Skip to main content

Pancreatic Regeneration in the Face of Diabetes

  • Chapter
  • First Online:
Regenerative Medicine and Cell Therapy

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1416 Accesses

Abstract

Diabetes affects millions of people worldwide and the incidence is growing day by day. Hyperglycemia, the main culprit in this disease can be managed through the use of intensive insulin therapy and/or oral hypoglycemic agents. However, the ailment is not cured and leaves the patients dependent on treatment for the rest of their lives. Therefore, maintaining an ideal euglycemic state without external intervention is the much-awaited cure for diabetes. It can be achieved through the replacement of lost β cells with new functional β cells or by inducing beta cell regeneration. This chapter reviews the literature regarding various approaches being used today or those expected to be used for this in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Arx:

Aristaless-related homeobox

BCG:

Bacillus Calmette-Guérin

BMP:

Bone Morphogenetic Protein

CCK:

Cholecystokinin

CFA:

Complete Freund’s Adjuvant

CK:

Cytokeratin

DPP:

Dipeptidyl Peptidase

DPSCs:

Dental Pulp Stem Cells

EGF:

Epidermal Growth Factor

EGFP:

Enhanced Green Fluorescent Protein

ES cells :

Embryonic Stem cells

FGF:

Fibroblast Growth Factor

GABA:

γ-Aminobutyric acid

GFP:

Green Fluorescent Protein

GH:

Growth Hormone

GIP:

Glucose-Dependent Insulinotropic Polypeptide

GLP-1:

Glucagon-Like Peptide-1

GSCs:

Germline Stem Cells

GTC-1 cells:

high GIP-expressing subpopulation of STC-1 cells

HbA1c:

hemoglobin A1c

HDAD:

Helper-Dependent Adenovirus

hES cells:

human Embryonic Stem cells

HGF:

Hepatocyte Growth Factor

hiPS cells:

Human induced Pluripotent Stem cells

HSCT:

Hematopoeitic Stem Cell Transplantation

HSLs:

Hepatic Stem-Like cells

ICA:

Islet-like Cell Aggregate

ICM:

Inner Cell Mass

IEC-6 cells:

Normal rat small intestine-derived immature intestinal stem cells

IPF1:

Insulin Promoter Factor 1

iPS cells:

Induced Pluripotent Stem cells

LIF:

Leukemia Inhibitory Factor

MafA:

V-maf musculoaponeurotic fibrosarcoma oncogene homolog A (avian)

mTert:

Mouse Telomerase reverse transcriptase

NAD:

Nicotinamide Adenine Dinucleotide

NeuroD:

Neurogenic Differentiation

Ngn3:

Neurogenin3

NOD:

Non-Obese Diabetic

PAK:

Pancreas After Kidney

Pax4:

Paired box 4

Pdx1:

Pancreatic and duodenal homeobox 1

PL:

Placental Lactogen

PMPs:

Pancreatic Multipotent Progenitors

PRL:

Prolactin

PTA:

Pancreas Transplant Alone

RA:

Retinoic Acid

SCID:

Severe Combined Immuno Deficiency

SHCs:

Small Hepatocytes

SPK:

Simultaneous Pancreas-Kidney

SSCs:

Spermatogonial Stem Cells

STC-1 cells:

mouse neuroendocrine tumor-derived cells

TGF:

Transforming Growth Factor

TNF:

Tumor Necrosis Factor

UCB:

Umbilical Cord Blood

YFP:

Yellow Fluorescent Protein

References

  1. http://www.who.int/mediacentre/factsheets/fs312/en/index.html

  2. http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0002194/

  3. Ludwig B, Ludwig S, Steffen A, Saeger HD, Bornstein SR (2010) Islet versus pancreas transplantation in type 1 diabetes: competitive or complementary? Curr Diab Rep 10(6):506–511

    Article  PubMed  Google Scholar 

  4. Kelly KD, Lillehei RC, Merkel FK, Idezuki Y, Goetz FC (1967) Allotransplantation of the pancreas and duodenum along with the kidney in diabetic nephropathy. Surgery 61(6):827–837

    PubMed  CAS  Google Scholar 

  5. http://surgery.arizona.edu/unit/center/international-pancreas-transplant-registry

  6. Richter A, Lerner S, Schröppel B (2011) Current state of combined kidney and pancreas transplantation. Blood Purif 31(1–3):96–101

    Article  PubMed  Google Scholar 

  7. Tzakis AG, Ricordi C, Alejandro R, Zeng Y, Fung JJ, Todo S, Demetris AJ, Mintz DH, Starzl TE (1990) Pancreatic islet transplantation after upper abdominal exenteration and liver replacement. Lancet 336(8712):402–405

    Article  PubMed  CAS  Google Scholar 

  8. Brendel M, Hering B, Schulz A, Bretzel R (1999) International islet transplant registry report. University of Giesen, Giesen, pp 1–20

    Google Scholar 

  9. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343(4):230–238

    Article  PubMed  CAS  Google Scholar 

  10. Shapiro AM, Ricordi C, Hering B (2003) Edmonton’s islet success has indeed been replicated elsewhere. Lancet 362(9391):1242

    Article  PubMed  Google Scholar 

  11. Sorenson RL, Brelje TC (1997) Adaptation of islets of langerhans to pregnancy: beta-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res 29(6):301–307

    Article  PubMed  CAS  Google Scholar 

  12. Parsons JA, Brelje TC, Sorenson RL (1992) Adaptation of islets of Langerhans to pregnancy: increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion. Endocrinology 130(3):1459–1466

    Article  PubMed  CAS  Google Scholar 

  13. Rieck S, White P, Schug J, Fox AJ, Smirnova O, Gao N, Gupta RK, Wang ZV, Scherer PE, Keller MP, Attie AD, Kaestner KH (2009) The transcriptional response of the islet to pregnancy in mice. Mol Endocrinol 23(10):1702–1712

    Article  PubMed  CAS  Google Scholar 

  14. Parsons JA, Bartke A, Sorenson RL (1995) Number and size of islets of Langerhans in pregnant, human growth hormone-expressing transgenic, and pituitary dwarf mice: effect of lactogenic hormones. Endocrinology 136(5):2013–2021

    Article  PubMed  CAS  Google Scholar 

  15. Scaglia L, Smith FE, Bonner-Weir S (1995) Apoptosis contributes to the involution of beta cell mass in the post partum rat pancreas. Endocrinology 136(12):5461–5468

    Article  PubMed  CAS  Google Scholar 

  16. Catalano PM, Tyzbir ED, Roman NM, Amini SB, Sims EA (1991) Longitudinal changes in insulin release and insulin resistance in non-obese pregnant women. Am J Obstet Gynecol 165(6 Pt 1):1667–1672

    PubMed  CAS  Google Scholar 

  17. Homko C, Sivan E, Chen X, Reece EA, Boden G (2001) Insulin secretion during and after pregnancy in patients with gestational diabetes mellitus. J Clin Endocrinol Metab 86(2):568–573

    Article  PubMed  CAS  Google Scholar 

  18. Van Assche FA, Aerts L, De Prins F (1978) A morphological study of the endocrine pancreas in human pregnancy. Br J Obstet Gynaecol 85(11):818–820

    Article  PubMed  Google Scholar 

  19. Butler AE, Cao-Minh L, Galasso R, Rizza RA, Corradin A, Cobelli C, Butler PC (2010) Adaptive changes in pancreatic beta cell fractional area and beta cell turnover in human pregnancy. Diabetologia 53(10):2167–2176

    Article  PubMed  CAS  Google Scholar 

  20. Kim C, Newton KM, Knopp RH (2002) Gestational diabetes and the incidence of type 2 diabetes: a systematic review. Diabetes Care 25(10):1862–1868

    Article  PubMed  Google Scholar 

  21. Baiu D, Merriam F, Odorico J (2011) Potential pathways to restore β-cell mass: pluripotent stem cells, reprogramming, and endogenous regeneration. Curr Diab Rep 11(5):392–401

    Article  PubMed  Google Scholar 

  22. Pan FC, Wright C (2011) Pancreas organogenesis: from bud to plexus to gland. Dev Dyn 240(3):530–565

    Article  PubMed  CAS  Google Scholar 

  23. Bonner-Weir S, Baxter LA, Schuppin GT, Smith FE (1993) A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes 42(12):1715–1720

    Article  PubMed  CAS  Google Scholar 

  24. Page BJ, Du Toit DF, Muller CJ, Mattysen J, Lyners R (2000) An immuno-cytochemical profile of the endocrine pancreas using an occlusive duct ligation model. JOP 1(4):191–203

    PubMed  CAS  Google Scholar 

  25. Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429(6987):41–46

    Article  PubMed  CAS  Google Scholar 

  26. Teta M, Rankin MM, Long SY, Stein GM, Kushner JA (2007) Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell 12(5):817–826

    Article  PubMed  CAS  Google Scholar 

  27. Inada A, Nienaber C, Katsuta H, Fujitani Y, Levine J, Morita R, Sharma A, Bonner-Weir S (2008) Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci U S A 105(50):19915–19919

    Article  PubMed  CAS  Google Scholar 

  28. Xu X, D’Hoker J, Stange G, Bonne S, De Leu N, Xiao X, Van de Casteele M, Mellitzer G, Ling Z, Pipeleers D, Bouwens L, Scharfmann R, Gradwohl G, Heimberg H (2008) Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132(2):197–207

    Article  PubMed  CAS  Google Scholar 

  29. Lee CS, Leon DD, Kaestner KH, Stoffers DA (2006) Regeneration of pancreatic islets after partial pancreatectomy in mice does not involve the reactivation of neurogenin-3. Diabetes 55(2):269–272

    PubMed  CAS  Google Scholar 

  30. Solar M, Cardalda C, Houbracken I, Martin M, Maestro MA, De Medts N, Xu X, Grau V, Heimberg H, Bouwens L, Ferrer J (2009) Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev Cell 17(6):849–860

    Article  PubMed  CAS  Google Scholar 

  31. Kopp JL, Dubois CL, Schaffer AE, Hao E, Shih HP, Seymour PA, Ma J, Sander M (2011) Sox9 + ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development 138(4):653–665

    Article  PubMed  CAS  Google Scholar 

  32. Nir T, Melton DA, Dor Y (2007) Recovery from diabetes in mice by beta cell regeneration. J Clin Invest 117(9):2553–2561

    Article  PubMed  CAS  Google Scholar 

  33. Thorel F, Nepote V, Avril I, Kohno K, Desgraz R, Chera S, Herrera PL (2010) Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 464(7292):1149–1154

    Article  PubMed  CAS  Google Scholar 

  34. Cnop M, Igoillo-Esteve M, Hughes SJ, Walker JN, Cnop I, Clark A (2011) Longevity of human islet α- and β-cells. Diabetes Obes Metab 13(Suppl. 1):39–46

    Article  PubMed  CAS  Google Scholar 

  35. Perl S, Kushner JA, Buchholz BA, Meeker AK, Stein GM, Hsieh M, Kirby M, Pechhold S, Liu EH, Harlan DM, Tisdale JF (2010) Significant human beta-cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating. J Clin Endocrinol Metab 95(10):234–239

    Article  CAS  Google Scholar 

  36. Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC (2005) Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 48(11):2221–2228

    Article  PubMed  CAS  Google Scholar 

  37. Lavine JA, Attie AD (2010) Gastrointestinal hormones and the regulation of β-cell mass. Ann NY Acad Sci 1212(1):41–58

    Article  PubMed  CAS  Google Scholar 

  38. Perfetti R, Zhou J, Doyle ME, Egan JM (2000) Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology 141(12):4600–4605

    Article  PubMed  CAS  Google Scholar 

  39. Zhang J, Tokui Y, Yamagata K, Kozawa J, Sayama K, Iwahashi H, Okita K, Miuchi M, Konya H, Hamaguchi T, Namba M, Shimomura I, Miyagawa JI (2007) Continuous stimulation of human glucagon-like peptide-1 (7–36) amide in a mouse model (NOD) delays onset of autoimmune type 1 diabetes. Diabetologia 50(9):1900–1909

    Article  PubMed  CAS  Google Scholar 

  40. Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368(9548):1696–1705

    Article  PubMed  CAS  Google Scholar 

  41. Wang Q, Brubaker PL (2002) Glucagon-like peptide-1 treatment delays the onset of diabetes in 8 week-old db/db mice. Diabetologia 45(9):1263–1273

    Article  PubMed  CAS  Google Scholar 

  42. Green BD, Lavery KS, Irwin N, O’Harte FP, Harriott P, Greer B, Bailey CJ, Flatt PR (2006) Novel glucagon-like peptide-1 (GLP-1) analog (Val8)GLP-1 results in significant improvements of glucose tolerance and pancreatic beta-cell function after 3 week daily administration in obese diabetic (ob/ob) mice. J Pharmacol Exp Ther 318(2):914–921

    Article  PubMed  CAS  Google Scholar 

  43. Mu J, Petrov A, Eiermann GJ, Woods J, Zhou YP, Li Z, Zycband E, Feng Y, Zhu L, Roy RS, Howard AD, Li C, Thornberry NA, Zhang BB (2009) Inhibition of DPP-4 with sitagliptin improves glycemic control and restores islet cell mass and function in a rodent model of type 2 diabetes. Eur J Pharmacol 623(1–3):148–154

    Article  PubMed  CAS  Google Scholar 

  44. Zhou J, Pineyro MA, Wang X, Doyle ME, Egan JM (2002) Exendin-4 differentiation of a human pancreatic duct cell line into endocrine cells: involvement of PDX-1 and HNF3beta transcription factors. J Cell Physiol 192(3):304–314

    Article  PubMed  CAS  Google Scholar 

  45. Zhou J, Wang X, Pineyro MA, Egan JM (1999) Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42 J cells into glucagon- and insulin-producing cells. Diabetes 48(12):2358–2366

    Article  PubMed  CAS  Google Scholar 

  46. Gallwitz B (2011) GLP-1 agonists and dipeptidyl-peptidase IV inhibitors. Handb Exp Pharmacol 203:53–74

    Article  PubMed  CAS  Google Scholar 

  47. Herbach N, Goeke B, Schneider M, Hermanns W, Wolf E, Wanke R (2005) Overexpression of a dominant negative GIP receptor in transgenic mice results in disturbed postnatal pancreatic islet and beta-cell development. Regul Pept 125(1–3):103–117

    Article  PubMed  CAS  Google Scholar 

  48. Marenah L, McCluskey JT, Abdel-Wahab YH, O’Harte FP, McClenaghan NH, Flatt PR (2006) A stable analogue of glucose-dependent insulinotropic polypeptide, GIP (LysPAL16), enhances functional differentiation of mouse embryonic stem cells into cells expressing islet-specific genes and hormones. Biol Chem 387(7):941–947

    Article  PubMed  CAS  Google Scholar 

  49. Irwin N, Clarke GC, Green BD, Greer B, Harriott P, Gault VA, O’Harte FP, Flatt PR (2006) Evaluation of the antidiabetic activity of DPP IV resistant N-terminally modified versus mid-chain acylated analogues of glucose-dependent insulinotropic polypeptide. Biochem Pharmacol 72(6):719–728

    Article  PubMed  CAS  Google Scholar 

  50. Kuntz E, Pinget M, Damge P (2004) Cholecystokinin octapeptide: a potential growth factor for pancreatic beta cells in diabetic rats. JOP 5(6):464–475

    PubMed  Google Scholar 

  51. Lavine JA, Raess PW, Stapleton DS, Rabaglia ME, Suhonen JI, Schueler KL, Koltes JE, Dawson JA, Yandell BS, Samuelson LC, Beinfeld MC, Davis DB, Hellerstein MK, Keller MP, Attie AD (2010) Cholecystokinin is up-regulated in obese mouse islets and expands beta-cell mass by increasing beta-cell survival. Endocrinology 151(8):3577–3588

    Article  PubMed  CAS  Google Scholar 

  52. Ahren B, Holst JJ, Efendic S (2000) Antidiabetogenic action of cholecystokinin-8 in type 2 diabetes. J Clin Endocrinol Metab 85(3):1043–1048

    Article  PubMed  CAS  Google Scholar 

  53. Rooman I, Lardon J, Bouwens L (2002) Gastrin stimulates beta-cell neogenesis and increases islet mass from transdifferentiated but not from normal exocrine pancreas tissue. DiabetesDiabetes 51(3):686–690

    Article  CAS  Google Scholar 

  54. Wang TC, Bonner-Weir S, Oates PS, Chulak M, Simon B, Merlino GT, Schmidt EV, Brand SJ (1993) Pancreatic gastrin stimulates islet differentiation of transforming growth factor alpha-induced ductular precursor cells. J Clin Invest 92(3):1349–1356

    Article  PubMed  CAS  Google Scholar 

  55. Rooman I, Bouwens L (2004) Combined gastrin and epidermal growth factor treatment induces islet regeneration and restores normoglycaemia in C57Bl6/J mice treated with alloxan. Diabetologia 47(2):259–265

    Article  PubMed  CAS  Google Scholar 

  56. Brand SJ, Tagerud S, Lambert P, Magil SG, Tatarkiewicz K, Doiron K, Yan Y (2002) Pharmacological treatment of chronic diabetes by stimulating pancreatic beta-cell regeneration with systemic co-administration of EGF and gastrin. Pharmacol Toxicol 91(6):414–420

    Article  PubMed  CAS  Google Scholar 

  57. Massague J, Chen YG (2000) Controlling TGF-beta signaling. Genes Dev 14(6):627–644

    PubMed  CAS  Google Scholar 

  58. Kim SK, Hebrook M, Li E, Oh SP, Schrewe H, Harmon EB, Lee JS, Melton DA (2000) Activin receptor patterning of foregut organogenesis. Genes Dev 14(15):1866–1871

    PubMed  CAS  Google Scholar 

  59. Furukawa M, Eto Y, Kojima I (1995) Expression of immunoreactive activin A in fetal rat pancreas. Endocr J 42(1):63–68

    Article  PubMed  CAS  Google Scholar 

  60. Shiozaki S, Tajima T, Zhang YQ, Furukawa M, Nakazato Y, Kojima I (1999) Impaired differentiation of endocrine and exocrine cells of the pancreas in transgenic mouse expressing the truncated type II activin receptor. Biochim Biophys Acta 1450(1):1–11

    Article  PubMed  CAS  Google Scholar 

  61. Zhang YQ, Zhang H, Maeshima A, Kurihara H, Miyagawa J, Takeuchi T, Kojima I (2002) Up-regulation of the expression of activins in the pancreatic duct by reduction of the β cell mass. Endocrinology 143(9):3540–3547

    Article  PubMed  CAS  Google Scholar 

  62. Moriya N, Komazaki S, Takahashi S, Yokota C, Asashima M (2000) In vitro pancreas formation from Xenopus ectoderm treated with activin and retinoic acid. Dev Growth Differ 42(6):593–602

    Article  PubMed  CAS  Google Scholar 

  63. Shing Y, Christofori G, Hanahan D, Ono Y, Sasada R, Igarashi K, Folkman J (1993) Betacellulin: a mitogen from pancreatic β-cell tumors. Science 259(5101):1604–1607

    Article  PubMed  CAS  Google Scholar 

  64. Mashima H, Ohnishi H, Wakabayashi K, Mine T, Miyagawa J, Hanafusa T, Seno M, Yamada H, Kojima I (1996) Betacellulin and activin A coordinately convert amylase-secreting pancreatic AR42 J cells into insulin-secreting cells. J Clin Invest 97(7):1647–1654

    Article  PubMed  CAS  Google Scholar 

  65. Li L, Seno M, Yamada H, Kojima I (2001) Promotion of β-cell regeneration by betacellulin in ninety percent pancreatectomized rats. Endocrinology 142(12):5379–5385

    Article  PubMed  CAS  Google Scholar 

  66. Li L, Yi Z, Seno M, Kojima I (2004) Activin A and betacellulin. Effect of regeneration of pancreatic β cells in neonatal streptozotocin treated rats. Diabetes 53(3):608–615

