Skip to main content

Environmental and Occupational Causes of Asthma

  • Chapter
  • First Online:
A Clinical Guide to Occupational and Environmental Lung Diseases

Part of the book series: Respiratory Medicine ((RM))

  • 1462 Accesses

Abstract

Airborne allergens are one of the major causes of asthma. People living in urban areas more frequently experience allergic respiratory symptoms than those living in rural areas. Seasonal exposure to outdoor allergens, (pollens, and molds) is an important cause. Identification and reduction of exposure to allergens is a very important part of the management of respiratory allergic diseases. Indoor humidity and water damage are important factors in the production of mite and mold allergens, and discarded human food items are important sources of proliferation of cockroaches and mice.

The particular plants or molds and the amount of exposure to these allergens are determined by the local climate, and published local pollen and mold counts are available to determine the time and amount of exposure. One of several causes of the rise in morbidity associated with allergic respiratory diseases is the increased presence of outdoor air pollutants resulting from more intense energy consumption and exhaust emissions from cars and other vehicles. Urban air pollution is now a serious public health hazard. The most abundant components of urban air pollution in urban areas with high levels of vehicle traffic are airborne particulate matter, nitrogen dioxide, and ozone. In addition, the earth’s temperature is increasing, mainly as a result of factors like fossil fuel combustion and greenhouse gas emissions from energy supply, transport, industry, and agriculture, and climate change alters the concentration and distribution of air pollutants and interferes with the seasonal presence of allergenic pollens.

Occupational asthma is the most common occupational respiratory disorder in industrialized countries and more than 250 agents have been reported to cause occupational asthma. The most frequent are diisocyanates, flour and grain dust, airborne particles from other foods (especially fish), colophony and fluxes, latex, animals (especially laboratory animals), aldehydes, and wood dust. For physicians caring for adult patients with asthma, an understanding of the contribution of occupational exposure to the pathogenesis of the disease is important. Prevention of new cases is the best approach to reducing the burden of asthma attributable to occupational exposures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nelson HS. Advances in upper airway diseases and allergen immunotherapy. J Allergy Clin Immunol. 2007;119:872–80.

    Article  PubMed  CAS  Google Scholar 

  2. Laumbach RJ. Outdoor air pollutants and patient health. Am Fam Physician. 2010;81:175–80.

    PubMed  Google Scholar 

  3. Baxi SN, Phipatanakul W. The role of allergen exposure and avoidance in asthma. Adolesc Med State Art Rev. 2010;21:57–71.

    PubMed  Google Scholar 

  4. Peden D, Reed CE. Environmental and occupational allergies. J Allergy Clin Immunol. 2010;125:S150–60.

    Article  PubMed  Google Scholar 

  5. D’Amato G, Liccardi G, D’Amato M, Cazzola M. The role of outdoor air pollution and climatic changes on the rising trends in respiratory allergy. Respir Med. 2001;95:606–11.

    Article  PubMed  Google Scholar 

  6. Gielen MH, van der Zee SC, van Eijenen JH, van Steen CJ, Brunekreef B. Acute effects of summer air pollution on respiratory health of asthmatic children. Am J Respir Crit Care Med. 1997;155:2105–8.

    PubMed  CAS  Google Scholar 

  7. Riedler J, Eder W, Oberfeld G, Schrener M. Austrian children living on a farm have less hay fever, asthma and allergic sensitization. Clin Exp Allergy. 2000;30:194–200.

    Article  PubMed  CAS  Google Scholar 

  8. Andersen ZJ, Loft S, Ketzel M, Stage M, Scheike T, Hermansen MN, et al. Ambient air pollution triggers wheezing symptoms in infants. Thorax. 2008;63:710–6.

    Article  PubMed  CAS  Google Scholar 

  9. Leikauf GD, Kline S, Albert RE, Baxter CS, Bernstein DI, Buncher CR. Evaluation of a possible association of urban air toxics and asthma. Environ Health Perspect. 1995;103:253–71.

    PubMed  CAS  Google Scholar 

  10. Corradi M, Alinovi R, Goldoni M, Vettori M, Folesani G, Mozzoni P, et al. Biomarkers of oxidative stress after controlled human exposure to ozone. Toxicol Lett. 2002;134:219–25.

    Article  PubMed  CAS  Google Scholar 

  11. Schwartz J. Air pollution and hospital admissions for heart disease in eight U.S. counties. Epidemiology. 1999;10:17–22.

    Article  PubMed  CAS  Google Scholar 

  12. Kulkarni N, Pierse N, Rushton L, Grigg J. Carbon in airway macrophages and lung function in children. N Engl J Med. 2006;355:21–30.

    Article  PubMed  CAS  Google Scholar 

  13. U.S. Environmental Protection Agency. Air quality criteria for ozone and related photochemical oxidants (2006 final). http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=149923. Accessed July 25, 2011.

  14. Sunyer J, Basagana X, Belmonte J, Anto JM. Effect of nitrogen dioxide and ozone on the risk of dying in patients with severe asthma. Thorax. 2002;57:687–93.

    Article  PubMed  CAS  Google Scholar 

  15. Gent JF, Triche EW, Holford TR, Belanger K, Bracken MB, Beckett WS, et al. Association of low-level ozone and fine particles with respiratory symptoms in children with asthma. JAMA. 2003;290:1859–67.

    Article  PubMed  CAS  Google Scholar 

  16. White MC, Etzel RA, Wilcox WD, Lloyd C. Exacerbations of childhood asthma and ozone pollution in Atlanta. Environ Res. 1994;65:56–68.

    Article  PubMed  CAS  Google Scholar 

  17. Churg A, Brauer M. Human lung parenchyma retains PM2.5. Am J Respir Crit Care Med. 1997;155:2109–11.

    PubMed  CAS  Google Scholar 

  18. Brain JD, Valberg PA. Deposition of aerosol in the respiratory tract. Am Rev Respir Dis. 1979;120:1325–73.

    PubMed  CAS  Google Scholar 

  19. Katsouyanni K, Touloumi G, Spix C. Short-term effects of ambient sulphur dioxide and particulate matter on mortality in 12 European cities: results from times series data from the APHEA project. BMJ. 1997;314:1658–63.

    Article  PubMed  CAS  Google Scholar 

  20. Brunekreef B, Forsberg B. Epidemiological evidence of effects of coarse airborne particles on health. Eur Respir J. 2005;26:309–18.

    Article  PubMed  CAS  Google Scholar 

  21. Trasande L, Thurston GD. The role of air pollution in asthma and other pediatric morbidities. J Allergy Clin Immunol. 2005;115:689–99.

    Article  PubMed  CAS  Google Scholar 

  22. Brunekreef B, Hoek G, Fischer P, Spieksma FTHM. Relation between airborne pollen concentrations and daily cardiovascular and respiratory-disease mortality. Lancet. 2000;355:1517–8.

    Article  PubMed  CAS  Google Scholar 

  23. Horstman D, Roger LJ, Kehrl H, Hazucha MJ. Airway sensitivity of asthmatics to sulfur dioxide. Toxicol Ind Health. 1986;2:289–98.

    PubMed  CAS  Google Scholar 

  24. Balmes JR, Fine JM, Sheppard D. Symptomatic bronchoconstriction after short-term inhalation of sulfur dioxide. Am Rev Respir Dis. 1987;136:1117–21.

    Article  PubMed  CAS  Google Scholar 

  25. Koenig JQ. Air pollution and asthma. J Allergy Clin Immunol. 1999;104:717–22.

    Article  PubMed  CAS  Google Scholar 

  26. Health effects of outdoor air pollution. Committee of the Environmental and Occupational Health Assembly of the American Thoracic Society. Am J Respir Crit Care Med. 1996;153:3–50.

    Google Scholar 

  27. Wang JH, Devalia JL, Duddle JM, Hamilton SA, Davies RJ. Effect of six-hour exposure to nitrogen dioxide on early-phase nasal response to allergen challenge in patients with a history of seasonal allergic rhinitis. J Allergy Clin Immunol. 1995;96:669–76.

    Article  PubMed  CAS  Google Scholar 

  28. Peters A, Dockery DW, Heinrich J, Wichmann HE. Short-term effects of particulate air pollution on respiratory morbidity in asthmatic children. Eur Respir J. 1997;10:872–9.

    PubMed  CAS  Google Scholar 

  29. Breysse PN, Buckley TJ, Williams D, Beck CM, Jo SJ, Merriman B, et al. Indoor exposures to air pollutants and allergens in the homes of asthmatic children in inner-city Baltimore. Environ Res. 2005;98:167–76.

    Article  PubMed  CAS  Google Scholar 

  30. Curtin-Brosnan J, Matsui EC, Breysse P, McCormack MC, Hansel NN, Tonorezos ES, et al. Parent report of pests and pets and indoor allergen levels in inner-city homes. Ann Allergy Asthma Immunol. 2008;101:517–23.

    Article  PubMed  Google Scholar 

  31. Matsui EC, Eggleston PA, Buckley TJ, Krishnan JA, Breysse PN, Rand CS, et al. Household mouse allergen exposure and asthma morbidity in inner-city preschool children. Ann Allergy Asthma Immunol. 2006;97:514–20.

    Article  PubMed  Google Scholar 

  32. Matsui EC, Wood RA, Rand C, Kanchanaraksa S, Swartz L, Eggleston PA. Mouse allergen exposure and mouse skin test sensitivity in suburban, middle-class children with asthma. J Allergy Clin Immunol. 2004;113:910–5.

    Article  PubMed  Google Scholar 

  33. Donohue KM, Al-alem U, Perzanowski MS, Chew GL, Johnson A, Divjan A, et al. Anticockroach and antimouse IgE are associated with early wheeze and atopy in an inner-city birth cohort. J Allergy Clin Immunol. 2008;122:914–20.

    Article  PubMed  CAS  Google Scholar 

  34. Cohn RD, Arbes Jr SJ, Yin M, Jaramillo R, Zeldin DC. National prevalence and exposure risk for cockroach allergen in US households. Eviron Health Perspect. 2006;114:522–6.

    Article  Google Scholar 

  35. Gruchalla RS, Pongracic J, Plaut M, Evans 3rd R, Visness CM, Walter M, et al. Inner city asthma study: relationships among sensitivity, allergen exposure, and asthma morbidity. J Allergy Clin Immunol. 2005;115:476–85.

    Article  Google Scholar 

  36. Wang J, Visness CM, Calatroni A, Gergen PJ, Mitchell HE, Sampson HA. Effect of environmental allergen sensitization on asthma morbidity in inner-city asthmatic children. Clin Exp Allergy. 2009;39:1381–9.

    Article  PubMed  CAS  Google Scholar 

  37. Bollinger MA, Eggleston PA, Flanagan E, Wood RA. Cat antigen in homes with and without cats may induce allergic symptoms. J Allergy Clin Immunol. 1996;97:907–14.

    Article  PubMed  CAS  Google Scholar 

  38. Almqvist C, Larsson PH, Egmar AC, Hedrén M, Malmberg P, Wickman M. School as a risk environment for children allergic to cats and a site for transfer of cat allergen to homes. J Allergy Clin Immunol. 1999;103:1012–7.

    Article  PubMed  CAS  Google Scholar 

  39. Lewis SA, Weiss ST, Platts-Mills TA, Burge H, Gold DR. The role of indoor allergen sensitization and exposure in causing morbidity in women with asthma. Am J Respir Crit Care Med. 2002;165:961–6.

    PubMed  Google Scholar 

  40. Wood RA, Charpman MD, Adkinson Jr NF, Eggleston PA. The effect of cat removal on allergen content in household-dust samples. J Allergy Clin Immunol. 1989;83:730–4.

    Article  PubMed  CAS  Google Scholar 

  41. Matsui EC, Hansel NN, McCormack MC, Rusher R, Breysse PN, Diette GB. Asthma in the inner city and the indoor environment. Immunol Allergy Clin North Am. 2008;28:665–86.

    Article  PubMed  Google Scholar 

  42. Diette GB, McCormack MC, Hansel NN, Breysse PN, Matsui EC. Environmental issues in managing asthma. Respir Care. 2008;53:602–15.

    PubMed  Google Scholar 

  43. Sporik R, Holgate ST, Platts-Mills TA, Cogswell JJ. Exposure to house-dust mite allergen (Der p I) and the development of asthma in childhood: a prospective study. N Engl J Med. 1990;323:502–7.

    Article  PubMed  CAS  Google Scholar 

  44. Institute of Medicine Committee on the Assessment of Asthma and Indoor Air. Clearing the air: asthma and indoor air exposures. Washington, DC: National Academy Press; 2000.

    Google Scholar 

  45. Pulimood TB, Corden JM, Bryden C, Sharples L, Nasser SM. Epidemic asthma and the role of the fungal mold Alternaria alternata. J Allergy Clin Immunol. 2007;120:610–7.

    Article  PubMed  Google Scholar 

  46. Ohman Jr JL, Hagberg K, MacDonald MR, Jones Jr RR, Paigen BJ, Kacergis JB. Distribution of airborne mouse allergen in a major mouse breeding facility. J Allergy Clin Immunol. 1994;94:810–7.

    Article  PubMed  Google Scholar 

  47. Riedl MA, Nel AE. Importance of oxidative stress in the pathogenesis and treatment of asthma. Curr Opin Allergy Clin Immunol. 2008;8:49–56.

    Article  PubMed  CAS  Google Scholar 

  48. Kattan M, Gergen PJ, Eggleston P, Visness CM, Mitchell HE. Health effects of indoor nitrogen dioxide and passive smoking on urban asthmatic children. J Allergy Clin Immunol. 2007;120:618–24.

    Article  PubMed  CAS  Google Scholar 

  49. Frampton MW, Smeglin AM, Roberts Jr NJ, Finkelstein JN, Morrow PE, Utell MJ. Nitrogen dioxide exposure in vivo and human alveolar macrophage inactivation of influenza virus in vitro. Environ Res. 1989;48:179–92.

    Article  PubMed  CAS  Google Scholar 

  50. Chauhan AJ, Inskip HM, Linaker CH, Smith S, Schreiber J, Johnston SL, et al. Personal exposure to nitrogen dioxide (NO2) and the severity of virus-induced asthma in children. Lancet. 2003;361:1939–44.

    Article  PubMed  CAS  Google Scholar 

  51. Feleszko W, Zawadzka-Krajewska A, Matysiak K, Lewandowska D, Peradzyńska J, Dinh QT, et al. Parental tobacco smoking is associated with augmented IL-13 secretion in children with allergic asthma. J Allergy Clin Immunol. 2006;117:97–102.

    Article  PubMed  CAS  Google Scholar 

  52. Lannero E, WIckerman M, Pershagen G, Nordvall L. Maternal smoking during pregnancy increases the risk of recurrent wheezing during the first years of life (BAMSE). Respir Res. 2006;7:3.

    Article  PubMed  Google Scholar 

  53. Cohen RT, Raby BA, Van Steen K, Fuhlbrigge AL, Celedón JC, Rosner BA, et al. In utero smoke exposure and impaired response to inhaled corticosteroids in children with asthma. J Allergy Clin Immunol. 2010;126:491–7.

    Article  PubMed  CAS  Google Scholar 

  54. U.S. Department of Health and Human Services. The health consequences of involuntary exposure to tobacco smoke: a report of the surgeon General. Atlanta GA: Office on Smoking and Health; 2006.

    Google Scholar 

  55. Kim JJ. American Academy of Pediatrics Committee on Environmental Health. Ambient air pollution: health hazards to children. Pediatrics. 2004;114:1699–707.

    Article  PubMed  Google Scholar 

  56. McCormack MC, Breysse PN, Hansel NN, Matsui EC, Tonorezos ES, Curtin-Brosnan J, et al. Common household activities are associated with elevated particulate matter concentrations in bedrooms of inner-city Baltimore preschool children. Environ Res. 2008;106:148–55.

    Article  PubMed  CAS  Google Scholar 

  57. Weinmayr G, Romeo E, De Sario M, Weiland SK, Forastiere F. Short-term effects of PM10 and NO2 on respiratory health among children with asthma or asthma-like symptoms: a systematic review and meta-analysis. Environ Health Perspect. 2010;118:449–57.

    Article  PubMed  CAS  Google Scholar 

  58. Sublett JL, Seltzer J, Burkhead R, Williams PB, Wedner HJ, Phipatanakul W, et al. Air filters and air cleaners: rostrum by the American Academy of Allergy, Asthma and Immunology Indoor Allergen Committee. J Allergy Clin Immunol. 2010;125:32–8.

    Article  PubMed  Google Scholar 

  59. Tarlo SM, Balmes J, Balkisssoon R, et al. ACCP Consensus Statement: diagnosis and management of work-related asthma. Chest. 2008;134:1S–41.

    Article  PubMed  CAS  Google Scholar 

  60. Torén K, Blanc PD. Asthma caused by occupational exposure is common-a systematic analysis of estimates of the population-attributable fraction. BMC Pulm Med. 2009;9:7.

    Article  PubMed  Google Scholar 

  61. Kogevinas M, Zock JP, Jarvis D, Kromhout H, Lillienberg L, Plana E, et al. Exposure to substances in the workplace and new-onset asthma: an international prospective population-based study (ECRHS-II). Lancet. 2007;370:336–41.

    Article  PubMed  CAS  Google Scholar 

  62. Henneberger PK, Mirabelli MC, Kogevinas M, Antó JM, Plana E, Dahlman-Höglund A, et al. The occupational contribution to severe exacerbation of asthma. Eur Respir J. 2010;36:743–50.

    Article  PubMed  CAS  Google Scholar 

  63. Malo JL, Chan-Yeung M. Agents causing occupational asthma. J Allergy Clin Immunol. 2009;123:545–50.

    Article  PubMed  CAS  Google Scholar 

  64. Dykewicz MS. Occupational asthma: current concepts in pathogenesis, diagnosis, and management. J Allergy Clin Immunol. 2009;123:519–28.

    Article  PubMed  Google Scholar 

  65. Anto JM, Sunyer J, Rodriguez-Roisin R, Suarez-Cervera M, Vazquez L. Community outbreaks of asthma associated with inhalation of soybean dust. N Engl J Med. 1989;320:1097–102.

    Article  PubMed  CAS  Google Scholar 

  66. Sandiford CP, Tee RD, Newman-Taylor AJ. Identification of cross reacting wheat, rye, barley and soya flour allergens using sera from individuals with wheat-induced asthma. Clin Exp Allergy. 1995;25:340–9.

    Article  PubMed  CAS  Google Scholar 

  67. Gautrin D, Ghezzo H, Infante-Rivard C, Malo J-L. Incidence and determinants of IgE-mediated sensitization in apprentices: a prospective study. Am J Respir Crit Care Med. 2000;162:1222–8.

    PubMed  CAS  Google Scholar 

  68. Gautrin D, Ghezzo H, Infante-Rivard C, Magnan M, L’archevêque J, Suarthana E, et al. Long-term outcomes in a prospective cohort of apprentices exposed to highmolecular-weight agents. Am J Respir Crit Care Med. 2008;177:871–9.

    Article  PubMed  Google Scholar 

  69. Walls AF, Newman Taylor AJ, Longbottom JL. Allergy toguinea-pigs: I. Allergenic activities of extracts derived from the pelt, saliva, urine and other sources. Clin Allergy. 1985;15(3):241–51.

    Article  PubMed  CAS  Google Scholar 

  70. Gordon S, Tee RD, Taylor AJ. Analysis of rat urine proteins and allergens by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and immunoblotting. J Allergy Clin Immunol. 1993;92:298–305.

    Article  PubMed  CAS  Google Scholar 

  71. Piipari R, Keskinen H. Agents causing occupational asthma in Finland in 1986–2002: cow epithelium bypassed by moulds from moisture-damaged buildings. Clin Exp Allergy. 2005;35:1632–7.

    Article  PubMed  CAS  Google Scholar 

  72. Jeebhay MF, Robins TG, Lopata AL. World at work: fish processing workers. Occup Environ Med. 2004;61:471–4.

    Article  PubMed  CAS  Google Scholar 

  73. Howse D, Gautrin D, Neis B, Cartier A, Horth-Susin L, Jong M, et al. Gender and snow crab occupational asthma in Newfoundland and Labrador, Canada. Environ Res. 2006;101:163–74.

    Article  PubMed  CAS  Google Scholar 

  74. Rodríguez J, Reaño M, Vives R, Canto G, Daroca P, Crespo JF, et al. Occupational asthma caused by fish inhalation. Allergy. 1997;52:866–9.

    Article  PubMed  Google Scholar 

  75. Vandenplas O, Delwiche JP, Evrard G, Aimont P, van der Brempt X, Jamart J, et al. Prevalence of occupational asthma due to latex among hospital personnel. Am J Respir Crit Care Med. 1995;151:54–60.

    PubMed  CAS  Google Scholar 

  76. Hoffmann-Sommergruber K. Plant allergens and pathogenesis-related proteins. What do they have in common? Int Arch Allergy Immunol. 2000;122:155–66.

    Article  PubMed  CAS  Google Scholar 

  77. Monso E. Occupational asthma in greenhouse workers. Curr Opin Pulm Med. 2004;10:147–50.

    Article  PubMed  Google Scholar 

  78. Donham KJ, Leistikow B, Merchant J, Leonard S. Assessment of US poultry worker respiratory risks. Am J Ind Med. 1990;17:73–4.

    PubMed  CAS  Google Scholar 

  79. Patterson R, Zeiss CR, Pruzansky JJ. Immunology and immunopathology of trimellitic anhydride pulmonary reactions. J Allergy Clin Immunol. 1982;70:19–23.

    Article  PubMed  CAS  Google Scholar 

  80. Pepys J. Occupational allergy due to platinum complex salts. Clin Immunol Allergy. 1984;4:131–58.

    Google Scholar 

  81. Brooks SM, Baker DB, Gann PH, Jarabek AM, Hertzberg V, Gallagher J, et al. Cold air challenge and platinum skin reactivity in platinum refinery workers. Chest. 1990;97:1401–7.

    Article  PubMed  CAS  Google Scholar 

  82. Merget R, Caspari C, Dierkes-Globisch A, Kulzer R, Breitstadt R, Kniffka A, et al. Effectiveness of a medical surveillance program for the prevention of occupational asthma caused by platinum salts: a nested case–control study. J Allergy Clin Immunol. 2001;107:707–12.

    Article  PubMed  CAS  Google Scholar 

  83. Butcher BT, Jones RN, O’Neil CE, Glindmeyer HW, Diem JE, Dharmarajan V, et al. Longitudinal study of workers employed in the manufacture of toluene-diisocyanate. Am Rev Respir Dis. 1977;116:411–21.

    PubMed  CAS  Google Scholar 

  84. Tarlo SM, Liss GM. Prevention of occupational asthma: practical implications for occupational physicians. Occup Med (Lond). 2005;55:588–94.

    Article  Google Scholar 

  85. Karol MH, Tollerud DJ, Campbell TP, Fabbri L, Maestrelli P, Saetta M, et al. Predictive value of airways hyperresponsiveness and circulating IgE for identifying types of responses to toluene diisocyanate inhalation challenge. Am J Respir Crit Care Med. 1994;149:611–5.

    PubMed  CAS  Google Scholar 

  86. Butcher BT, O’Neil CE, Reed MA, Salvaggio JE. Radioallergosorbent testing of toluene diisocyanate–reactive individuals using p-tolyl isocyanate antigen. J Allergy Clin Immunol. 1980;66:213–6.

    Article  PubMed  CAS  Google Scholar 

  87. Medina-Ramón M, Zock JP, Kogevinas M, Sunyer J, Torralba Y, Borrell A, et al. Asthma, chronic bronchitis, and exposure to irritant agents in occupational domestic cleaning: a nested case–control study. Occup Environ Med. 2005;62:598–606.

    Article  PubMed  Google Scholar 

  88. Chan-Yeung M, MacLean L, Paggiaro PL. Follow-up study of 232 patients with occupational asthma caused by western red cedar (Thuja plicata). J Allergy Clin Immunol. 1987;79:792–6.

    Article  PubMed  CAS  Google Scholar 

  89. Frew A, Chan H, Dryden P, Salari H, Lam S, Chan-Yeung M. Immunologic studies of the mechanisms of occupational asthma caused by western red cedar. J Allergy Clin Immunol. 1993;92:466–78.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan M. Tarlo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ribeiro, M., Tarlo, S.M. (2012). Environmental and Occupational Causes of Asthma. In: Huang, YC., Ghio, A., Maier, L. (eds) A Clinical Guide to Occupational and Environmental Lung Diseases. Respiratory Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-149-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-149-3_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-148-6

  • Online ISBN: 978-1-62703-149-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics