Skip to main content

Nanotoxicology

  • Chapter
  • First Online:
The Handbook of Nanomedicine
  • 2270 Accesses

Abstract

Toxicology is the branch of medicine that deals with the study of the adverse effects of chemicals and biological agents on the human body. It is the study of symptoms, mechanisms, treatments, and detection of poisoning. The broad scope of toxicology covers not only the adverse effects of therapeutics but also environmental agents and poisons. Nanotoxicology covers safety issues relevant to nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bhabra G, Sood A, Fisher B, et al. Nanoparticles can cause DNA damage across a cellular barrier. Nat Nanotech 2009;4:876–83.

    Article  CAS  Google Scholar 

  • Braydich-Stolle L, Hussain S, Schlager J, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germ-line stem cells. Toxicol Sci 2005;88:412–9.

    Article  CAS  Google Scholar 

  • Choi HS, Ashitate Y, Lee JH, et al. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol 2010b;28:1300–3.

    Google Scholar 

  • Chu M, Wu Q, Yang H, et al. Transfer of quantum dots from pregnant mice to pups across the placental barrier. Small 2010;6:670–8.

    Article  CAS  Google Scholar 

  • Currall SC, King EB, Lane N, et al. What drives public acceptance of nanotechnology? Nat Nanotech 2006;1:153–5.

    Article  CAS  Google Scholar 

  • De Jong WH, Hagens WI, Krystek P, et al. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 2008;29:1912–19.

    Article  Google Scholar 

  • Derfus AM, Chan CW, Bhatia SN, et al. Probing the Cytotoxicity of Semiconductor Quantum Dots Nano Letters 2004;4:11–18.

    Article  CAS  Google Scholar 

  • Ge C, Du J, Zhao L, et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci U S A 2011;108:16968–73.

    Article  CAS  Google Scholar 

  • Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 2004;15:897–900.

    Article  CAS  Google Scholar 

  • Kagan VE, Konduru NV, Feng W, et al. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol 2010;5:354–9.

    Article  CAS  Google Scholar 

  • Kattumuri V, Katti K, Bhaskaran S, et al. Gum Arabic as a Phytochemical Construct for the Stabilization of Gold Nanoparticles: In Vivo Pharmacokinetics and X-ray-Contrast-Imaging Studies. Small 2007;3:333–41.

    Article  CAS  Google Scholar 

  • Koziara JM, Oh JJ, Akers WS, Ferraris SP, Mumper RJ. Blood compatibility of cetyl alcohol/polysorbate-based nanoparticles. Pharm Res 2005;22:1821–8.

    Article  CAS  Google Scholar 

  • Li C, Liu H, Sun Y, et al. PAMAM nanoparticles promote acute lung injury by inducing autophagic cell death through the Akt-TSC2-mTOR signaling pathway. J Mol Cell Biol 2009;1:37–45.

    Article  CAS  Google Scholar 

  • Magrez A, Kasas S, Salicio V, et al. Cellular Toxicity of Carbon-Based Nanomaterials. Nano Lett 2006;6:1121–5.

    Article  CAS  Google Scholar 

  • Mecke A, Uppuluri S, Sassanella TM, et al. Direct observation of lipid bilayer disruption by poly(amidoamine) dendrimers. Chem Phys Lipids 2004;132:3–14.

    Article  CAS  Google Scholar 

  • Mills NL, Amin N, Robinson SD, et al. Do Inhaled Carbon Nanoparticles Translocate Directly Into the Circulation in Man? Am J Respir Crit Care Med 2006;173:426–31.

    Article  Google Scholar 

  • Monteiro-Riviere NA, Nemanich RJ, Inman AO, et al. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 2005;155:377–84.

    Article  CAS  Google Scholar 

  • Mortensen LJ, Oberdörster G, Pentland AP, Delouise LA. In Vivo Skin Penetration of Quantum Dot Nanoparticles in the Murine Model: The Effect of UVR. Nano Lett 2008;8:2779–87.

    Article  CAS  Google Scholar 

  • Oberdorster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 2004;112:1058–62.

    Article  CAS  Google Scholar 

  • Oberdorster G, Maynard A, Castranova V, et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle and Fibre Toxicology 2005;2:8

    Article  Google Scholar 

  • Park MV, Lankveld DP, van Loveren H, de Jong WH. The status of in vitro toxicity studies in the risk assessment of nanomaterials. Nanomed 2009;4:669–85.

    Article  CAS  Google Scholar 

  • Peters A, Veronesi B, Calderon-Garciduenas L, et al. Translocation and potential neurological effects of fine and ultrafine particles: A critical update. Particle and Fibre Toxicology 2006;3:13.

    Article  Google Scholar 

  • Powell MC, Kanarek MS. Nanomaterial health effects-Part 2: Uncertainties and recommendations for the future. WMJ 2006;105:18–23.

    Google Scholar 

  • Radomski A, Jurasz P, Alonso-Escolano D, et al. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol 2005;146:882–93.

    Article  CAS  Google Scholar 

  • Renwick LC, Brown D, Clouter A, Donaldson K. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med 2004;61:442–7.

    Article  CAS  Google Scholar 

  • Sayes C, et al. The differential cytotoxicity of water-soluble fullerenes. Nano Lett 2004;4:881–7.

    Article  Google Scholar 

  • Sayes CM, Gobin AM, Ausman KD, et al. Nano-C(60) cytotoxicity is due to lipid peroxidation. Biomaterials 2005;26:7587–95.

    Article  CAS  Google Scholar 

  • Sayes CM, Liang F, Hudson JL, et al. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 2006;161:135–42.

    Article  CAS  Google Scholar 

  • Singh R, Pantarotto D, Lacerda L, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci U S A 2006;103:3357–62.

    Google Scholar 

  • Stampfl A, Maier M, Radykewicz R, et al. Langendorff heart: a model system to study cardiovascular effects of engineered nanoparticles. ACS Nano 2011;5:5345–53.

    Article  CAS  Google Scholar 

  • Thomas K, Aguar P, Kawasaki H, et al. Research Strategies for Safety Evaluation of Nanomaterials, Part VIII: International Efforts to Develop Risk-Based Safety Evaluations for Nanomaterials. Toxicol Sci 2006a;92:23–32.

    Google Scholar 

  • Thomas T, Thomas K, Sadrieh N, et al. Research strategies for safety evaluation of nanomaterials, part VII: evaluating consumer exposure to nanoscale materials. Toxicol Sci 2006;91:14–9.

    Google Scholar 

  • Warheit DB, Laurence BR, Reed KL, et al. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 2004;77:117–25.

    Article  CAS  Google Scholar 

  • Warheit DB, Webb TR, Colvin VL, et al. Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: toxicity is not dependent upon particle size but on surface characteristics. Toxicol Sci 2007;95:270–80.

    Article  CAS  Google Scholar 

  • Wong-Ekkabut J, Baoukina S, Triampo W, et al. Computer simulation study of fullerene translocation through lipid membranes. Nat Nanotechol 2008;3:363–8.

    Article  CAS  Google Scholar 

  • Zhang LW, Monteiro-Riviere NA. Assessment of quantum dot penetration into intact, tape-stripped, abraded and flexed rat skin. Skin Pharmacol Physiol 2008;21:166–80.

    Article  Google Scholar 

  • Zhang LW, Yu WW, Colvin VL, Monteiro-Riviere NA. Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes. Toxicol Appl Pharmacol 2008;228:200–11.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jain, K.K. (2012). Nanotoxicology. In: The Handbook of Nanomedicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-983-9_17

Download citation

Publish with us

Policies and ethics