAS  Google Scholar 

  185. Kuypers DR, Verleden G, Naesens M, Vanrenterghem Y. Drug interaction between ­mycophenolate mofetil and rifampin: possible induction of uridine diphosphate-­glucuronosyltransferase. Clin Pharmacol Ther 2005;78:81–8.

    Article  PubMed  CAS  Google Scholar 

  186. Cui Y, Konig J, Keppler D. Vectorial transport by double-transfected cells expressing the human uptake transporter SLC21A8 and the apical export pump ABCC2. Mol Pharmacol 2001;60:934–43.

    PubMed  CAS  Google Scholar 

  187. Zhang L, Reynolds KS, Zhao P, Huang SM. Drug interactions evaluation: an integrated part of risk assessment of therapeutics. Toxicol Appl Pharmacol 2010; 243:134–45.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

C. Marzolini has been supported by a grant from the Swiss National Science Foundation (Marie Heim-Vögtlin subsidy: PMPDP3-122791/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catia Marzolini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marzolini, C., Battegay, M., Back, D. (2011). Mechanisms of Drug Interactions II: Transport Proteins. In: Piscitelli, S., Rodvold, K., Pai, M. (eds) Drug Interactions in Infectious Diseases. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-61779-213-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-213-7_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-212-0

  • Online ISBN: 978-1-61779-213-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics