Skip to main content

Polyphenols in Cocoa: From In Vitro Digestion to In Vivo Bioavailability

  • Chapter
  • First Online:
Chocolate in Health and Nutrition

Part of the book series: Nutrition and Health ((NH,volume 7))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wollgast J, Anklam E. Review on polyphenols in Theobroma cacao: changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Res Int. 2000;33:423–47.

    Article  CAS  Google Scholar 

  2. Jalil AMM, Ismail A. Polyphenols in cocoa and cocoa products: is there a link between antioxidant properties and health? Molecules. 2008;13:2190–219.

    Article  PubMed  CAS  Google Scholar 

  3. Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr. 2000;130:2073S–85.

    PubMed  CAS  Google Scholar 

  4. Hackman RM, Polagruto JA, Zhu QY, Sun B, Fujii H, Keen CL. Flavanols: digestion, absorption and bioactivity. Phytochem Rev. 2008;7:195–208.

    Article  CAS  Google Scholar 

  5. Na HK, Surh YJ. Intracellular signaling network as a prime chemopreventive target of (−)-epigallocatechin gallate. Mol Nutr Food Res. 2006;50:152–9.

    Article  PubMed  CAS  Google Scholar 

  6. Myhrstad MCW, Carlsen H, Nordstrom O, Blomhoff R, Moskaug JO. Flavonoids increase the intracellular glutathione level by transactivation of the gamma-glutamylcysteine synthetase catalytical subunit promoter. Free Radic Biol Med. 2002;32:386–93.

    Article  PubMed  CAS  Google Scholar 

  7. Parada J, Aguilera JM. Food microstructure affects the bioavailability of several nutrients. J Food Sci. 2007;72:21–32.

    Article  Google Scholar 

  8. Gil-Izquierdo A, Zafrilla P, Tomás-Barberán F. An in vitro method to simulate phenolic compounds release from the food matrix in gastrointestinal tract. Eur Food Res Technol. 2002;214:155–9.

    Article  CAS  Google Scholar 

  9. Bermúdez M, Tomás-Barberan F, García M. Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to an in vitro gastric and pancreatic digestion. Food Chem. 2007;68:1285–94.

    Google Scholar 

  10. Ortega N, Reguant J, Romero MP, Macia A, Motilva MJ. Effect of fat content on the digestibility and bioaccessibility of cocoa polyphenol by an in vitro digestion model. J Agric Food Chem. 2009;57:5743–9.

    Article  PubMed  CAS  Google Scholar 

  11. Wickham M. Plant Bioscience Ltd., Norwich Research Institute, World Intellectual Property Organization, WO 2007/010238.

    Google Scholar 

  12. Wickham M, Faulks R, Mills C. In vitro digestion methods for assessing the effect of food structure on allergen breakdown. Mol Nutr Food Res. 2009;53:952–8.

    Article  PubMed  CAS  Google Scholar 

  13. Kong F, Singh RP. A model stomach system to investigate disintegration kinetics of solid foods during gastric digestion. J Food Sci. 2008;73:202–10.

    Article  Google Scholar 

  14. Hendrén E, Mulokozi G, Svanberg U. In vitro bioaccessibility of carotenoids from green leafy vegetables cooked with sunflower oil or red palm oil. Int J Food Sci Nutr. 2002;53:445–53.

    Article  Google Scholar 

  15. Spencer JPE, Chaudrya F, Pannalaa AS, Sraib SK, Debnamb E, Rice-Evans C. Decomposition of cocoa procyanidins in the gastric milieu. Biochem Biophys Res Commun. 2000;272:236–41.

    Article  PubMed  CAS  Google Scholar 

  16. Zhu Q, Holt R, Lazarus S, Ensunsa J, Hammerstone J, Schmitz H. Stability of the flavan-3-ols epicatechin and catechin and related dimeric procyanidins derived from cocoa. J Agric Food Chem. 2002;50:1700–5.

