Skip to main content

Spinal Cord Repair by Means of Tissue Engineered Scaffolds

  • Chapter
  • First Online:
Emerging Trends in Cell and Gene Therapy

Abstract

Spinal cord injury (SCI) leads to devastating and permanent loss of ­neurological function, affecting all levels below the site of trauma. The injured adult spinal cord has little self-regenerative capacity due to multifactorial reasons. Tissue engineered scaffolds have emerged as a promising approach to promote regeneration of the damaged spinal cord by providing guidance to the regrowing axons. Integration of different therapeutic strategies with scaffolds has achieved substantial reestablishment of functional neural connectivity, with some strategies now being considered for clinical trials. This chapter presents a comprehensive discussion on the development of scaffold-based strategies currently under investigation for spinal cord tissue regeneration. First is a discussion of spinal cord structure, the pathophysiology of spinal cord injury, and various SCI animal models for experimental studies. Second is a detailed literature review and discussion of scaffold biomaterials and widely used techniques for scaffold fabrication in the context of SCI repair. This chapter then examines various therapeutic strategies currently used to repair SCI, including cell therapy, extracellular matrix protein/peptide modification, gene therapy, and molecular therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BDNF:

Brain-derived neurotrophic factor

ChABC:

Chondroitinase ABC

CNS:

Central nervous system

CSPGs:

Chondroitin sulfate proteoglycans

DRG:

Dorsal root ganglia

ECM:

Extracellular matrix

GDNF:

Glial cell line-derived neurotrophic factor

HA:

Hyaluronic acid or hyaluronan

IKVAV:

Ile-Lys-Val-Ala-Val

MAG:

Myelin-associated glycoprotein

NT-3:

Neurotrophin-3

OMgp:

Oligodendrocyte myelin glycoprotein

OPF:

Oligo(polyethylene glycol) fumarate

PAN/PVC:

Polyacrylonitrile/polyvinylchloride

PCL:

Polycaprolactone

PEG:

Polyethylene glycol

PHB:

Poly-β-hydroxybutyrate

PHEMA:

Poly(2-hydroxyethyl methacrylate)

PHEMA-MMA:

Poly(2-hydroxyethyl methacrylate-co-methyl methacrylate)

PHPMA:

PolyN-(2-hydroxypropyl) methacrylamide

PLA:

Poly(d,l-lactic acid)

PLGA:

Poly(d,l-lactic-co-glycolic acid)

RAD:

Arginine–alanine–aspartate

RGD:

Arg-Gly-Asp

SCI:

Spinal cord injury

SEM:

Scanning electron microscopy

SIS:

Small intestinal submucosa

TrkC:

Tyrosine receptor kinase C

VEGF:

Vascular endothelial growth factor

YIGSR:

Tyr-Ile-Gly-Ser-Arg

References

  1. National Spinal Cord Injury Statistical Center (NSCIS) (2011) Spinal cord injury facts and figures at a glance, February 2011. Available at https://www.nscisc.uab.edu/public_content/pdf/Facts%202011%20Feb%20Final.pdf. Accessed 18 May 2012

  2. Fehlings MG, Sekhon LH, Tator C (2001) The role and timing of decompression in acute spinal cord injury: what do we know? What should we do? Spine (Phila Pa 1976) 26:S101–S110

    Article  CAS  Google Scholar 

  3. Fehlings MG, Tator CH (1999) An evidence-based review of decompressive surgery in acute spinal cord injury: rationale, indications, and timing based on experimental and clinical studies. J Neurosurg 91:1–11

    Article  PubMed  CAS  Google Scholar 

  4. Schnell L, Schwab ME (1990) Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343:269–272

    Article  PubMed  CAS  Google Scholar 

  5. van Blitterswijk C, Hubbell J, Cancedda R, de Bruijn JD, Lindahl A, Sohier J, Williams D (2008) Tissue engineering, 1st edn. Academic, London, p 760

    Google Scholar 

  6. Neumann S, Bradke F, Tessier-Lavigne M, Basbaum AI (2002) Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 34:885–893

    Article  PubMed  CAS  Google Scholar 

  7. Neumann S, Woolf CJ (1999) Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23:83–91

    Article  PubMed  CAS  Google Scholar 

  8. Imaizumi T, Lankford KL, Waxman SG, Greer CA, Kocsis JD (1998) Transplanted olfactory ensheathing cells remyelinate and enhance axonal conduction in the demyelinated dorsal columns of the rat spinal cord. J Neurosci 18:6176–6185

    PubMed  CAS  Google Scholar 

  9. Blumenfeld H (2002) Neuroanatomy through clinical cases, 1st edn. Sinauer Associates, Sunderland

    Google Scholar 

  10. Oudega M, Moon LD, de Almeida Leme RJ (2005) Schwann cells for spinal cord repair. Braz J Med Biol Res 38:825–835

    Article  PubMed  CAS  Google Scholar 

  11. Samadikuchaksaraei A (2007) An overview of tissue engineering approaches for management of spinal cord injuries. J Neuroeng Rehabil 4:15

    Article  PubMed  Google Scholar 

  12. Winkler T, Sharma HS, Gordh T, Badgaiyan RD, Stalberg E, Westman J (2002) Topical application of dynorphin A (1–17) antiserum attenuates trauma induced alterations in spinal cord evoked potentials, microvascular permeability disturbances, edema formation and cell injury: an experimental study in the rat using electrophysiological and morphological approaches. Amino Acids 23:273–281

    Article  PubMed  CAS  Google Scholar 

  13. Bao F, John SM, Chen Y, Mathison RD, Weaver LC (2006) The tripeptide phenylalanine-(D) glutamate-(D) glycine modulates leukocyte infiltration and oxidative damage in rat injured spinal cord. Neuroscience 140:1011–1022