    Article  PubMed  CAS  Google Scholar 

  67. Umezawa K, Hiroki A, Kawakami M, Naka H, Takei I, Ogata T, Kojima I, Koyano T, Kowithayakorn T, Pang HS, Kam TS (2003) Induction of insulin production in rat pancreatic acinar carcinoma cells by conophylline. Biomed Pharmacother 57(8):341–350

    Article  PubMed  CAS  Google Scholar 

  68. Ogata T, Li L, Yamada S, Yamamoto Y, Tanaka Y, Takei I, Umezawa K, Kojima I (2004) Promotion of β-cell differentiation by conophylline in fetal and neonatal rat pancreas. Diabetes 53(10):2596–2602

    Article  PubMed  CAS  Google Scholar 

  69. Kojima I, Umezawa K (2006) Conophylline: a novel differentiation inducer for pancreatic beta cells. Int J Biochem Cell Biol 38(5–6):923–930

    Article  PubMed  CAS  Google Scholar 

  70. Vasavada RC, Gonzalez-Pertusa JA, Fujinaka Y, Fiaschi-Taesch N, Cozar-Castellano I, Garcia-Ocaña A (2006) Growth factors and beta cell replication. Int J Biochem Cell Biol 38(5–6):931–950

    Article  PubMed  CAS  Google Scholar 

  71. Tsuda H, Iwase T, Matsumoto K, Ito M, Hirono I, Nishida Y, Yamamoto M, Tatematsu M, Matsumoto K, Nakamura T (1992) Immunohistochemical localization of hepatocyte growth factor protein in pancreas islet A-cells of man and rats. Jpn J Cancer Res 83(12):1262–1266

    Article  PubMed  CAS  Google Scholar 

  72. Otonkoski T, Cirulli V, Beattie M, Mally MI, Soto G, Rubin JS, Hayek A (1996) A role for hepatocyte growth factor/scatter factor in fetal mesenchyme-induced pancreatic beta-cell growth. Endocrinology 137(7):3131–3139

    Article  PubMed  CAS  Google Scholar 

  73. Bulotta A, Di Cesare E, Ponte E, Falchi M, Sciacchitano S, Cucinotta D, Taruscio D, Di Mario U, Anastasi E (2001) Increased c-met expression during ductal beta cell neogenesis in experimental autoimmune diabetes. Growth Factors 19(4):259–267

    Article  PubMed  CAS  Google Scholar 

  74. Garcia-Ocana A, Takane KK, Syed MA, Philbrick WM, Vasavada RC, Stewart AF (2000) Hepatocyte growth factor overexpression in the islet of transgenic mice increases beta cell proliferation, enhances islet mass, and induces mild hypoglycemia. J Biol Chem 275(2):1226–1232

    Article  PubMed  CAS  Google Scholar 

  75. Dai C, Li Y, Yang J, Liu Y (2003) Hepatocyte growth factor preserves beta cell mass and mitigates hyperglycemia in streptozotocin-induced diabetic mice. J Biol Chem 278(29):27080–27087

    Article  PubMed  CAS  Google Scholar 

  76. Lopez-Talavera JC, Garcia-Ocana A, Sipula I, Takane KK, Cozar-Castellano I, Stewart AF (2004) Hepatocyte growth factor gene therapy for pancreatic islets in diabetes: reducing the minimal islet transplant mass required in a glucocorticoid-free rat model of allogeneic portal vein islet transplantation. Endocrinology 145(2):467–474

    Article  PubMed  CAS  Google Scholar 

  77. Sorenson RL, Brelje TC (1997) Adaptation of islets of Langerhans to pregnancy: beta-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res 29(6):301–307

    Article  PubMed  CAS  Google Scholar 

  78. Brelje TC, Sorenson RL (1991) Role of prolactin versus growth hormone on islet β-cell proliferation in vitro: implications for pregnancy. Endocrinology 128(1):45–57

    Article  PubMed  CAS  Google Scholar 

  79. Brelje TC, Scharp DW, Lacy PE, Ogren L, Talamantes F, Robertson M, Friesen HG, Sorenson RL (1993) Effect of homologous placental lactogens, prolactins, and growth hormones on islet β-cell division and insulin secretion in rat, mouse, and human islets: implication for placental lactogen regulation of islet function during pregnancy. Endocrinology 132(2):879–887

    Article  PubMed  CAS  Google Scholar 

  80. Vasavada RC, Garcia-Ocana A, Zawalich WS, Sorenson RL, Dann P, Syed M, Ogren L, Talamantes F, Stewart AF (2000) Targeted expression of placental lactogen in the beta cells of transgenic mice results in beta cell proliferation, islet mass augmentation, and hypoglycemia. J Biol Chem 275(20):15399–15406

    Article  PubMed  CAS  Google Scholar 

  81. Freemark M, Avril I, Fleenor D, Driscoll P, Petro A, Opara E, Kendall W, Oden J, Bridges S, Binart N, Breant B, Kelly PA (2002) Targeted deletion of the PRL receptor: effects on islet development, insulin production, and glucose tolerance. Endocrinology 143(4):1378–1385

    Article  PubMed  CAS  Google Scholar 

  82. Liu JL, Coschigano KT, Robertson K, Lipsett M, Guo Y, Kopchick JJ, Kumar U, Liu YL (2004) Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice. Am J Physiol Endocrinol Metab 287(3):405–413

    Article  Google Scholar 

  83. Yamada K, Nonaka K, Hanafusa T, Miyazaki A, Toyoshima H, Tarui S (1982) Preventive and therapeutic effects of large-dose nicotinamide injections on diabetes associated with insulitis. DiabetesDiabetes 31(9):749–753

    Article  CAS  Google Scholar 

  84. Shima K, Zhu M, Kuwajima M (1998) A role of nicotinamide-induced increase in pancreatic beta-cell mass on blood glucose control after discontinuation of the treatment in partially pancreatectomized OLETF rats. DiabetesDiabetes Res Clin Pract 41(1):1–8

    Article  CAS  Google Scholar 

  85. Otonkoski T, Beattie GM, Mally MI, Ricordi C, Hayek A (1993) Nicotinamide is a potent inducer of endocrine differentiation in cultured human fetal pancreatic cells. J Clin Invest 92(3):1459–1466

    Article  PubMed  CAS  Google Scholar 

  86. Vague P, Picq R, Bernal M, Lassmann-Vague V, Vialettes B (1989) Effect of nicotinamide treatment on the residual insulin secretion in type 1 (insulin-dependent) diabetic patients. Diabetologia 32(5):316–321

    Article  PubMed  CAS  Google Scholar 

  87. Mendola G, Casamitjana R, Gomis R (1989) Effect of nicotinamide therapy upon β-cell function in newly diagnosed type 1 (insulin-dependent) diabetic patients. Diabetologia 32(3):160–162

    Article  PubMed  CAS  Google Scholar 

  88. Lewis CM, Canafax DM, Sprafka JM, Barbosa JJ (1992) Double-blind randomized trial of nicotinamide on early-onset diabetes. DiabetesDiabetes Care 15(1):121–123

    Article  CAS  Google Scholar 

  89. Elliott RB, Chase HP (1991) Prevention or delay of type 1 (insulin-dependent) diabetes mellitus in children using nicotinamide. Diabetologia 34(5):362–365

    Article  PubMed  CAS  Google Scholar 

  90. Yoshino J, Mills KF, Yoon MJ, Imai S (2011) Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab 14(4):528–536

    Article  PubMed  CAS  Google Scholar 

  91. Couri CE, Foss MC, Voltarelli JC (2006) Secondary prevention of type 1 diabetes mellitus: stopping immune destruction and promoting beta-cell regeneration. Braz J Med Biol Res 39(10):1271–1280

    Article  PubMed  CAS  Google Scholar 

  92. Kodama S, Kühtreiber W, Fujimura S, Dale EA, Faustman DL (2003) Islet regeneration during the reversal of autoimmune diabetes in NOD mice. Science 302(5648):1223–1227

    Article  PubMed  CAS  Google Scholar 

  93. Chong AS, Shen J, Tao J, Yin D, Kuznetsov A, Hara M, Philipson LH (2006) Reversal of diabetes in non-obese diabetic mice without spleen cell-derived beta-cell regeneration. Science 311(5768):1774–1775

    Article  PubMed  CAS  Google Scholar 

  94. Dahlquist G, Gothefors L (1996) The cumulative incidence of childhood diabetes mellitus in Sweden unaffected by BCG-vaccination. Diabetologia 38(7):500–502

    Google Scholar 

  95. Allen HF, Klingensmith GJ, Jensen P, Simoes E, Hayward A, Chase HP (1999) Effect of Bacillus Calmette-Guerin vaccination on new-onset type 1 diabetes. DiabetesDiabetes Care 22(10):1703–1707

    Article  CAS  Google Scholar 

  96. Huppmann M, Baumgarten A, Ziegler AG, Bonifacio E (2005) Neonatal Bacille Calmette-Guerin vaccination and type 1 diabetes. DiabetesDiabetes Care 28(5):1204–1206

    Article  Google Scholar 

  97. Shehadeh N, Calcinaro F, Bradley BJ, Bruchim I, Vardi P, Lafferty KJ (1994) Effect of adjuvant therapy on development of diabetes in mouse and man. Lancet 343(8899):706–707

    Article  PubMed  CAS  Google Scholar 

  98. http://www.faustmanlab.org/

  99. Burt RK, Slavin S, Burns WH, Marmont AM (2002) Induction of tolerance in autoimmune diseases by hematopoietic stem cell transplantation: getting closer to a cure? Blood 99(3):768–784

    Article  PubMed  CAS  Google Scholar 

  100. Butler AE, Huang A, Rao PN, Bhushan A, Hogan WJ, Rizza RA, Butler PC (2007) Hematopoietic stem cells derived from adult donors are not a source of pancreatic-cells in adult non-diabetic humans. DiabetesDiabetes 56(7):1810–1816

    Article  CAS  Google Scholar 

  101. Kang EM, Zickler MM, Burns S, Langemeijer SM, Brenner S, Phang OA, Patterson N, Harlan D, Tisdale JF (2005) Hematopoietic stem cell transplantation prevents diabetes in NOD mice but does not contribute to significant islet cell regeneration once disease is established. Exp Hematol 33(6):699–705

    Article  PubMed  CAS  Google Scholar 

  102. Voltarelli JC, Couri CEB, Stracieri AB, Oliveira MC, Moraes DA, Pieroni F, Coutinho M, Malmegrim KC, Foss-Freitas MC, Simões BP, Foss MC, Squiers E, Burt RK (2007) Autologous non-myeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 297(14):1568–1576

    Article  PubMed  CAS  Google Scholar 

  103. Couri CE, Voltarelli JC (2008) Potential role of stem cell therapy in type 1 diabetes mellitus. Arq Bras Endocrinol Metabol 52(2):407–415

    Article  PubMed  Google Scholar 

  104. Ende N, Chen R, Reddi AS (2004) Effect of human umbilical cord blood cells on glycemia and insulitis in type 1 diabetic mice. Biochem Biophys Res Commun 325(3):665–669

    Article  PubMed  CAS  Google Scholar 

  105. Ende N, Chen R, Reddi AS (2004) Transplantation of human umbilical cord blood cells improves glycemia and glomerular hypertrophy in type 2 diabetic mice. Biochem Biophys Res Commun 321(1):168–171

    Article  PubMed  CAS  Google Scholar 

  106. Haller MJ, Viener H, Brusko T, Wasserfall C, Mcgrail K, Staba S, Cogle C, Atkinson M, Schatz DA, Gainesville FL (2007) Insulin requeirements, HbA1c, and stimulated C-peptide following autologous umbilical cord blood transfusion in children with T1D. American Diabetes Association 67th Scientific sessions. American Diabetes Association Publisher, Chicago, A82 p

    Google Scholar 

  107. Tillakaratne NJ, Medina-Kauwe L, Gibson KM (1995) Gamma-Aminobutyric acid (GABA) metabolism in mammalian neural and nonneural tissues. Comp Biochem Physiol A Physiol 112(2):247–263

    Article  PubMed  CAS  Google Scholar 

  108. Soltani N, Qiu H, Aleksic M, Glinka Y, Zhao F, Liu R, Li Y, Zhang N, Chakrabarti R, Ng T, Jin T, Zhang H, Lu W, Feng Z, Prud’homme GJ, Wang Q (2011) GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. Proc Natl Acad Sci U S A 108(28):11692–11697

    Article  PubMed  CAS  Google Scholar 

  109. Meier JJ, Butler AE, Saisho Y, Monchamp T, Galasso R, Bhushan A, Rizza RA, Butler PC (2008) Beta cell replication is the primary mechanism subserving the postnatal expansion of beta cell mass in humans. Diabetes 57(6):1584–1594

    Article  PubMed  CAS  Google Scholar 

  110. Beattie GM, Itkin-Ansari P, Cirulli V, Leibowitz G, Lopez AD, Bossie S, Mally MI, Levine F, Hayek A (1999) Sustained proliferation of PDX-1 positive cells derived from human islets. Diabetes 48(5):1013–1019

    Article  PubMed  CAS  Google Scholar 

  111. Ouziel-Yahalom L, Zalzman M, Anker-Kitai L, Knoller S, Bar Y, Glandt M, Herold K, Efrat S (2006) Expansion and redifferentiation of adult human pancreatic islet cells. Biochem Biophys Res Commun 341(2):291–298

    Article  PubMed  CAS  Google Scholar 

  112. Weinberg N, Ouziel-Yahalom L, Knoller S, Efrat S, Dor Y (2007) Lineage tracing evidence for in vitro dedifferentiation but rare proliferation of mouse pancreatic beta-cells. Diabetes 56(5):1299–1304

    Article  PubMed  CAS  Google Scholar 

  113. Parnaud G, Bosco D, Berney T, Pattou F, Kerr-Conte J, Donath MY, Bruun C, Mandrup-Poulsen T, Billestrup N, Halban PA (2008) Proliferation of sorted human and rat beta cells. Diabetologia 51(1):91–100

    Article  PubMed  CAS  Google Scholar 

  114. Russ HA, Bar Y, Ravassard P, Efrat S (2008) In vitro proliferation of cells derived from adult human beta cells revealed by cell-lineage tracing. Diabetes 57(6):1575–1583

    Article  PubMed  CAS  Google Scholar 

  115. Raff M (2003) Adult stem cell plasticity: fact or artifact? Annu Rev Cell Dev Biol 19:1–22

    Article  PubMed  CAS  Google Scholar 

  116. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  PubMed  CAS  Google Scholar 

  117. Nostro MC, Sarangi F, Ogawa S, Holtzinger A, Corneo B, Li X, Micallef SJ, Park IH, Basford C, Wheeler MB, Daley GQ, Elefanty AG, Stanley EG, Keller G (2011) Stage-specific signaling through TGFβ family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 138(5):861–871

    Article  PubMed  CAS  Google Scholar 

  118. D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24(11):1392–1401

    Article  PubMed  CAS  Google Scholar 

  119. Baiu D, Merriam F, Odorico J (2011) Potential pathways to restore β-cell mass: pluripotent stem cells, reprogramming, and endogenous regeneration. Curr Diab Rep 11(5):392–401

    Article  PubMed  Google Scholar 

  120. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D’Amour KA, Carpenter MK, Baetge EE (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26(4):443–452

    Article  PubMed  CAS  Google Scholar 

  121. Matveyenko AV, Georgia S, Bhushan A, Butler PC (2010) Inconsistent formation and nonfunction of insulin-positive cells from pancreatic endoderm derived from human embryonic stem cells in athymic nude rats. Am J Physiol Endocrinol Metab 299(5):713–720

    Article  CAS  Google Scholar 

  122. Mao GH, Chen GA, Bai H, Song T, Wang Y (2009) The reversal of hyperglycaemia in diabetic mice using PLGA scaffolds seeded with islet-like cells derived from human embryonic stem cells. Biomaterials 30(9):1706–1714

    Article  PubMed  CAS  Google Scholar 

  123. Ramiya VK, Maraist M, Arfors KE, Schatz DA, Peck AB, Cornelius JG (2000) Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med 6(3):278–282

    Article  PubMed  CAS  Google Scholar 

  124. Bonner-Weir S, Taneja M, Weir GC, Tatarkiewicz K, Song KH, Sharma A, O’Neil JJ (2000) In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci U S A 97(14):7999–8004

    Article  PubMed  CAS  Google Scholar 

  125. Yamamoto T, Yamato E, Taniguchi H, Shimoda M, Tashiro F, Hosoi M, Sato T, Fujii S, Miyazaki JI (2006) Stimulation of cAMP signalling allows isolation of clonal pancreatic precursor cells from adult mouse pancreas. Diabetologia 49(10):2359–2367

    Article  PubMed  CAS  Google Scholar 

  126. Noguchi H, Oishi K, Ueda M, Yukawa H, Hayashi S, Kobayashi N, Levy MF, Matusmoto S (2009) Establishment of mouse pancreatic stem cell line. Cell Transplant 18(5):563–571

    PubMed  Google Scholar 

  127. Noguchi H, Naziruddin B, Jackson A, Shimoda M, Ikemoto T, Fujita Y, Chujo D, Takita M, Kobayashi N, Onaca N, Hayashi S, Levy MF, Matsumoto S (2010) Characterization of human pancreatic progenitor cells. Cell Transplant 19(6):879–886

    Article  PubMed  Google Scholar 

  128. Strojnik T, Røsland GV, Sakariassen PO, Kavalar R, Lah T (2007) Neural stem cell markers, nestin and musashi proteins, in the progression of human glioma: correlation of nestin with prognosis of patient survival. Surg Neurol 68(2):133–144

    Article  PubMed  Google Scholar 

  129. Zulewski H, Abraham EJ, Gerlach MJ, Daniel PB, Moritz W, Müller B, Vallejo M, Thomas MK, Habener JF (2001) Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50(3):521–533

    Article  PubMed  CAS  Google Scholar 

  130. Bonner-Weir S, Sharma A (2002) Pancreatic stem cells. J Pathol 197(4):519–526

    Article  PubMed  Google Scholar 

  131. Petropavlovskaia M, Rosenberg L (2002) Identification and characterization of small cells in the adult pancreas: potential progenitor cells? Cell Tissue Res 310(1):51–58

    Article  PubMed  Google Scholar 

  132. Yang L, Li S, Hatch H, Ahrens K, Cornelius JG, Petersen BE, Peck AB (2002) In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc Natl Acad Sci U S A 99(12):8078–8083

    Article  PubMed  CAS  Google Scholar 

  133. Seaberg RM, Smukler SR, Kieffer TJ, Enikolopov G, Asghar Z, Wheeler MB, Korbutt G, van der Kooy D (2004) Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol 22(9):1115–1124

    Article  PubMed  CAS  Google Scholar 

  134. Breault DT, Min IM, Carlone DL, Farilla LG, Ambruzs DM, Henderson DE, Algra S, Montgomery RK, Wagers AJ, Hole N (2008) Generation of mTert-GFP mice as a model to identify and study tissue progenitor cells. Proc Natl Acad Sci U S A 105(30):10420–10425

    Article  PubMed  CAS  Google Scholar 

  135. Aguayo-Mazzucato C, Bonner-Weir S (2010) Stem cell therapy for type 1 diabetes mellitus. Nat Rev Endocrinol 6(3):139–148

    Article  PubMed  Google Scholar 

  136. Yang LJ (2006) Liver stem cell-derived beta-cell surrogates for treatment of type 1 diabetes. Autoimmun Rev 5(6):409–413

    Article  PubMed  CAS  Google Scholar 

  137. Rao MS, Dwivedi RS, Yeldandi AV, Subbarao V, Tan X, Usman MI, Thangada S, Nemali MR, Kumar S, Scarpelli DG, Reddy JK (1989) Role of periductal and ductular epithelial cells of the adult rat pancreas in pancreatic hepatocyte lineage. A change in the differentiation commitment. Am J Pathol 134(5):1069–1086

    PubMed  CAS  Google Scholar 

  138. Terada T, Nakanuma Y (1993) An immunohistochemical survey of amylase isoenzymes in chalangiocarcinoma and hepatocellular carcinoma. Arch Pathol Lab Med 117(2):160–162

    PubMed  CAS  Google Scholar 

  139. Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CV (2002) The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 32(1):128–134

    Article  PubMed  CAS  Google Scholar 

  140. Yamada S, Terada K, Ueno Y, Sugiyama T, Seno M, Kojima I (2005) Differentiation of adult hepatic stem-like cells into pancreatic endocrine cells. Cell Transplant 14(9):647–653

    Article  PubMed  Google Scholar 

  141. Nakajima-Nagata N, Sakurai T, Mitaka T, Katakai T, Yamato E, Miyazaki J, Tabata Y, Sugai M, Shimizu A (2004) In vitro induction of adult hepatic progenitor cells into insulin-producing cells. Biochem Biophys Res Commun 318(3):625–630

    Article  PubMed  CAS  Google Scholar 

  142. Suzuki A, Nakauchi H, Taniguchi H (2003) Glucagon-like peptide 1 (1–37) converts intestinal epithelial cells into insulin-producing cells. Proc Natl Acad Sci U S A 100(9):5034–5039

    Article  PubMed  CAS  Google Scholar 

  143. Ianus A, Holz GG, Theise ND, Hussain MA (2003) In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111(6):843–850

    PubMed  CAS  Google Scholar 

  144. Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B, Thyssen S, Gray DA, Bhatia M (2003) Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 21(7):763–770

    Article  PubMed  CAS  Google Scholar 

  145. Choi JB, Uchino H, Azuma K, Iwashita N, Tanaka Y, Mochizuki H, Migita M, Shimada T, Kawamori R, Watada H (2003) Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells. Diabetologia 46(10):1366–1374

    Article  PubMed  CAS  Google Scholar 

  146. Lechner A, Yang YG, Blacken RA, Wang L, Nolan AL, Habener JF (2004) No evidence for significant transdifferentiation of bone marrow into pancreatic β cells in vivo. Diabetes 53(3):616–623

    Article  PubMed  CAS  Google Scholar 

  147. Oh SH, Muzzonigro TM, Bae SH, LaPlante JM, Hatch HM, Petersen BE (2004) Adult bone marrow-derived cells transdifferentiating into insulin-producing cells for the treatment of type I diabetes. Lab Invest 84:607–617

    Article  PubMed  CAS  Google Scholar 

  148. Suchánek J, Soukup T, Ivancaková R, Karbanová J, Hubková V, Pytlík R, Kucerová L (2007) Human dental pulp stem cells–isolation and long-term cultivation. Acta Medica (Hradec Kralove) 50(3):195–201

    Google Scholar 

  149. Govindasamy V, Ronald VS, Abdullah AN, Nathan KR, Ab Aziz ZA, Abdullah M, Musa S, Kasim NH, Bhonde RR (2011) Differentiation of dental pulp stem cells into islet-like aggregates. J Dent Res 90(5):646–652

    Article  PubMed  CAS  Google Scholar 

  150. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W, Hasenfuss G (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440(7088):1199–1203

    Article  PubMed  CAS  Google Scholar 

  151. Mardanpour P, Guan K, Nolte J, Lee JH, Hasenfuss G, Engel W, Nayernia K (2008) Potency of germ cells and its relevance for regenerative medicine. J Anat 213(1):26–29

    Article  PubMed  Google Scholar 

  152. Saraswathula, A., Yamaguchi, S., Zakaria, A., Gallicano, G.I (2010) Functional, insulin-secreting pancreatic endoderm derived from human spermatogonial stem cells. Presented Sunday 12 Dec 2010 at the American Society for Cell Biology 50th Annual Meeting, Philadelphia. Abstract ID# 703/B1113

    Google Scholar 

  153. Jonsson J, Carlsson L, Edlund T, Edlund H (1994) Insulin-promoter-factor-1 is required for pancreas development in mice. Nature 371(6498):606–609

    Article  PubMed  CAS  Google Scholar 

  154. Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, Hogan BL, Wright CV (1996) PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122(3):983–995

    PubMed  CAS  Google Scholar 

  155. Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I, Barshack I, Seijffers R, Kopolovic J, Kaiser N, Karasik A (2000) Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptzotocin-induced hyperglycemia. Nat Med 6(5):568–572

    Article  PubMed  CAS  Google Scholar 

  156. Cao LZ, Tang DQ, Horb ME, Li SW, Yang LJ (2004) High glucose is necessary for complete maturation of Pdx1-VP16-expressing hepatic cells into functional insulin-producing cells. Diabetes 53(12):3168–3178

    Article  PubMed  CAS  Google Scholar 

  157. Kojima H, Fujimiya M, Matsumura K, Younan P, Imaeda H, Maeda M, Chan L (2003) NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nat Med 9(5):596–603

    Article  PubMed  CAS  Google Scholar 

  158. Kaneto H, Nakatani Y, Miyatsuka T, Matsuoka TA, Matsuhisa M, Hori M, Yamasaki Y (2005) PDX-1/VP16 fusion protein, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes 54(4):1009–1022

    Article  PubMed  CAS  Google Scholar 

  159. Sapir T, Shternhall K, Meivar-Levy I, Blumenfeld T, Cohen H, Skutelsky E, Eventov-Friedman S, Barshack I, Goldberg I, Pri-Chen S, Ben-Dor L, Polak-Charcon S, Karasik A, Shimon I, Mor E, Ferber S (2005) Cell-replacement therapy for diabetes: generating functional insulin-producing tissue from adult human liver cells. Proc Natl Acad Sci U S A 102(22):7964–7969

    Article  PubMed  CAS  Google Scholar 

  160. Cairnie AB, Lamerton LF, Steel GG (1965) Cell proliferation studies in the intestinal epithelium of the rat. II. Theoretical aspects. Exp Cell Res 39(2–3):539–553

    Article  PubMed  CAS  Google Scholar 

  161. Kojima H, Nakamura T, Fujita Y, Kishi A, Fujimiya M, Yamada S, Kudo M, Nishio Y, Maegawa H, Haneda M, Yasuda H, Kojima I, Seno M, Wong NC, Kikkawa R, Kashiwagi A (2002) Combined expression of pancreatic duodenal homeobox 1 and islet factor 1 induces immature enterocytes to produce insulin. Diabetes 51(5):1398–1408

    Article  PubMed  CAS  Google Scholar 

  162. Yoshida S, Kajimoto Y, Yasuda T, Watada H, Fujitani Y, Kosaka H, Gotow T, Miyatsuka T, Umayahara Y, Yamasaki Y, Hori M (2002) PDX-1 induces differentiation of intestinal epithelioid IEC-6 into insulin producing cells. Diabetes 51(8):2505–2513

    Article  PubMed  CAS  Google Scholar 

  163. Tudurí E, Kieffer TJ (2011) Reprogramming gut and pancreas endocrine cells to treat diabetes. Diabetes Obes Metab 13(Suppl 1):53–59

    Article  PubMed  Google Scholar 

  164. Cheung AT, Dayanandan B, Lewis JT, Korbutt GS, Rajotte RV, Bryer-Ash M, Boylan MO, Wolfe MM, Kieffer TJ (2000) Glucose-dependent insulin release from genetically engineered K cells. Science 290(5498):1959–1962

    Article  PubMed  CAS  Google Scholar 

  165. Han J, Lee HH, Kwon H, Shin S, Yoon JW, Jun HS (2007) Engineered enteroendocrine cells secrete insulin in response to glucose and reverse hyperglycemia in diabetic mice. Mol Ther 15(6):1195–1202

    PubMed  CAS  Google Scholar 

  166. Unniappan S, Wideman RD, Donald C, Gunn V, Wall JL, Zhang QX, Webber TD, Cheung AT, Kieffer TJ (2009) Treatment of diabetes by transplantation of drug-inducible insulin-producing gut cells. J Mol Med 87(7):703–712

    Article  PubMed  CAS  Google Scholar 

  167. Baeyens L, De Breuck S, Lardon J, Mfopou JK, Rooman I, Bouwens L (2005) In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia 48(1):49–57

    Article  PubMed  CAS  Google Scholar 

  168. Minami K, Okuno M, Miyawaki K, Okumachi A, Ishizaki K, Oyama K, Kawaguchi M, Ishizuka N, Iwanaga T, Seino S (2005) Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells. Proc Natl Acad Sci U S A 102(42):15116–15121

    Article  PubMed  CAS  Google Scholar 

  169. Kopinke D, Murtaugh LC (2010) Exocrine-to-endocrine differentiation is detectable only prior to birth in the uninjured mouse pancreas. BMC Dev Biol 10:38

    Article  PubMed  CAS  Google Scholar 

  170. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455(7213):627–632

    Article  PubMed  CAS  Google Scholar 

  171. Chung CH, Levine F (2010) Adult pancreatic alpha-cells: a new source of cells for beta-cell regeneration. Rev Diabet Stud 7(2):124–131

    Article  PubMed  Google Scholar 

  172. Collombat P, Mansouri A, Hecksher-Sorensen J, Serup P, Krull J, Gradwohl G, Gruss P (2003) Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev 17(20):2591–2603

    Article  PubMed  CAS  Google Scholar 

  173. Collombat P, Hecksher-Sørensen J, Broccoli V, Krull J, Ponte I, Mundiger T, Smith J, Gruss P, Serup P, Mansouri A (2005) The simultaneous loss of Arx and Pax4 genes promotes a somatostatin-producing cell fate specification at the expense of the alpha- and beta-cell lineages in the mouse endocrine pancreas. Development 132(13):2969–2980

    Article  PubMed  CAS  Google Scholar 

  174. Collombat P, Hecksher-Sørensen J, Krull J, Berger J, Riedel D, Herrera PL, Serup P, Mansouri A (2007) Embryonic endocrine pancreas and mature beta cells acquire alpha and PP cell phenotypes upon Arx misexpression. J Clin Invest 117(4):961–970

    Article  PubMed  CAS  Google Scholar 

  175. Collombat P, Xu X, Ravassard P, Sosa-Pineda B, Dussaud S, Billestrup N, Madsen OD, Serup P, Heimberg H, Mansouri A (2009) The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell 138(3):449–462

    Article  PubMed  CAS  Google Scholar 

  176. Ekser, B., Ezzelarab, M., Hara, H., van der Windt, D.J., Wijkstrom, M., Bottino, R., Trucco, M., Cooper, D.K.: Clinical xenotransplantation: the next medical revolution? Lancet [Epub ahead of print] Doi:10.106/S0140-6736(11)61090-X (2011)

    Google Scholar 

  177. Cardona K, Korbutt GS, Milas Z, Lyon J, Cano J, Jiang W, Bello-Laborn H, Hacquoil B, Strobert E, Gangappa S, Weber CJ, Pearson TC, Rajotte RV, Larsen CP (2006) Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways. Nat Med 12(3):304–306

    Article  PubMed  CAS  Google Scholar 

  178. Hering BJ, Wijkstrom M, Graham ML, Hårdstedt M, Aasheim TC, Jie T, Ansite JD, Nakano M, Cheng J, Li W, Moran K, Christians U, Finnegan C, Mills CD, Sutherland DE, Bansal-Pakala P, Murtaugh MP, Kirchhof N, Schuurman HJ (2006) Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates. Nat Med 12(3):301–303

    Article  PubMed  CAS  Google Scholar 

  179. Dufrane D, Goebbels RM, Gianello P (2010) Alginate macroencapsulation of pig islets allows correction of streptozotocin-induced diabetes in primates up to 6 months without immunosuppression. Transplantation 90(10):1054–1062

    Article  PubMed  Google Scholar 

  180. van der Windt DJ, Bottino R, Casu A, Campanile N, Smetanka C, He J, Murase N, Hara H, Ball S, Loveland BE, Ayares D, Lakkis FG, Cooper DK, Trucco M (2009) Long-term controlled normoglycemia in diabetic non-human primates after transplantation with hCD46 transgenic porcine islets. Am J Transplant 9(12):2716–2726

    Article  PubMed  CAS  Google Scholar 

  181. Elliott RB, Escobar L, Tan PL, Muzina M, Zwain S, Buchanan C (2007) Live encapsulated porcine islets from a type 1 diabetic patient 9.5 year after xenotransplantation. Xenotransplantation 14(2):157–161

    Article  PubMed  Google Scholar 

  182. Hering BJ, Cooper DKC, Cozzi E, Schuurman HJ, Korbutt GS, Denner J, O’Connell PJ, Vanderpool HY, Pierson RN 3rd (2009) The international xenotransplantation association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes—executive summary. Xenotransplantation 16(4):196–202

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author is supported by the Max-Planck Society, the Dr. H. Storz and Alte Leipziger foundation, the Juvenile Diabetes Research Foundation, the Bundesministerium für Bildung und Forschung (BMBF: 01KU0906), and the NIH Beta Cell Biology Consortium (DK 072495).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeeshan Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ahmad, Z. (2013). Pancreatic Regeneration in the Face of Diabetes . In: Baharvand, H., Aghdami, N. (eds) Regenerative Medicine and Cell Therapy. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-098-4_9

Download citation

Publish with us

Policies and ethics