    Article  PubMed  CAS  Google Scholar 

  17. Neilson A, Hopf A, Cooper B, Pereira M, Bomser J, Ferruzzi M. Catechin degradation with concurrent formation of homo- and heterocatechin dimers during in vitro digestion. J Agric Food Chem. 2007;55:8941–9.

    Article  PubMed  CAS  Google Scholar 

  18. Regulation (EC) No. 1924/2006 of the European Parliament of the Council of December 2006 on nutrition and health claims made on foods. Official Journal L. 30.12.2006; 404:9.

    Google Scholar 

  19. Ortega N, Reguant J, Romero MP, Macià A, Motilva MJ. Effect of fat content on the digestibility and bioaccessibility of cocoa polyphenol by an in vitro digestion model. J Agric Food Chem. 2009;57:5743–9.

    Article  PubMed  CAS  Google Scholar 

  20. Ortega N, Macia A, Romero MP, Reguant J, Motilva MJ. Matrix composition effect on the digestibility of carob flour phenols by an in-vitro digestion model. Food Chem. 2011;124:65–71.

    Article  CAS  Google Scholar 

  21. Fogliano V, Corollaro M, Vitaglione P, Napolitano A, Ferracane R, Travaglia F, et al. In vitro bioaccessibility and gut biotransformation of polyphenols present in the water-insoluble cocoa fraction. Mol Nutr Food Res. 2011;55:44–55.

    Article  Google Scholar 

  22. Rios L, Gonthier M, Rémésy C, Mila I, Lapierre C, Lazarus S, et al. Chocolate intake increases urinary excretion of polyphenol-derived phenolic acids in healthy human subjects. Am J Clin Nutr. 2003;73:912–8.

    Google Scholar 

  23. Gonthier M, Donovan J, Teixer O, Felgines C, Remesy C, Scalbert A. Metabolism of dietary procyanidins in rats. Free Radic Biol Med. 2003;35:837–44.

    Article  PubMed  CAS  Google Scholar 

  24. Serra A, Macià A, Romero MP, Anglés N, Morelló JR, Motilva MJ. Metabolic pathways of the colonic metabolism of procyanidins (monomers and dimers) and alkaloids. Food Chem. 2011;126:1127–37.

    Article  CAS  Google Scholar 

  25. Kim DH, Jung EA, Sohng IS, Han JA, Kim TH, Han MJ. Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch Pharm Res. 1998;21:17–23.

    Article  PubMed  CAS  Google Scholar 

  26. Clifford MN, Copeland EL, Bloxsidge JP, Mitchell LA. Hippuric acid as a major excretion product associated with black tea consumption. Xenobiotica. 2000;30:317–26.

    Article  PubMed  CAS  Google Scholar 

  27. Graefe EU, Veit M. Urinary metabolites of flavonoids and hydroxycinnamic acids in humans after application of a crude extract from Equisetum arvense. Phytomedicine. 1999;6:239–46.

    Article  PubMed  CAS  Google Scholar 

  28. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005;81(1 Suppl):230S–42.

    PubMed  CAS  Google Scholar 

  29. Chan KY, Zhang L, Zuo Z. Intestinal efflux transport kinetics of green tea catechins in Caco-2 monolayer model. J Pharm Pharmacol. 2007;59:395–400.

    Article  PubMed  CAS  Google Scholar 

  30. Deprez S, Mila I, Huneau J-F, Tome D, Scalbert A. Transport of proanthocyanidin dimer, trimer, and polymer across monolayers of human intestinal epithelial Caco-2 cells. Antioxid Redox Signal. 2001;3:957–67.

    Article  PubMed  CAS  Google Scholar 

  31. Castell-Auví A, Motilva MJ, Macià A, Torrell H, Bladé C, Pinent M, et al. Organotypic co-culture system to study plant extract bioactivity on hepatocytes. Food Chem. 2010;122:775–81.

    Article  Google Scholar 

  32. Cooper K, Donovan J, Waterhouse A, Williamson G. Cocoa and health: a decade of research. Br J Nutr. 2008;99:1–11.

    Article  PubMed  CAS  Google Scholar 

  33. Rimbach G, Melchin M, Moehring J, Wagner A. Polyphenols from cocoa and vascular health – a critical review. Int J Mol Sci. 2009;10:4290–309.

    Article  PubMed  CAS  Google Scholar 

  34. Richelle M, Tavazzi I, Enslen M, Offord E. Plasma kinetics in man of epicatechin from black chocolate. Eur J Clin Nutr. 1999;53:22–6.

    Article  PubMed  CAS  Google Scholar 

  35. Schroeter H, Heiss C, Balzer J, Kleinbogard P, Keen CL, Hollenberg NK, et al. (−)-Epicatechin mediates beneficial effects of flavonol rich cocoa on vascular functions in humans. Proc Natl Acad Sci USA. 2006;103:1024–9.

    Article  PubMed  CAS  Google Scholar 

  36. Holt RR, Lazarus SA, Sullards MC, Zhu QY, Schramm DD, Hammerstone JF, et al. Procyanidin dimer B2 [epicatechin-(4β-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Am J Clin Nutr. 2002;76:798–804.

    PubMed  CAS  Google Scholar 

  37. Donovan J, Crespy V, Oliveira M, Cooper K, Gibson B, Williamson G. (+)-Catechin is more bioavailable than (−)-catechin: relevance to the bioavailability of catechin from cocoa. Free Radic Res. 2006;40:1029–34.

    Article  PubMed  CAS  Google Scholar 

  38. Selma MV, Espín SC, Tomás-Barberán FA. Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem. 2009;12:6485–64501.

    Article  Google Scholar 

  39. Schramm D, Karim M, Schrader H, Roberta R, Kirkpatrick N, Polagruto J, et al. Food effects on the absorption and pharmacokinetics of cocoa polyphenols. Life Sci. 2003;73:857–69.

    Article  PubMed  CAS  Google Scholar 

  40. Neilson AP, Sapper TN, Janle EM, Rudolph R, Matusheski NV, Ferruzzi MG. Chocolate matrix factors modulate the pharmacokinetic behavior of cocoa flavan-3-ol phase II metabolites following oral consumption by Sprague–Dawley rats. J Agric Food Chem. 2010;58:6685–91.

    Article  PubMed  CAS  Google Scholar 

  41. Reddy V, Vidya S, Sreeramulu D, Venu L, Raghunath M. Addition of milk does not alter the antioxidant activity of black tea. Ann Nutr Metab. 2005;49:189–95.

    Article  PubMed  CAS  Google Scholar 

  42. Van der Burg-Koorevaar M, Miret S, Duchateau G. Effect of milk and brewing method on black tea catechin bioaccessibility. J Agric Food Chem. 2011;59:7752–8.

    Article  PubMed  Google Scholar 

  43. Keogh JB, McInerney J, Clifton PM. The effect of milk protein on the bioavailability of cocoa polyphenols. J Food Sci. 2007;72:S230–3.

    Article  PubMed  CAS  Google Scholar 

  44. Tomas-Barberán FA, Cienfuegos-Jovellanos E, Marín A, Muguerza B, Gil-Izquierdo A, Cerdá B, et al. A new process to develop a cocoa powder with higher flavonoid monomer content and enhanced bioavailability in healthy humans. J Agric Food Chem. 2007;55:3926–35.

    Article  PubMed  Google Scholar 

  45. Roure E, Lacueva A, Estruch R, Mata M, Izquierdo M, Waterhouse A, et al. Milk does not effect the bioavailability of cocoa powder. Ann Nutr Metab. 2008;51:493–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nàdia Ortega Olivé Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Olivé, N.O., Casado, MJ.M. (2013). Polyphenols in Cocoa: From In Vitro Digestion to In Vivo Bioavailability. In: Watson, R., Preedy, V., Zibadi, S. (eds) Chocolate in Health and Nutrition. Nutrition and Health, vol 7. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-803-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-803-0_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-802-3

  • Online ISBN: 978-1-61779-803-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics