Skip to main content

Tissue Fluorescence Spectroscopy in Death Time Estimation

  • Chapter
  • First Online:
Forensic Pathology Reviews

Abstract

One of the limitations of conventional methods for PMI determination is the fact that the measurements cannot be performed in situ nor in real time. Several factors, environmental and body, influence tissue decomposition and time evolution, resulting in a actual poor resolution. Considering this limitation for PMI determination, our group proposes a more objective method based on a tissue characterization of the degradation phases through optical information using fluorescence spectroscopy. The results obtained so far show the potential of the fluorescence spectroscopy for the PMI determination, with at least similar resolution of the actual methods. A portable interrogation system allows its use in outdoor areas with no need of laboratory supplies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Estracanholli ES, Bagnato VS, Kurachi C, Menezes PFC, Vicente JR (2009) Determination of post-mortem interval using in situ tissue optical fluorescence. Optics Express 17:8185–8192

    Article  PubMed  CAS  Google Scholar 

  2. Vanezis P, Trujillo O (1996) Evaluation of hypostasis using a colorimeter measuring system and its application to assessment to the post-mortem interval (time of death). Forensic Sci Int 78:19–28

    Article  PubMed  CAS  Google Scholar 

  3. Scheurer E, Ith M, Dietrich D, Kreis R, Hüsler J, Dirnhofer R, Boesch C (2005) Statistical evaluation of time-dependent metabolite concentrations: estimation of post-mortem intervals based on in situ H-1-MRS the brain. J Forensic Sci 18:163–172

    CAS  Google Scholar 

  4. Sabucedo AJ, Furton KG (2003) Estimation of postmortem interval using the protein marker cardiac troponin I. Forensic Sci Int 134:11–16

    Article  PubMed  CAS  Google Scholar 

  5. Johnson LA, Ferris JAJ (2002) Analysis of postmortem DNA degradation by single-cell gel electrophoresis. Forensic Sci Int 126:43–47

    Article  PubMed  CAS  Google Scholar 

  6. Stan AD, Ghose S, Gao XM et al (2006) Human postmortem tissue: What quality markers matter? Brain Res 1123:1–11

    Article  PubMed  CAS  Google Scholar 

  7. Zhou B, Zhang L, Zhang G, Zhang X, Jiang X (2007) The determination of potassium concentration in vitreous humor by low pressure ion chromatography and its application in the estimation of postmortem interval. J Chromatography B Analyt Technol Biomed Life Sci 852:278–281

    Article  CAS  Google Scholar 

  8. Madea B, Rodig A (2006) Time of death dependent criteria in vitreous humor – accuracy of estimating the time since death. Forensic Sci Int 164:87–92

    Article  PubMed  CAS  Google Scholar 

  9. Querido D (1998) A preliminary investigation into postmortem changes in skinfold impedance during the early postmortem period in rats. Forensic Sci Int 96:107–114

    Article  PubMed  CAS  Google Scholar 

  10. Querido D, Philipps MRB (2001) Estimation of postmortem interval temperature-correction of extracellular abdominal impedance during the first 21 days of death. Forensic Sci Int 116:133–138

    Article  PubMed  CAS  Google Scholar 

  11. Prieto-Castelló MJ, Hernández del Rincón JP, Pérez-Sirvent C et al (2007) Application of biochemical and X-ray diffraction analyses to establish the postmortem interval. Forensic Sci Int 172:112–118

    Article  PubMed  Google Scholar 

  12. Vanrell JP (2008) Mecanismo da morte. Disponível em: http://www.pericias-forenses.com.br/mecamorte.htm

  13. Huntington TE, Higley LG, Baxendale FP (2007) Maggot development during morgue storage and its effect on estimating the post-mortem interval. J Forensic Sci 52:453–458

    Article  PubMed  Google Scholar 

  14. Amendt J, Campobasso CP, Gaudry E et al (2007) Best practice in forensic entomology – standards and guidelines. Int J Legal Med 121:90–104

    Article  PubMed  Google Scholar 

  15. Bagizadegan K et al (2004) Spectroscopic diagnosis and imaging of invisible pre-cancer. Faraday Discuss 126:265–279

    Article  Google Scholar 

  16. Wagnieres GA, Star WM, Wilson BC (1998) In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol 5:603–632

    Google Scholar 

  17. Loschenov VB, Konov VI, Prokhorov AM (2000) Photodynamic therapy and fluorescence diagnostics. Laser Phys 10:1188–1207

    Google Scholar 

  18. Stookey GK (2003) The evolution of caries detection. Dimensions of Dental Hygiene Oct:12–15

    Google Scholar 

  19. Meller C, Heyduck C, Tranaeus S, Splieth C (2006) A new in vivo method for measuring caries activity using quantitative light-induced fluorescence. Caries Res 40:90–96

    Article  PubMed  CAS  Google Scholar 

  20. Figueiredo ACR, Kurachi C, Bagnato VS (2005) Comparison of fluorescence detection of carious dentin for different excitation wavelengths. Caries Res 39:393–396

    Article  Google Scholar 

  21. Marcassa LG, Gasporato MCG, Belasque J et al (2006) Fluorescence spectroscopy applied to orange trees. Laser Phys 16:884–888

    Article  CAS  Google Scholar 

  22. Cohen-Tannoudji C, Diu B, Laloë F (1977) Quantum mechanics. Wiley, New York, p 1528

    Google Scholar 

  23. Ramanujam N (2000) Fluorescence spectroscopy in vivo. Encyclopedia of analytical chemistry. Wiley, Chichester, pp 20–56

    Google Scholar 

  24. Lakowicz JR (1983) Principle of fluorescence spectroscopy. Plenum Press, New York, p 496

    Google Scholar 

  25. Georgakoudi I (2002) NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Res 62:682–687

    PubMed  CAS  Google Scholar 

  26. Cheong W, Prahl AS, Welch AJ (1990) A review of the optical properties of biological tissues. IEEE Quantum Electron 26:2166–2185

    Article  Google Scholar 

  27. Kurachi C (2005) Espectroscopia de fluorescência na detecção de lesões quimicamene induzida por agentes carcinogênicos na borda lateral da língua – estudo in vivo. Universidade de São Paulo, São Carlos, Tese de doutorado – Instituto de Fisica de São Carlos

    Google Scholar 

  28. Davies AMC, Fearn T (2005) Back to basics: the principles of principal component analysis. Spectroscopy Europe, pp 20–23

    Google Scholar 

  29. Landim PMB (2008) Análise estatística de dados geológicos multivariados. Departamento de Geologia Aplicada, Universidade do estado de São Paulo. Disponível em http://www.rc.unesp.br/igce/aplicada/DIDATICOS/LANDIM/multivariados.pdf

  30. Sena MM, Poppi RJ, Fighetto RTS, Valarini PJ (2000) Avaliação do uso de métodos quimiométricos em análise de solos. Quimica Nova 23:547–556

    Article  Google Scholar 

  31. Valderrama P, Braga JWB, Poppi RJ (2007) Validation of multivariate calibration models in the determination of sugar cane quality parameters by near infrared spectroscopy. J Brazil Chem Soc 18:259–266

    Article  CAS  Google Scholar 

  32. Lopez JA (2007) Principal components analysis. Lisboa: Instituto Superior de Engenharia de Lisboa. Disponível em: http://www.deetc.isel.ipl.pt/comunicacoesep/disciplinas/pes/pes_pt.htm.

  33. Barros Neto B, Scarminio IS, Bruns R (2006) 25 anos de quimiometria no Brasil. Quimica Nova 29:1401–1406

    Article  Google Scholar 

  34. Ferreira MMC, Antunes AM, Melo MS, Volpe PLO (1999) Quimiometria I: calibração multivariada, um tutorial. Química Nova 22:724–773

    Article  CAS  Google Scholar 

  35. Moita Neto JM, Moita GC (1998) Uma introdução à análise exploratória de dados multivariados. Química Nova 21:467–469

    Article  CAS  Google Scholar 

  36. Gonçalves de Souza AJ (2008) Análise em componentes principais. Technical University of Lisbon. Disponivel em: http://biomonitor.ist.utl.pt/∼ajsousa/.

  37. Costa LF (2001) Shape analysis and classification: theory and practice. CRC Press, Boca Raton, p 456

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éverton S. Estracanholli MS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Estracanholli, É.S., Kurachi, C., Bagnato, V.S. (2011). Tissue Fluorescence Spectroscopy in Death Time Estimation. In: Turk, E. (eds) Forensic Pathology Reviews. Forensic Pathology Reviews, vol 6. Humana Press. https://doi.org/10.1007/978-1-61779-249-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-249-6_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-248-9

  • Online ISBN: 978-1-61779-249-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics