Skip to main content

Bisretinoid Lipofuscin in the Retinal Pigment Epithelium: Oxidative Processes and Disease Implications

  • Chapter
  • First Online:
Studies on Retinal and Choroidal Disorders
  • 1109 Accesses

Abstract

The bisretinoid pigments, including A2E, that constitute retinal pigment epithelial (RPE) lipofuscin form in photoreceptor outer segments from reactions of vitamin A aldehyde and are deposited in the RPE cells secondarily, as shed photoreceptor outer segment membrane is phagocytosed by the RPE. We have proposed that the biosynthesis of A2E begins in photoreceptor outer segments with condensation reactions between phosphatidylethanolamine (PE) and all-trans-retinal, and then undergo a series of reactions, with photoisomerization and photooxidation of the side chains, leading to various fluorophores. Damage to the RPE from these products appears to be very important in the etiology of AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL (2009) Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 390:191–214

    Article  PubMed  CAS  Google Scholar 

  2. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  PubMed  CAS  Google Scholar 

  3. Sparrow JR, Boulton M (2005) RPE lipofuscin and its role in retinal photobiology. Exp Eye Res 80:595–606

    Article  PubMed  CAS  Google Scholar 

  4. Young RW (1971) The renewal of rod and cone outer segments in the rhesus monkey. J Cell Biol 49:303–318

    Article  PubMed  CAS  Google Scholar 

  5. Bok D (1993) The retinal pigment epithelium: a versatile partner in vision. J Cell Sci Suppl 17:189–195

    PubMed  CAS  Google Scholar 

  6. Cuervo AM (2008) Autophagy and aging: keeping that old broom working. Trends Genet 24:604–612

    Article  PubMed  CAS  Google Scholar 

  7. Clancy CMR, Krogmeier JR, Pawlak A, Rozanowska M, Sarna T, Dunn RC, Simon JD (2000) Atomic force microscopy and near-field scanning optical microscopy measurements of single human retinal lipofuscin granules. J Phys Chem B 104:12098–12101

    Article  CAS  Google Scholar 

  8. Feeney-Burns L, Eldred GE (1983) The fate of the phagosome: conversion to “age pigment” and impact in human retinal pigment epithelium. Trans Ophthalmol Soc U K 103(Pt 4):416–421

    PubMed  Google Scholar 

  9. Boulton M, Docchio F, Dayhaw-Barker P, Ramponi R, Cubeddu R (1990) Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium. Vision Res 30(9):1291–1303

    Article  PubMed  CAS  Google Scholar 

  10. Haralampus-Grynaviski NM, Lamb LE, Clancy CMR, Skumatz C, Burke JM, Sarna T, Simon JD (2003) Spectroscopic and morphological studies of human retinal lipofuscin granules. Proc Natl Acad Sci USA 100(6):3179–3184

    Article  PubMed  CAS  Google Scholar 

  11. Schutt F, Ueberle B, Schnolzer M, Holz FG, Kopitz J (2002) Proteome analysis of lipofuscin in human retinal pigment epithelial cells. FEBS Lett 528:217–221

    Article  PubMed  CAS  Google Scholar 

  12. Feeney-Burns L, Gao CL, Berman ER (1988) The fate of immunoreactive opsin following phagocytosis by pigment epithelium in human and monkey retinas. Invest Ophthalmol Vis Sci 29(5):708–719

    PubMed  CAS  Google Scholar 

  13. Warburton S, Southwick K, Hardman RM, Secrest AM, Grow RK, Xin H, Woolley AT, Burton GF, Thulin CD (2005) Examining the proteins of functional retinal lipofuscin using proteomic analysis as a guide for understanding its origin. Mol Vis 11:1122–1134

    PubMed  CAS  Google Scholar 

  14. Ng KP, Gugiu BG, Renganathan K, Davies MW, Gu X, Crabb JS, Kim SR, Rozanowska MB, Bonilha VL, Rayborn ME, Salomon RG, Sparrow JR, Boulton ME, Hollyfield JG, Crabb JW (2008) Retinal pigment epithelium lipofuscin proteomics. Mol Cell Proteomics 7:1397–1405

    Article  PubMed  CAS  Google Scholar 

  15. Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, Kamei M, Hasan A, Yan L, Raybourn ME, Salomon RG, Hollyfield JG (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci USA 99:14682–14687

    Article  PubMed  CAS  Google Scholar 

  16. Eldred GE, Lasky MR (1993) Retinal age pigments generated by self-assembling lysosomotropic detergents. Nature 361(6414):724–726

    Article  PubMed  CAS  Google Scholar 

  17. Sakai N, Decatur J, Nakanishi K, Eldred GE (1996) Ocular age pigment “A2E”: an unprecedented pyridinium bisretinoid. J Am Chem Soc 118:1559–1560

    Article  CAS  Google Scholar 

  18. Parish CA, Hashimoto M, Nakanishi K, Dillon J, Sparrow JR (1998) Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium. Proc Natl Acad Sci USA 95(25):14609–14613

    Article  PubMed  CAS  Google Scholar 

  19. Ren RF, Sakai N, Nakanishi K (1997) Total synthesis of the ocular age pigment A2E: a convergent pathway. J Am Chem Soc 119:3619–3620

    Article  CAS  Google Scholar 

  20. Liu J, Itagaki Y, Ben-Shabat S, Nakanishi K, Sparrow JR (2000) The biosynthesis of A2E, a fluorophore of aging retina, involves the formation of the precursor, A2-PE, in the photoreceptor outer segment membrane. J Biol Chem 275(38):29354–29360

    Article  PubMed  CAS  Google Scholar 

  21. Ben-Shabat S, Parish CA, Vollmer HR, Itagaki Y, Fishkin N, Nakanishi K, Sparrow JR (2002) Biosynthetic studies of A2E, a major fluorophore of RPE lipofuscin. J Biol Chem 277(9):7183–7190

    Article  PubMed  CAS  Google Scholar 

  22. Kim SR, He J, Yanase E, Jang YP, Berova N, Sparrow JR, Nakanishi K (2007) Characterization of dihydro-A2PE: an intermediate in the A2E biosynthetic pathway. Biochemistry 46:10122–10129

    Article  PubMed  CAS  Google Scholar 

  23. Dalvis D, Zhao Z, Castagnoli N (1992) Characterization of an unexpected product from a monoamine oxidase B generated 2,3-dihydropyridinium species. J Org Chem 57:7321–7324

    Article  Google Scholar 

  24. Sparrow JR, Kim SR, Cuervo AM, Bandhyopadhyayand U (2008) A2E, a pigment of RPE lipofuscin is generated from the precursor A2PE by a lysosomal enzyme activity. Adv Exp Med Biol 613:393–398

    Article  PubMed  CAS  Google Scholar 

  25. Kim SR, Fishkin N, Kong J, Nakanishi K, Allikmets R, Sparrow JR (2004) The Rpe65 Leu450Met variant is associated with reduced levels of the RPE lipofuscin fluorophores A2E and iso-A2E. Proc Natl Acad Sci USA 101(32):11668–11672

    Article  PubMed  CAS  Google Scholar 

  26. Kim SR, Jang YP, Jockusch S, Fishkin NE, Turro NJ, Sparrow JR (2007) The all-trans-retinal dimer series of lipofuscin pigments in retinal pigment epithelial cells in a recessive Stargardt disease model. Proc Natl Acad Sci USA 104:19273–19278

    Article  PubMed  CAS  Google Scholar 

  27. Wu Y, Fishkin NE, Pande A, Pande J, Sparrow JR (2009) Novel lipofuscin bisretinoids prominent in human retina and in a model of recessive Stargardt disease. J Biol Chem 284:20155–20166

    Article  PubMed  CAS  Google Scholar 

  28. Sparrow JR, Parish CA, Hashimoto M, Nakanishi K (1999) A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. Invest Ophthalmol Vis Sci 40(12):2988–2995

    PubMed  CAS  Google Scholar 

  29. Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH (1999) Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell 98(1):13–23

    Article  PubMed  CAS  Google Scholar 

  30. Fishkin N, Sparrow JR, Allikmets R, Nakanishi K (2005) Isolation and characterization of a retinal pigment epithelial cell fluorophore: an all-trans-retinal dimer conjugate. Proc Natl Acad Sci USA 102(20):7091–7096

    Article  PubMed  CAS  Google Scholar 

  31. Fishkin N, Pescitelli G, Sparrow JR, Nakanishi K, Berova N (2004) Absolute configurational determination of an all-trans-retinal dimer isolated from photoreceptor outer segments. Chirality 16:637–641

    Article  PubMed  CAS  Google Scholar 

  32. Jang YP, Matsuda H, Itagaki Y, Nakanishi K, Sparrow JR (2005) Characterization of peroxy-A2E and furan-A2E photooxidation products and detection in human and mouse retinal pigment epithelial cells lipofuscin. J Biol Chem 280:39732–39739

    Article  PubMed  CAS  Google Scholar 

  33. Sparrow JR, Zhou J, Ben-Shabat S, Vollmer H, Itagaki Y, Nakanishi K (2002) Involvement of oxidative mechanisms in blue light induced damage to A2E-laden RPE. Invest Ophthalmol Vis Sci 43(4):1222–1227

    PubMed  Google Scholar 

  34. Sparrow JR, Nakanishi K, Parish CA (2000) The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 41(7):1981–1989

    PubMed  CAS  Google Scholar 

  35. Ben-Shabat S, Itagaki Y, Jockusch S, Sparrow JR, Turro NJ, Nakanishi K (2002) Formation of a nona-oxirane from A2E, a lipofuscin fluorophore related to macular degeneration, and evidence of singlet oxygen involvement. Angew Chem Int Ed 41(5):814–817

    Article  CAS  Google Scholar 

  36. Kim SR, Jockusch S, Itagaki Y, Turro NJ, Sparrow JR (2008) Mechanisms involved in A2E oxidation. Exp Eye Res 86:975–982

    Article  PubMed  CAS  Google Scholar 

  37. Kim SR, Jang Y, Sparrow JR (2010) Photooxidation of RPE lipofuscin bisretinoids enhanced fluorescence intensity. Vision Res 50:729–736

    Article  PubMed  CAS  Google Scholar 

  38. Wassell J, Davies S, Bardsley W, Boulton M (1999) The photoreactivity of the retinal age pigment lipofuscin. J Biol Chem 274:23828–23832

    Article  PubMed  CAS  Google Scholar 

  39. Davies S, Elliot MH, Floor E, Truscott TG, Zareba M, Sarna T, Shamsi FA, Boulton ME (2001) Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells. Free Radic Biol Med 31:256–265

    Article  PubMed  CAS  Google Scholar 

  40. Rozanowska M, Jarvis-Evans J, Korytowski W, Boulton ME, Burke JM, Sarna T (1995) Blue light-induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species. J Biol Chem 270:18825–18830

    Article  PubMed  CAS  Google Scholar 

  41. Rozanowska M, Korytowski W, Rozanowska B, Skumatz C, Boulton ME, Burke JM, Sarna T (2002) Photoreactivitiy of aged human RPE melanosomes: a comparison with lipofuscin. Invest Ophthalmol Vis Sci 43(7):2088–2096

    PubMed  Google Scholar 

  42. Rozanowska M, Pawlak A, Rozanowska B, Skumatz C, Zareba M, Boulton ME, Burke JM, Sarna T, Simon JD (2004) Age-related changes in the photoreactivity of retinal lipofuscin granules: role of chloroform-insoluble components. Invest Ophthalmol Vis Sci 45(4):1052–1060

    Article  PubMed  Google Scholar 

  43. Pawlak A, Rozanowska M, Zareba M, Lamb LE, Simon JD, Sarna T (2002) Action spectra for the photoconsumptioin of oxygen by human ocular lipofuscin and lipofuscin extracts. Arch Biochem Biophys 403:59–62

    Article  PubMed  CAS  Google Scholar 

  44. Reszka K, Eldred GE, Wang RH, Chignell C, Dillon J (1995) The photochemistry of human retinal lipofuscin as studied by EPR. Photochem Photobiol 62(6):1005–1008

    Article  PubMed  CAS  Google Scholar 

  45. Godley BF, Shamsi FA, Liang FQ, Jarrett SG, Davies S, Boulton M (2005) Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J Biol Chem 280:21061–21066

    Article  PubMed  CAS  Google Scholar 

  46. Gaillard ER, Avalle LB, Keller LMM, Wang Z, Reszka KJ, Dillon JP (2004) A mechanistic study of the photooxidation of A2E, a component of human retinal lipofuscin. Exp Eye Res 79:313–319

    Article  PubMed  CAS  Google Scholar 

  47. Pawlak A, Wrona M, Rozanowska M, Zareba M, Lamb LE, Roberts JE, Simon JD, Sarna T (2003) Comparison of the aerobic photoreactivity of A2E with its precursor retinal. Photochem Photobiol 77(3):253–258

    Article  PubMed  CAS  Google Scholar 

  48. Kanofsky JR, Sima PD, Richter C (2003) Singlet-oxygen generation from A2E. Photochem Photobiol 77(3):235–242

    Article  PubMed  CAS  Google Scholar 

  49. Gaillard ER, Atherton SJ, Eldred G, Dillon J (1995) Photophysical studies on human retinal lipofuscin. Photochem Photobiol 61:448–453

    Article  PubMed  CAS  Google Scholar 

  50. Rozanowska M, Wessels J, Boulton M, Burke JM, Rodgers MAJ, Truscott TG, Sarna T (1998) Blue light-induced singlet oxygen generation by retinal lipofuscin in non-polar media. Free Radic Biol Med 24:1107–1112

    Article  PubMed  CAS  Google Scholar 

  51. Cantrell A, McGarvey DJ, Roberts J, Sarna T, Truscott TG (2001) Photochemical studies of A2E. J Photochem Photobiol B Biol 64:162–165

    Article  CAS  Google Scholar 

  52. Lamb LE, Ye T, Haralampus-Grynaviski NM, Williams TR, Pawlak A, Sarna T, Simon JD (2001) Primary photophysical properties of A2E in solution. J Phys Chem B 105:11507–11512

    Article  CAS  Google Scholar 

  53. Ragauskaite L, Heckathorn RC, Gaillard ER (2001) Environmental effects on the photochemistry of A2E, a component of human retinal lipofuscin. Photochem Photobiol 74(3):483–488

    Article  PubMed  CAS  Google Scholar 

  54. Bunting JR (1992) A test of the singlet oxygen mechanism of cationic dye photosensitization of mitochondrial damage. Photochem Photobiol 55:81–87

    Article  PubMed  CAS  Google Scholar 

  55. Delaey E, van Laar F, De Vos D, Kamuhabwa A, Jacobs P, de Witte P (2000) A comparative study of the photosensitizing characteristics of some cyanine dyes. J Photochem Photobiol B 55:27–36

    Article  PubMed  CAS  Google Scholar 

  56. Krieg M, Srichai MB, Redmond RW (1993) Photophysical properties of 3,3′-dialkylthiacarbocyanine dyes in organized media: unilamellar liposomes and thin polymer films. Biochim Biophys Acta 1151:168–174

    Article  PubMed  CAS  Google Scholar 

  57. Lukinova N, Iacovelli J, Dentchev T, Wolkow N, Hunter A, Amado D, Ying G-S, Sparrow JR, Dunaief JL (2009) Iron chelation protects the retinal pigment epithelial cell line ARPE-19 against cell death triggered by diverse stimuli. Invest Ophthalmol Vis Sci 50:1440–1447

    Article  PubMed  Google Scholar 

  58. Roberts JE, Kukielczak BM, Hu DN, Miller DS, Bilski P, Sik RH, Motten AG, Chignell CF (2002) The role of A2E in prevention or enhancement of light damage in human retinal pigment epithelial cells. Photochem Photobiol 75(2):184–190

    Article  PubMed  CAS  Google Scholar 

  59. Kim SR, Nakanishi K, Itagaki Y, Sparrow JR (2006) Photooxidation of A2-PE, a photoreceptor outer segment fluorophore, and protection by lutein and zeaxanthin. Exp Eye Res 82:828–839

    Article  PubMed  CAS  Google Scholar 

  60. Wu Y, Yanase E, Feng X, Siegel MM, Sparrow JR (2010) Structural characterization of bisretinoid A2E photocleavage products and implications for age-related macular degeneration. Proc Natl Acad Sci 107:7275–7280

    Article  PubMed  CAS  Google Scholar 

  61. Thornalley PJ (2008) Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems—role in ageing and disease. Drug Metabol Drug Interact 23:125–150

    Article  PubMed  CAS  Google Scholar 

  62. Price CL, Knight SC (2009) Methylglyoxal: possible link between hyperglycaemia and immune suppression? Trends Endocrinol Metab 20:312–317

    Article  PubMed  CAS  Google Scholar 

  63. Yan SF, Ramasamy R, Schmidt AM (2009) Receptor for AGE (RAGE) and its ligands-cast into leading roles in diabetes and the inflammatory response. J Mol Med 87:235–247

    Article  PubMed  CAS  Google Scholar 

  64. Handa JT, Verzijl N, Matsunaga H, Aotaki-Keen A, Lutty GA, Koppele JM, Miyata T, Hjelmeland LM (1999) Increase in advanced glycation end product pentosidine in Bruch’s membrane with age. Invest Ophthalmol Vis Sci 40(3):775–779

    PubMed  CAS  Google Scholar 

  65. Ishibashi T, Murata T, Hangai M, Nagai R, Horiuchi S, Lopez PF, Hinton DR, Ryan SJ (1998) Advanced glycation end products in age-related macular degeneration. Arch Ophthalmol 116(12):1629–1632

    PubMed  CAS  Google Scholar 

  66. Anderson DH, Mullins RF, Hageman GS, Johnson LV (2002) A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 134:411–431

    Article  PubMed  CAS  Google Scholar 

  67. Sparrow JR, Zhou J, Cai B (2003) DNA is a target of the photodynamic effects elicited in A2E-laden RPE by blue light illumination. Invest Ophthalmol Vis Sci 44:2245–2251

    Article  PubMed  Google Scholar 

  68. Zhang X, Zhou J, Fernandes AF, Sparrow JR, Pereira P, Taylor A, Shang F (2008) The proteasome: a target of oxidative damage in cultured human retina pigment epithelial cells. Invest Ophthalmol Vis Sci 49(8):3622–3630

    Article  PubMed  Google Scholar 

  69. Zhou J, Cai B, Jang YP, Pachydaki S, Schmidt AM, Sparrow JR (2005) Mechanisms for the induction of HNE- MDA- and AGE-adducts. RAGE and VEGF in retinal pigment epithelial cells. Exp Eye Res 80:567–580

    Article  PubMed  CAS  Google Scholar 

  70. Schutt F, Davies S, Kopitz J, Holz FG, Boulton ME (2000) Photodamage to human RPE cells by A2-E, a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 41(8):2303–2308

    PubMed  CAS  Google Scholar 

  71. Sparrow JR, Cai B (2001) Blue light-induced apoptosis of A2E-containing RPE: involvement of caspase-3 and protection by Bcl-2. Invest Ophthalmol Vis Sci 42(6):1356–1362

    PubMed  CAS  Google Scholar 

  72. Ham WTJ, Allen RG, Feeney-Burns L, Marmor MF, Parver LM, Proctor PH, Sliney DH, Wolbarsht ML (1986) The involvement of the retinal pigment epithelium. In: Waxler M, Hitchins VM (eds) CRC optical radiation and visual health. CRC Press, Boca Raton, pp 43–67

    Google Scholar 

  73. Ham WT, Mueller HA, Ruffolo JJ, Millen JE, Cleary SF, Guerry RK, Guerry D (1984) Basic mechanisms underlying the production of photochemical lesions in the mammalian retina. Curr Eye Res 3:165–174

    Article  PubMed  CAS  Google Scholar 

  74. Busch EM, Gorgels TGMF, Roberts JE, van Norren D (1999) The effects of two stereoisomers of N-acetylcysteine on photochemical damage by UVA and blue light in rat retina. Photochem Photobiol 70:353–358

    PubMed  CAS  Google Scholar 

  75. Borges J, Li Z-Y, Tso MO (1990) Effects of repeated photic exposures on the monkey macula. Arch Ophthalmol 108:727–733

    Article  PubMed  CAS  Google Scholar 

  76. Putting BJ, Van Best JA, Vrensen GFJM, Oosterhuis JA (1994) Blue-light-induced dysfunction of the blood-retinal barrier at the pigment epithelium in albino versus pigmented rabbits. Exp Eye Res 58:31–40

    Article  PubMed  CAS  Google Scholar 

  77. Paultler EL, Morita M, Beezley D (1989) Reversible and irreversible blue light damage to the isolated mammalian pigment epithelium. In: La Vail MM, Anderson RE, Hollyfield JG (eds) Inherited and environmental induced retinal degeneration. Alan R. Liss, New York, pp 555–567

    Google Scholar 

  78. Zhou J, Jang YP, Kim SR, Sparrow JR (2006) Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium. Proc Natl Acad Sci USA 103:16182–16187

    Article  PubMed  CAS  Google Scholar 

  79. Zhou J, Kim SR, Westlund BS, Sparrow JR (2009) Complement activation by bisretinoid constituents of RPE lipofuscin. Invest Ophthalmol Vis Sci 50:1392–1399

    Article  PubMed  Google Scholar 

  80. Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, Spencer KL, Kwan SY, Noureddine M, Gilbert JR, Schnetz-Boutaud N, Agarwal A, Postel EA, Pericak-Vance MA (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308:419–421

    Article  PubMed  CAS  Google Scholar 

  81. Edwards AO, Ritter R, Abel KJ, Manning A, Panhuysen C, Farrer LA (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308:421–424

    Article  PubMed  CAS  Google Scholar 

  82. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389

    Article  PubMed  CAS  Google Scholar 

  83. Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K, Cramer K, Neel J, Bergeron J, Barile GR, Smith RT, AMD Genetics Clinical Study Group, Hageman GS, Dean M, Allikmets R (2006) Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 38(4):458–462

    Article  PubMed  CAS  Google Scholar 

  84. Yates JR, Sepp T, Matharu BK, Khan JC, Thurlby DA, Shahid H, Clayton DG, Hayward C, Morgan J, Wright AF, Armbrecht AM, Dhillon B, Deary IJ, Redmond E, Bird AC, Moore AT (2007) Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med 357(6):553–561

    Article  PubMed  CAS  Google Scholar 

  85. Martinez-Mir A, Paloma E, Allikmets R, Ayuso C, del Rio T, Dean M, Vilageliu L, Gonzalez-Duarte R, Balcells S (1998) Retinitis pigmentosa caused by a homozygous mutation in the Stargardt disease gene ABCR. Nat Genet 18(1):11–12

    Article  PubMed  CAS  Google Scholar 

  86. Shroyer NF, Lewis RA, Allikmets R, Singh N, Dean M, Leppert M, Lupski JR (1999) The rod photoreceptor ATP-binding cassette transporter gene, ABCR, and retinal disease: from monogenic to multifactorial. Vision Res 39(15):2537–2544

    Article  PubMed  CAS  Google Scholar 

  87. Wu L, Nagasaki T, Sparrow JR (2010) Photoreceptor cell degeneration in Abcr −/− mice. Adv Exp Med Biol 664:533–539

    Article  PubMed  Google Scholar 

  88. Mata NL, Weng J, Travis GH (2000) Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proc Natl Acad Sci USA 97(13):7154–7159

    Article  PubMed  CAS  Google Scholar 

  89. Mata NL, Tzekov RT, Liu X, Weng J, Birch DG, Travis GH (2001) Delayed dark adaptation and lipofuscin accumulation in abcr+/− mice: implications for involvement of ABCR in age-related macular degeneration. Invest Ophthalmol Vis Sci 42:1685–1690

    PubMed  CAS  Google Scholar 

  90. Maiti P, Kong J, Kim SR, Sparrow JR, Allikmets R, Rando RR (2006) Small molecule RPE65 antagonists limit the visual cycle and prevent lipofuscin formation. Biochemistry 45:852–860

    Article  PubMed  CAS  Google Scholar 

  91. Hageman GS, Anderson DH, Johnson LV, Hancox LS, Taiber AJ, Hardisty LI, Hageman JL, Stockman HA, Borchardt JD, Gehrs KM, Smith RJH, Silvestri G, Russell SR, Klaver CCW, Barbazetto I, Chang S, Yannuzzi LA, Barile GR, Merriam JC, Smith RT, Olsh AK, Bergeron J, Zernant J, Merriam JE, Gold B, Dean M, Allikmets R (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci USA 102:7227–7232

    Article  PubMed  CAS  Google Scholar 

  92. Anderson DH, Radeke MJ, Gallo NB, Chapin EA, Johnson PT, Curletti CR, Hancox LS, Hu J, Ebright JN, Malek G, Hauser MA, Rickman CB, Bok D, Hageman GS, Johnson LV (2010) The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res 29:95–112

    Article  PubMed  CAS  Google Scholar 

  93. Taylor HR, Tikellis G, Robman LD, McCarty CA, McNeil JJ (2002) Vitamin E supplementation and macular degeneration: randomised controlled trial. Br Med J 325:11

    Article  CAS  Google Scholar 

  94. Delcourt C, Cristol JP, Tessier F, Leger CL, Descomps B, Papoz L (1999) Age-related macular degeneration and antioxidant status in the POLA study. POLA Study Group. Pathologies Oculaires Liees a l’Age. Arch Ophthalmol 117(10):1384–1390

    PubMed  CAS  Google Scholar 

  95. Mares-Perlman JA, Klein R, Klein BE, Greger JL, Brady WE, Palta M, Ritter LL (1996) Association of zinc and antioxidant nutrients with age-related maculopathy. Arch Ophthalmol 114(8):991–997

    Article  PubMed  CAS  Google Scholar 

  96. Christen WG, Ajani UAA, Glynn RJ, Manson JE, Schaumberg DA, Chew EC, Buring JE, Hennekens CH (1999) Prospective cohort study of antioxidant vitamin supplement use and the risk of age-related maculopathy. Am J Epidemiol 149(5):476–484

    PubMed  CAS  Google Scholar 

  97. Age-Related Eye Disease Study Research Group (2001) A randomized, placebo-controlled clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss. AREDS Report No. 8. Arch Ophthalmol 119:1417–1436

    Google Scholar 

  98. Smith W, Mitchell P, Leeder SR (1996) Smoking and age-related maculopathy. Arch Ophthalmol 114:1518–1523

    Article  PubMed  CAS  Google Scholar 

  99. Age-Related Eye Disease Study Research Group (2000) Risk factors associated with age-related macular degeneration. A case-control study in the age-related eye disease study: age-related eye disease study report number 3. Ophthalmology 107:2224–2232

    Article  Google Scholar 

  100. Hyman LG, Lilienfeld AM, Ferris FL, Fine SL (1983) Senile macular degeneration: a case-control study. Am J Epidemiol 118:213–227

    PubMed  CAS  Google Scholar 

  101. Church DF, Pryor WA (1985) Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect 64:111–126

    Article  PubMed  CAS  Google Scholar 

  102. Cruickshanks KJ, Klein R, Klein BEK, Nondahl DM (2001) Sunlight and the 5-year incidence of early age-related maculopathy: the Beaver Dam Eye Study. Arch Ophthalmol 119:246–250

    PubMed  CAS  Google Scholar 

  103. Taylor HR, West S, Munoz B, Rosenthal FS, Bressler SB, Bressler NM (1992) The long-term effects of visible light on the eye [see comments]. Arch Ophthalmol 110(1):99–104

    Article  PubMed  CAS  Google Scholar 

  104. Tomany SC, Cruickshanks KJ, Klein R, Klein BEK, Knudtson MD (2004) Sunlight and the 10-year incidence of age-related maculopathy. The Beaver Dam Eye Study. Arch Ophthalmol 122:750–757

    Article  PubMed  Google Scholar 

  105. Darzins P, Mitchell P, Heller RF (1997) Sun exposure and age-related macular degeneration. An Australian case-control study. Ophthalmology 104:770–776

    PubMed  CAS  Google Scholar 

  106. Sparrow JR, Vollmer-Snarr HR, Zhou J, Jang YP, Jockusch S, Itagaki Y, Nakanishi K (2003) A2E-epoxides damage DNA in retinal pigment epithelial cells. Vitamin E and other antioxidants inhibit A2E-epoxide formation. J Biol Chem 278:18207–18213

    Article  PubMed  CAS  Google Scholar 

  107. Zhou J, Gao X, Cai B, Sparrow JR (2006) Indirect antioxidant protection against photooxidative processes initiated in retinal pigment epithelial cells by a lipofuscin pigment. Rejuvenation Res 9(2):256–263

    Article  PubMed  CAS  Google Scholar 

  108. Jang YP, Zhou J, Nakanishi K, Sparrow JR (2005) Anthocyanins protect against A2E photooxidation and membrane permeabilization in retinal pigment epithelial cells. Photochem Photobiol 81:529–536

    Article  PubMed  CAS  Google Scholar 

  109. Mitchell JB, DeGraff W, Kaufman D, Krishna MC, Samuni A, Finkelstein E, Ahn MS, Hahn SM, Gamson J, Russo A (1991) Inhibition of oxygen-dependent radiation-induced damage by the nitroxide superoxide dismutase mimic, tempol. Arch Biochem Biophys 289(1):62–70

    Article  PubMed  CAS  Google Scholar 

  110. Wong WT, Kam W, Cunningham D, Harrington M, Hammel K, Meyerle CB, Cukras C, Chew EY, Sadda SR, Ferris FL (2010) Treatment of geographic atrophy by the topical administration of OT-551: results of a phase II clinical trial. Invest Ophthalmol Vis Sci 51:6131–6139

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet R. Sparrow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sparrow, J.R. (2012). Bisretinoid Lipofuscin in the Retinal Pigment Epithelium: Oxidative Processes and Disease Implications. In: Stratton, R., Hauswirth, W., Gardner, T. (eds) Studies on Retinal and Choroidal Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-61779-606-7_5

Download citation

Publish with us

Policies and ethics