    Article  PubMed  CAS  Google Scholar 

  14. Park E, Velumian AA, Fehlings MG (2004) The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J Neurotrauma 21:754–774

    Article  PubMed  Google Scholar 

  15. Conti A, Cardali S, Genovese T, Di Paola R, La Rosa G (2003) Role of inflammation in the secondary injury following experimental spinal cord trauma. J Neurosurg Sci 47:89–94

    PubMed  CAS  Google Scholar 

  16. Dohrmann GJ, Wagner FC Jr, Bucy PC (1972) Transitory traumatic paraplegia: electron microscopy of early alterations in myelinated nerve fibers. J Neurosurg 36:407–415

    Article  PubMed  CAS  Google Scholar 

  17. Rivlin AS, Tator CH (1978) Regional spinal cord blood flow in rats after severe cord trauma. J Neurosurg 49:844–853

    Article  PubMed  CAS  Google Scholar 

  18. Koyanagi I, Tator CH, Lea PJ (1993) Three-dimensional analysis of the vascular system in the rat spinal cord with scanning electron microscopy of vascular corrosion casts. Part 2: acute spinal cord injury. Neurosurgery 33:285–291; discussion 292

    Article  PubMed  CAS  Google Scholar 

  19. Anthes DL, Theriault E, Tator CH (1996) Ultrastructural evidence for arteriolar vasospasm after spinal cord trauma. Neurosurgery 39:804–814

    Article  PubMed  CAS  Google Scholar 

  20. Noble LJ, Wrathall JR (1989) Correlative analyses of lesion development and functional status after graded spinal cord contusive injuries in the rat. Exp Neurol 103:34–40

    Article  PubMed  CAS  Google Scholar 

  21. Tator CH, Koyanagi I (1997) Vascular mechanisms in the pathophysiology of human spinal cord injury. J Neurosurg 86:483–492

    Article  PubMed  CAS  Google Scholar 

  22. Wang MD, Zhai P, Chen XB, Schreyer DJ, Sun XD, Cui FZ (2011) Bioengineered scaffolds for spinal cord repair. Tissue Eng Part B Rev 17:177–194

    Article  PubMed  CAS  Google Scholar 

  23. Holtz A, Nystrom B, Gerdin B, Olsson Y (1990) Neuropathological changes and neurological function after spinal cord compression in the rat. J Neurotrauma 7:155–167

    Article  PubMed  CAS  Google Scholar 

  24. Szydlowska K, Tymianski M (2010) Calcium, ischemia and excitotoxicity. Cell Calcium 47:122–129

    Article  PubMed  CAS  Google Scholar 

  25. Jones TB, McDaniel EE, Popovich PG (2005) Inflammatory-mediated injury and repair in the traumatically injured spinal cord. Curr Pharm Des 11:1223–1236

    Article  PubMed  CAS  Google Scholar 

  26. Shuman SL, Bresnahan JC, Beattie MS (1997) Apoptosis of microglia and oligodendrocytes after spinal cord contusion in rats. J Neurosci Res 50:798–808

    Article  PubMed  CAS  Google Scholar 

  27. Schwab ME, Bartholdi D (1996) Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev 76:319–370

    PubMed  CAS  Google Scholar 

  28. Guest JD, Hiester ED, Bunge RP (2005) Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury. Exp Neurol 192:384–393

    Article  PubMed  CAS  Google Scholar 

  29. Jones LL, Yamaguchi Y, Stallcup WB, Tuszynski MH (2002) NG2 is a major chondroitin sulfate proteoglycan produced after spinal cord injury and is expressed by macrophages and oligodendrocyte progenitors. J Neurosci 22:2792–2803

    PubMed  CAS  Google Scholar 

  30. Jones LL, Margolis RU, Tuszynski MH (2003) The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp Neurol 182:399–411

    Article  PubMed  CAS  Google Scholar 

  31. Bruce JH, Norenberg MD, Kraydieh S, Puckett W, Marcillo A, Dietrich D (2000) Schwannosis: role of gliosis and proteoglycan in human spinal cord injury. J Neurotrauma 17:781–788

    Article  PubMed  CAS  Google Scholar 

  32. McKerracher L, Winton MJ (2002) Nogo on the go. Neuron 36:345–348

    Article  PubMed  CAS  Google Scholar 

  33. Filbin MT (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 4:703–713

    Article  PubMed  CAS  Google Scholar 

  34. De Winter F, Oudega M, Lankhorst AJ, Hamers FP, Blits B, Ruitenberg MJ, Pasterkamp RJ, Gispen WH, Verhaagen J (2002) Injury-induced class 3 semaphorin expression in the rat spinal cord. Exp Neurol 175:61–75

    Article  PubMed  CAS  Google Scholar 

  35. Bundesen LQ, Scheel TA, Bregman BS, Kromer LF (2003) Ephrin-B2 and EphB2 regulation of astrocyte-meningeal fibroblast interactions in response to spinal cord lesions in adult rats. J Neurosci 23:7789–7800

    PubMed  CAS  Google Scholar 

  36. Wang GY, He XJ, Yuan PW, Li HP, Chang R (2011) Semaphorin 3A expression in spinal cord injured rats after olfactory ensheathing cell transplantation. Neural Regen Res 6:756–761

    CAS  Google Scholar 

  37. Bregman BS, Kunkelbagden E, Schnell L, Dai HN, Gao D, Schwab ME (1995) Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature 378:498–501

    Article  PubMed  CAS  Google Scholar 

  38. Merkler D, Metz GAS, Raineteau O, Dietz V, Schwab ME, Fouad K (2001) Locomotor recovery in spinal cord-injured rats treated with an antibody neutralizing the myelin- associated neurite growth inhibitor Nogo-A. J Neurosci 21:3665–3673

    PubMed  CAS  Google Scholar 

  39. Bradbury EJ, Moon LDF, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, SB MM (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416:636–640

    Article  PubMed  CAS  Google Scholar 

  40. Omoto S, Ueno M, Mochio S, Yamashita T (2011) Corticospinal tract fibers cross the ephrin-B3-negative part of the midline of the spinal cord after brain injury. Neurosci Res 69:187–195

    Article  PubMed  CAS  Google Scholar 

  41. Aubert I, Ridet JL, Gage FH (1995) Regeneration in the adult mammalian CNS – guided by development. Curr Opin Neurobiol 5:625–635

    Article  PubMed  CAS  Google Scholar 

  42. Levison SW, Ducceschi MH, Young GM, Wood TL (1996) Acute exposure to CNTF in vivo induces multiple components of reactive gliosis. Exp Neurol 141:256–268

    Article  PubMed  CAS  Google Scholar 

  43. Sykova E, Svoboda J, Simonova Z, Jendelova P (1992) Role of astrocytes in ionic and volume homeostasis in spinal-cord during development and injury. Prog Brain Res 94:47–56

    Article  PubMed  CAS  Google Scholar 

  44. Alonso G, Privat A (1993) Reactive astrocytes involved in the formation of lesional scars differ in the mediobasal hypothalamus and in other forebrain regions. J Neurosci Res 34:523–538

    Article  PubMed  CAS  Google Scholar 

  45. Frisen J, Arvidsson U, Lindholm T, Fried K, Verge VMK, Cullheim S, Hokfelt T, Risling M (1993) trkC expression in the injured rat spinal cord. Neuroreport 5:349–352

    Article  PubMed  CAS  Google Scholar 

  46. Lasalle GL, Rougon G, Valin A (1992) The embryonic form of neural cell -surface molecule (E-NCAM) in the rat hippocampus and its reexpression on glial-cells following kainic acid-induced status epilepticus. J Neurosci 12:872–882

    Google Scholar 

  47. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155

    Article  PubMed  CAS  Google Scholar 

  48. Raineteau O, Fouad K, Bareyre FM, Schwab ME (2002) Reorganization of descending motor tracts in the rat spinal cord. Eur J Neurosci 16:1761–1771

    Article  PubMed  Google Scholar 

  49. Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O, Schwab ME (2004) The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 7:269–277

    Article  PubMed  CAS  Google Scholar 

  50. Raineteau O, Schwab ME (2001) Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci 2:263–273

    Article  PubMed  CAS  Google Scholar 

  51. Kwok JCF, Afshari F, Garcia-Alias G, Fawcett J (2008) Proteoglycans in the central nervous system: plasticity, regeneration and their stimulation with chondroitinase ABC. Restor Neurol Neurosci 26:131–145

    PubMed  Google Scholar 

  52. Massey JM, Hubscher CH, Wagoner MR, Decker JA, Amps J, Silver J, Onifer SM (2006) Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury. J Neurosci 26:4406–4414

    Article  PubMed  CAS  Google Scholar 

  53. Vavrek R, Girgis J, Tetzlaff W, Hebert GW, Fouad K (2006) BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats. Brain 129:1534–1545

    Article  PubMed  CAS  Google Scholar 

  54. Garcia-Alias G, Barkhuysen S, Buckle M, Fawcett JW (2009) Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat Neuosci 12:1145–1151

    Article  PubMed  CAS  Google Scholar 

  55. Tetzlaff W, Fouad K, Kwon B (2009) Be careful what you train for. Nat Neuosci 12:1145–1151

    Article  PubMed  CAS  Google Scholar 

  56. Talac R, Friedman JA, Moore MJ, Lu L, Jabbari E, Windebank AJ, Currier BL, Yaszemski MJ (2004) Animal models of spinal cord injury for evaluation of tissue engineering treatment strategies. Biomaterials 25:1505–1510

    Article  PubMed  CAS  Google Scholar 

  57. Metz GAS, Curt A, van de Meent H, Klusman I, Schwab ME, Dietz V (2000) Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury. J Neurotrauma 17:1–17

    Article  PubMed  CAS  Google Scholar 

  58. Darian-Smith C (2009) Synaptic plasticity, neurogenesis, and functional recovery after spinal cord injury. Neuroscientist 15:149–165

    Article  PubMed  Google Scholar 

  59. Lawrence DG, Kuypers HG (1968) The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain 91:1–14

    Article  PubMed  CAS  Google Scholar 

  60. Lemon RN, Griffiths J (2005) Comparing the function of the corticospinal system in different species: organizational differences for motor specialization? Muscle Nerve 32:261–279

    Article  PubMed  Google Scholar 

  61. Nathan PW, Smith MC (1982) The rubrospinal and central tegmental tracts in man. Brain 105:223–269

    Article  PubMed  CAS  Google Scholar 

  62. Dietz V (2008) Ready for human spinal cord repair? Brain 131:2240–2242

    Article  PubMed  Google Scholar 

  63. Rahimi-Movaghar V, Yazdi A, Mohammadi M (2008) Usefulness of the tail -flick reflex in the prognosis of functional recovery in paraplegic rats. Surg Neurol 70:323–325; discussion 325

    Article  PubMed  Google Scholar 

  64. Saberi H, Moshayedi P, Aghayan HR, Arjmand B, Hosseini SK, SH E-R, Rahimi-Movaghar V, Raza M, Firouzi M (2008) Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: an interim report on safety considerations and possible outcomes. Neurosci Lett 443:46–50

    Article  PubMed  CAS  Google Scholar 

  65. Borgens RB, Shi R (2000) Immediate recovery from spinal cord injury through molecular repair of nerve membranes with polyethylene glycol. FASEB J 14:27–35

    PubMed  CAS  Google Scholar 

  66. Borgens RB (2001) Cellular engineering: molecular repair of membranes to rescue cells of the damaged nervous system. Neurosurgery 49:370–378; discussion 378–379

    PubMed  CAS  Google Scholar 

  67. Bunge RP, Puckett WR, Becerra JL, Marcillo A, Quencer RM (1993) Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination. Adv Neurol 59:75–89

    PubMed  CAS  Google Scholar 

  68. Kakulas BA (1999) A review of the neuropathology of human spinal cord injury with emphasis on special features. J Spinal Cord Med 22:119–124

    PubMed  CAS  Google Scholar 

  69. Oudega M, Hagg T (1996) Nerve growth factor promotes regeneration of sensory axons into adult rat spinal cord. Exp Neurol 140:218–229

    Article  PubMed  CAS  Google Scholar 

  70. Gros T, Sakamoto JS, Blesch A, Havton LA, Tuszynski MH (2010) Regeneration of long – tract axons through sites of spinal cord injury using templated agarose scaffolds. Biomaterials 31:6719–6729

    Article  PubMed  CAS  Google Scholar 

  71. Jain A, Kim YT, McKeon RJ, Bellamkonda RV (2006) In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials 27:497–504

    Article  PubMed  CAS  Google Scholar 

  72. King VR, Hewazy D, Alovskaya A, Phillips JB, Brown RA, Priestley JV (2010) The neuroprotective effects of fibronectin mats and fibronectin peptides following spinal cord injury in the rat. Neuroscience 168:523–530

    Article  PubMed  CAS  Google Scholar 

  73. Stokes BT, Jakeman LB (2002) Experimental modelling of human spinal cord injury: a model that crosses the species barrier and mimics the spectrum of human cytopathology. Spinal Cord 40:101–109

    Article  PubMed  CAS  Google Scholar 

  74. Kang KN, Lee JY, da Kim Y, Lee BN, Ahn HH, Lee B, Khang G, Park SR, Min BH, Kim JH, Lee HB, Kim MS (2011) Regeneration of completely transected spinal cord using scaffold of poly(D, L-lactide-co-glycolide)/small intestinal submucosa seeded with rat bone marrow stem cells. Tissue Eng Part A 17:2143–2152

    Article  PubMed  CAS  Google Scholar 

  75. Hurtado A, Cregg JM, Wang HB, Wendell DF, Oudega M, Gilbert RJ, McDonald JW (2011) Robust CNS regeneration after complete spinal cord transection using aligned poly - L-lactic acid microfibers. Biomaterials 32:6068–6079

    PubMed  CAS  Google Scholar 

  76. Kang KN, da Kim Y, Yoon SM, Lee JY, Lee BN, Kwon JS, Seo HW, Lee IW, Shin HC, Kim YM, Kim HS, Kim JH, Min BH, Lee HB, Kim MS (2012) Tissue engineered regeneration of completely transected spinal cord using human mesenchymal stem cells. Biomaterials 33:4828–4835

    Article  PubMed  CAS  Google Scholar 

  77. Harley BA, Spilker MH, Wu JW, Asano K, Hsu HP, Spector M, Yannas IV (2004) Optimal degradation rate for collagen chambers used for regeneration of peripheral nerves over long gaps. Cells Tissues Organs 176:153–165

    Article  PubMed  CAS  Google Scholar 

  78. Tsai EC, Dalton PD, Shoichet MS, Tator CH (2006) Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Biomaterials 27:519–533

    Article  PubMed  CAS  Google Scholar 

  79. Klapka N, Muller HW (2006) Collagen matrix in spinal cord injury. J Neurotrauma 23:422–435

    Article  PubMed  Google Scholar 

  80. Labrador RO, Buti M, Navarro X (1998) Influence of collagen and laminin gels concentration on nerve regeneration after resection and tube repair. Exp Neurol 149:243–252

    Article  PubMed  CAS  Google Scholar 

  81. Liu T, Houle JD, Xu J, Chan BP, Chew SY (2012) Nanofibrous collagen nerve conduits for spinal cord repair. Tissue Eng Part A 18:1057–1066

    Article  PubMed  CAS  Google Scholar 

  82. Han QQ, Sun WJ, Lin H, Zhao WX, Gao Y, Zhao YN, Chen B, Xiao ZF, Hu W, Li Y, Yang B, Dai JW (2009) Linear ordered collagen scaffolds loaded with collagen -binding brain-derived neurotrophic factor improve the recovery of spinal cord injury in rats. Tissue Eng Part A 15:2927–2935

    Article  PubMed  CAS  Google Scholar 

  83. Han QQ, Jin W, Xiao ZF, Ni HB, Wang JH, Kong J, Wu J, Liang WB, Chen L, Zhao YN, Chen B, Dai JW (2010) The promotion of neural regeneration in an extreme rat spinal cord injury model using a collagen scaffold containing a collagen binding neuroprotective protein and an EGFR neutralizing antibody. Biomaterials 31:9212–9220

    Article  PubMed  CAS  Google Scholar 

  84. Houweling DA, Lankhorst AJ, Gispen WH, Bar PR, Joosten EA (1998) Collagen containing neurotrophin-3 (NT-3) attracts regrowing injured corticospinal axons in the adult rat spinal cord and promotes partial functional recovery. Exp Neurol 153:49–59

    Article  PubMed  CAS  Google Scholar 

  85. Cholas RH, Hsu HP, Spector M (2012) The reparative response to cross-linked collagen- based scaffolds in a rat spinal cord gap model. Biomaterials 33:2050–2059

    Article  PubMed  CAS  Google Scholar 

  86. Pielesz A, Katarzyna B, Klimczak M (2008) Physicochemical properties of commercial active alginate dressings. Polim Med 38:3–17

    PubMed  CAS  Google Scholar 

  87. Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S (2003) Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A 65:489–497

    Article  PubMed  CAS  Google Scholar 

  88. Tobias CA, Han SS, Shumsky JS, Kim D, Tumolo M, Dhoot NO, Wheatley MA, Fischer I, Tessler A, Murray M (2005) Alginate encapsulated BDNF-producing fibroblast grafts permit recovery of function after spinal cord injury in the absence of immune suppression. J Neurotrauma 22:138–156

    Article  PubMed  Google Scholar 

  89. Kim JO, Choi JY, Park JK, Kim JH, Jin SG, Chang SW, Li DX, Hwang MR, Woo JS, Kim JA, Lyoo WS, Yong CS, Choi HG (2008) Development of clindamycin -loaded wound dressing with polyvinyl alcohol and sodium alginate. Biol Pharm Bull 31:2277–2282

    Article  PubMed  CAS  Google Scholar 

  90. Eiselt P, Lee KY, Mooney DJ (1999) Rigidity of two-component hydrogels prepared from alginate and poly(ethylene glycol)-diamines. Macromolecules 32:5561–5566

    Article  CAS  Google Scholar 

  91. Lee KY, Rowley JA, Eiselt P, Moy EM, Bouhadir KH, Mooney DJ (2000) Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density. Macromolecules 33:4291–4294

    Article  CAS  Google Scholar 

  92. Ashton RS, Banerjee A, Punyani S, Schaffer DV, Kane RS (2007) Scaffolds based on degradable alginate hydrogels and poly(lactide-co-glycolide) microspheres for stem cell culture. Biomaterials 28:5518–5525

    Article  PubMed  CAS  Google Scholar 

  93. Suzuki K, Suzuki Y, Ohnishi K, Endo K, Tanihara M, Nishimura Y (1999) Regeneration of transected spinal cord in young adult rats using freeze-dried alginate gel. Neuroreport 10:2891–2894

    Article  PubMed  CAS  Google Scholar 

  94. Suzuki Y, Kitaura M, Wu SF, Kataoka K, Suzuki K, Endo K, Nishimura Y, Ide C (2002) Electrophysiological and horseradish peroxidase-tracing studies of nerve regeneration through alginate-filled gap in adult rat spinal cord. Neurosci Lett 318:121–124

    Article  PubMed  CAS  Google Scholar 

  95. Prang P, Muller R, Eljaouhari A, Heckmann K, Kunz W, Weber T, Faber C, Vroemen M, Bogdahn U, Weidner N (2006) The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials 27:3560–3569

    PubMed  CAS  Google Scholar 

  96. Novikova LN, Mosahebi A, Wiberg M, Terenghi G, Kellerth JO, Novikov LN (2006) Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation. J Biomed Mater Res A 77:242–252

    PubMed  Google Scholar 

  97. Frampton JP, Hynd MR, Shuler ML, Shain W (2011) Fabrication and optimization of alginate hydrogel constructs for use in 3D neural cell culture. Biomed Mater 6:015002–015019

    Article  PubMed  CAS  Google Scholar 

  98. Matyash M, Despang F, Mandal R, Fiore D, Gelinsky M, Ikonomidou C (2012) Novel soft alginate hydrogel strongly supports neurite growth and protects neurons against oxidative stress. Tissue Eng Part A 18:55–66

    Article  PubMed  CAS  Google Scholar 

  99. Francis NL, Shanbhag MS, Fischer I, Wheatley MA (2011) Influence of alginate cross- ­linking method on neurite response to microencapsulated neurotrophin-producing fibro- blasts. J Microencapsul 28:353–362

    Article  PubMed  CAS  Google Scholar 

  100. Balgude AP, Yu X, Szymanski A, Bellamkonda RV (2001) Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials 22:1077–1084

    Article  PubMed  CAS  Google Scholar 

  101. Stokols S, Tuszynski MH (2006) Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials 27:443–451

    Article  PubMed  CAS  Google Scholar 

  102. Stokols S, Tuszynski MH (2004) The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury. Biomaterials 25:5839–5846

    Article  PubMed  CAS  Google Scholar 

  103. Stokols S, Sakamoto J, Breckon C, Holt T, Weiss J, Tuszynski MH (2006) Templated agarose scaffolds support linear axonal regeneration. Tissue Eng 12:2777–2787

    Article  PubMed  CAS  Google Scholar 

  104. Nisbet DR, Crompton KE, Horne MK, Finkelstein DI, Forsythe JS (2008) Neural tissue engineering of the CNS using hydrogels. J Biomed Mater Res B Appl Biomater 87:251–263

    PubMed  Google Scholar 

  105. Kim H, Tator CH, Shoichet MS (2011) Chitosan implants in the rat spinal cord: biocompatibility and biodegradation. J Biomed Mater Res A 97:395–404

    PubMed  Google Scholar 

  106. Yang Z, Duan H, Mo L, Qiao H, Li X (2010) The effect of the dosage of NT-3/chitosan carriers on the proliferation and differentiation of neural stem cells. Biomaterials 31:4846–4854

    Article  PubMed  CAS  Google Scholar 

  107. Nomura H, Zahir T, Kim H, Katayama Y, Kulbatski I, Morshead CM, Shoichet MS, Tator CH (2008) Extramedullary chitosan channels promote survival of transplanted neural stem and progenitor cells and create a tissue bridge after complete spinal cord transection. Tissue Eng Part A 14:649–665

    Article  PubMed  CAS  Google Scholar 

  108. Zahir T, Nomura H, Guo XD, Kim H, Tator C, Morshead C, Shoichet M (2008) Bioengineering neural stem/progenitor cell-coated tubes for spinal cord injury repair. Cell Transplant 17:245–254

    Article  PubMed  Google Scholar 

  109. Nomura H, Kim H, Mothe A, Zahir T, Kulbatski I, Morshead CM, Shoichet MS, Tator CH (2010) Endogenous radial glial cells support regenerating axons after spinal cord transection. Neuroreport 21:871–876

    Article  PubMed  Google Scholar 

  110. Li X, Yang Z, Zhang A, Wang T, Chen W (2009) Repair of thoracic spinal cord injury by chitosan tube implantation in adult rats. Biomaterials 30:1121–1132

    Article  PubMed  CAS  Google Scholar 

  111. Lord ST (2007) Fibrinogen and fibrin: scaffold proteins in hemostasis. Curr Opin Hematol 14:236–241

    Article  PubMed  CAS  Google Scholar 

  112. Petter-Puchner AH, Froetscher W, Krametter-Froetscher R, Lorinson D, Redl H, van Griensven M (2007) The long-term neurocompatibility of human fibrin sealant and equine collagen as biomatrices in experimental spinal cord injury. Exp Toxicol Pathol 58:237–245

    Article  PubMed  Google Scholar 

  113. Johnson PJ, Parker SR, Sakiyama-Elbert SE (2010) Fibrin-based tissue engineering scaffolds enhance neural fiber sprouting and delay the accumulation of reactive astrocytes at the lesion in a subacute model of spinal cord injury. J Biomed Mater Res A 92:152–163

    PubMed  Google Scholar 

  114. King VR, Alovskaya A, Wei DY, Brown RA, Priestley JV (2010) The use of injectable forms of fibrin and fibronectin to support axonal ingrowth after spinal cord injury. Biomaterials 31:4447–4456

    Article  PubMed  CAS  Google Scholar 

  115. Hyatt AJ, Wang D, Kwok JC, Fawcett JW, Martin KR (2010) Controlled release of chondroitinase ABC from fibrin gel reduces the level of inhibitory glycosaminoglycan chains in lesioned spinal cord. J Control Release 147:24–29

    Article  PubMed  CAS  Google Scholar 

  116. Itosaka H, Kuroda S, Shichinohe H, Yasuda H, Yano S, Kamei S, Kawamura R, Hida K, Iwasaki Y (2009) Fibrin matrix provides a suitable scaffold for bone marrow stromal cells transplanted into injured spinal cord: a novel material for CNS tissue engineering. Neuropathology 29:248–257

    Article  PubMed  Google Scholar 

  117. Johnson PJ, Parker SR, Sakiyama-Elbert SE (2009) Controlled release of neurotrophin-3 from fibrin-based tissue engineering scaffolds enhances neural fiber sprouting following subacute spinal cord injury. Biotechnol Bioeng 104:1207–1214

    Article  PubMed  CAS  Google Scholar 

  118. Taylor SJ, Rosenzweig ES, McDonald JW 3rd, Sakiyama-Elbert SE (2006) Delivery of neurotrophin-3 from fibrin enhances neuronal fiber sprouting after spinal cord injury. J Control Release 113:226–235

    Article  PubMed  CAS  Google Scholar 

  119. Johnson PJ, Tatara A, McCreedy DA, Shiu A, Sakiyama-Elbert SE (2010) Tissue-engineered fibrin scaffolds containing neural progenitors enhance functional recovery in a subacute model of SCI. Soft Matter 6:5127–5137

    Article  PubMed  CAS  Google Scholar 

  120. Khaing ZZ, Schmidt CE (2012) Advances in natural biomaterials for nerve tissue repair. Neurosci Lett 519:103–114

    Google Scholar 

  121. Yamada KM, Olden K (1978) Fibronectins – adhesive glycoproteins of cell surface and blood. Nature 275:179–184

    Article  PubMed  CAS  Google Scholar 

  122. Lin CY, Lee YS, Lin VW, Silver J (2011) Fibronectin inhibits chronic pain development after spinal cord injury. J Neurotrauma 29:589–599

    Article  Google Scholar 

  123. King VR, Henseler M, Brown RA, Priestley JV (2003) Mats made from fibronectin support oriented growth of axons in the damaged spinal cord of the adult rat. Exp Neurol 182:383–398

    Article  PubMed  CAS  Google Scholar 

  124. King VR, Phillips JB, Hunt-Grubbe H, Brown R, Priestley JV (2006) Characterization of non-neuronal elements within fibronectin mats implanted into the damaged adult rat spinal cord. Biomaterials 27:485–496

    Article  PubMed  CAS  Google Scholar 

  125. Tonge DA, de Burgh HT, Docherty R, Humphries MJ, Craig SE, Pizzey J (2012) Fibronectin supports neurite outgrowth and axonal regeneration of adult brain neurons in vitro. Brain Res 1453:8–16

    Article  PubMed  CAS  Google Scholar 

  126. Khaing ZZ, Milman BD, Vanscoy JE, Seidlits SK, Grill RJ, Schmidt CE (2011) High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury. J Neural Eng 8:046033

    Article  PubMed  Google Scholar 

  127. Peattie RA, Nayate AP, Firpo MA, Shelby J, Fisher RJ, Prestwich GD (2004) Stimulation of in vivo angiogenesis by cytokine-loaded hyaluronic acid hydrogel implants. Biomaterials 25:2789–2798

    Article  PubMed  CAS  Google Scholar 

  128. Hashizume M, Mihara M (2010) High molecular weight hyaluronic acid inhibits IL-6- induced MMP production from human chondrocytes by up-regulating the ERK inhibitor, MKP-1. Biochem Biophys Res Commun 403:184–189

    Article  PubMed  CAS  Google Scholar 

  129. Schimizzi AL, Massie JB, Murphy M, Perry A, Kim CW, Garfin SR, Akeson WH (2006) High-molecular-weight hyaluronan inhibits macrophage proliferation and cytokine release in the early wound of a preclinical postlaminectomy rat model. Spine J 6:550–556

    Article  PubMed  Google Scholar 

  130. Campo GM, Avenoso A, Campo S, D’Ascola A, Nastasi G, Calatroni A (2010) Molecular size hyaluronan differently modulates toll-like receptor-4 in LPS-induced inflammation in mouse chondrocytes. Biochimie 92:204–215

    Article  PubMed  CAS  Google Scholar 

  131. Seidlits SK, Khaing ZZ, Petersen RR, Nickels JD, Vanscoy JE, Shear JB, Schmidt CE (2010) The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation. Biomaterials 31:3930–3940

    Article  PubMed  CAS  Google Scholar 

  132. Oohira A, Matsui F, Matsuda M, Shoji R (1986) Developmental change in the glycosaminoglycan composition of the rat brain. J Neurochem 47:588–593

    Article  PubMed  CAS  Google Scholar 

  133. Meszar Z, Felszeghy S, Veress G, Matesz K, Szekely G, Modis L (2008) Hyaluronan accumulates around differentiating neurons in spinal cord of chicken embryos. Brain Res Bull 75:414–418

    Article  PubMed  CAS  Google Scholar 

  134. Horn EM, Beaumont M, Shu XZ, Harvey A, Prestwich GD, Horn KM, Gibson AR, Preul MC, Panitch A (2007) Influence of cross-linked hyaluronic acid hydrogels on neurite out- growth and recovery from spinal cord injury. J Neurosurg Spine 6:133–140

    Article  PubMed  Google Scholar 

  135. Wei YT, He Y, Xu CL, Wang Y, Liu BF, Wang XM, Sun XD, Cui FZ, Xu QY (2010) Hyaluronic acid hydrogel modified with nogo-66 receptor antibody and poly-L-lysine to promote axon regrowth after spinal cord injury. J Biomed Mater Res B Appl Biomater 95:110–117

    PubMed  Google Scholar 

  136. Brannvall K, Bergman K, Wallenquist U, Svahn S, Bowden T, Hilborn J, Forsberg-Nilsson K (2007) Enhanced neuronal differentiation in a three-dimensional collagen-hyaluronan matrix. J Neurosci Res 85:2138–2146

    Article  PubMed  CAS  Google Scholar 

  137. Tian WM, Hou SP, Ma J, Zhang CL, Xu QY, Lee IS, Li HD, Spector M, Cui FZ (2005) Hyaluronic acid-poly-D-lysine-based three-dimensional hydrogel for traumatic brain injury. Tissue Eng 11:513–525

    Article  PubMed  CAS  Google Scholar 

  138. Zhang H, Wei YT, Tsang KS, Sun CR, Li J, Huang H, Cui FZ, An YH (2008) Implantation of neural stem cells embedded in hyaluronic acid and collagen composite conduit promotes regeneration in a rabbit facial nerve injury model. J Transl Med 6:67

    Article  PubMed  CAS  Google Scholar 

  139. Hou S, Xu Q, Tian W, Cui F, Cai Q, Ma J, Lee IS (2005) The repair of brain lesion by implantation of hyaluronic acid hydrogels modified with laminin. J Neurosci Methods 148:60–70

    Article  PubMed  CAS  Google Scholar 

  140. Tian WM, Zhang CL, Hou SP, Yu X, Cui FZ, Xu QY, Sheng SL, Cui H, Li HD (2005) Hyaluronic acid hydrogel as Nogo-66 receptor antibody delivery system for the repairing of injured rat brain: in vitro. J Control Release 102:13–22

    Article  PubMed  CAS  Google Scholar 

  141. Suri S, Han LH, Zhang W, Singh A, Chen S, Schmidt CE (2011) Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering. Biomed Microdevices 13:983–993

    Article  PubMed  CAS  Google Scholar 

  142. Seidlits SK, Schmidt CE, Shear JB (2009) High-resolution patterning of hydrogels in three dimensions using direct-write photofabrication for cell guidance. Adv Funct Mater 19:3543–3551

    Article  CAS  Google Scholar 

  143. Dubovy P, Svizenska I, Klusakova I, Zitkova A, Houst’Ava L, Haninec P (2001) Laminin molecules in freeze-treated nerve segments are associated with migrating Schwann cells that display the corresponding alpha6beta1 integrin receptor. Glia 33:36–44

    Article  PubMed  CAS  Google Scholar 

  144. Evans PJ, Mackinnon SE, Levi AD, Wade JA, Hunter DA, Nakao Y, Midha R (1998) Cold preserved nerve allografts: changes in basement membrane, viability, immunogenicity, and regeneration. Muscle Nerve 21:1507–1522

    Article  PubMed  CAS  Google Scholar 

  145. Ide C, Tohyama K, Tajima K, Endoh K, Sano K, Tamura M, Mizoguchi A, Kitada M, Morihara T, Shirasu M (1998) Long acellular nerve transplants for allogeneic grafting and the effects of basic fibroblast growth factor on the growth of regenerating axons in dogs: a preliminary report. Exp Neurol 154:99–112

    Article  PubMed  CAS  Google Scholar 

  146. Hudson TW, Zawko S, Deister C, Lundy S, Hu CY, Lee K, Schmidt CE (2004) Optimized acellular nerve graft is immunologically tolerated and supports regeneration. Tissue Eng 10:1641–1651

    Article  PubMed  CAS  Google Scholar 

  147. Nagao RJ, Lundy S, Khaing ZZ, Schmidt CE (2011) Functional characterization of optimized acellular peripheral nerve graft in a rat sciatic nerve injury model. Neurol Res 33:600–608

    Article  PubMed  Google Scholar 

  148. Krekoski CA, Neubauer D, Zuo J, Muir D (2001) Axonal regeneration into acellular nerve grafts is enhanced by degradation of chondroitin sulfate proteoglycan. J Neurosci 21:6206–6213

    PubMed  CAS  Google Scholar 

  149. Takami Y, Matsuda T, Yoshitake M, Hanumadass M, Walter RJ (1996) Dispase/detergent treated dermal matrix as a dermal substitute. Burns 22:182–190

    Article  PubMed  CAS  Google Scholar 

  150. Sutherland RS, Baskin LS, Hayward SW, Cunha GR (1996) Regeneration of bladder urothelium, smooth muscle, blood vessels and nerves into an acellular tissue matrix. J Urol 156:571–577

    Article  PubMed  CAS  Google Scholar 

  151. Bolland F, Korossis S, Wilshaw SP, Ingham E, Fisher J, Kearney JN, Southgate J (2007) Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering. Biomaterials 28:1061–1070

    Article  PubMed  CAS  Google Scholar 

  152. Parnigotto PP, Gamba PG, Conconi MT, Midrio P (2000) Experimental defect in rabbit urethra repaired with acellular aortic matrix. Urol Res 28:46–51

    Article  PubMed  CAS  Google Scholar 

  153. Pahari MP, Raman A, Bloomenthal A, Costa MA, Bradley SP, Banner B, Rastellini C, Cicalese L (2006) A novel approach for intestinal elongation using acellular dermal matrix: an experimental study in rats. Transplant Proc 38:1849–1850

    Article  PubMed  CAS  Google Scholar 

  154. Knight RL, Wilcox HE, Korossis SA, Fisher J, Ingham E (2008) The use of acellular matrices for the tissue engineering of cardiac valves. Proc Inst Mech Eng H 222:129–143

    PubMed  CAS  Google Scholar 

  155. Conconi MT, Nico B, Mangieri D, Tommasini M, di Liddo R, Parnigotto PP, Nussdorfer GG, Ribatti D (2004) Angiogenic response induced by acellular aortic matrix in vivo. Anat Rec A Discov Mol Cell Evol Biol 281:1303–1307

    Article  PubMed  CAS  Google Scholar 

  156. Marzaro M, Conconi MT, Perin L, Giuliani S, Gamba P, De Coppi P, Perrino GP, Parnigotto PP, Nussdorfer GG (2002) Autologous satellite cell seeding improves in vivo bio-­compatibility of homologous muscle acellular matrix implants. Int J Mol Med 10:177–182

    PubMed  Google Scholar 

  157. Zhong H, Chen B, Lu S, Zhao M, Guo Y, Hou S (2007) Nerve regeneration and functional recovery after a sciatic nerve gap is repaired by an acellular nerve allograft made through chemical extraction in canines. J Reconstr Microsurg 23:479–487

    Article  PubMed  Google Scholar 

  158. Ribatti D, Conconi MT, Nico B, Baiguera S, Corsi P, Parnigotto PP, Nussdorfer GG (2003) Angiogenic response induced by acellular brain scaffolds grafted onto the chick embryo chorioallantoic membrane. Brain Res 989:9–15

    Article  PubMed  CAS  Google Scholar 

  159. Guo SZ, Ren XJ, Wu B, Jiang T (2010) Preparation of the acellular scaffold of the spinal cord and the study of biocompatibility. Spinal Cord 48:576–581

    Article  PubMed  Google Scholar 

  160. Zhang XY, Xue H, Liu JM, Chen D (2011) Chemically extracted acellular muscle: a new potential scaffold for spinal cord injury repair. J Biomed Mater Res A 100:578–587

    PubMed  Google Scholar 

  161. Patist CM, Mulder MB, Gautier SE, Maquet V, Jerome R, Oudega M (2004) Freeze -dried poly(D, L-lactic acid) macroporous guidance scaffolds impregnated with brain-derived neurotrophic factor in the transected adult rat thoracic spinal cord. Biomaterials 25:1569–1582

    Article  PubMed  CAS  Google Scholar 

  162. Tuinstra HM, Aviles MO, Shin S, Holland SJ, Zelivyanskaya ML, Fast AG, Ko SY, Margul DJ, Bartels AK, Boehler RM, Cummings BJ, Anderson AJ, Shea LD (2011) Multifunction- al, multichannel bridges that deliver neurotrophin encoding lentivirus for regeneration following spinal cord injury. Biomaterials 33:1618–1626

    Article  PubMed  CAS  Google Scholar 

  163. Gertz CC, Leach MK, Birrell LK, Martin DC, Feldman EL, Corey JM (2010) Accelerated neuritogenesis and maturation of primary spinal motor neurons in response to nanofibers. Dev Neurobiol 70:589–603

    Article  PubMed  CAS  Google Scholar 

  164. Corey JM, Lin DY, Mycek KB, Chen Q, Samuel S, Feldman EL, Martin DC (2007) Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth. J Biomed Mater Res A 83:636–645

    PubMed  Google Scholar 

  165. Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, Langer R, Snyder EY (2002) Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA 99:3024–3029

    Article  PubMed  CAS  Google Scholar 

  166. Xiong Y, Zeng YS, Zeng CG, Du BL, He LM, Quan DP, Zhang W, Wang JM, Wu JL, Li Y, Li J (2009) Synaptic transmission of neural stem cells seeded in 3 -dimensional PLGA scaffolds. Biomaterials 30:3711–3722

    Article  PubMed  CAS  Google Scholar 

  167. Du BL, Xiong Y, Zeng CG, He LM, Zhang W, Quan DP, Wu JL, Li Y, Zeng YS (2011) Transplantation of artificial neural construct partly improved spinal tissue repair and functional recovery in rats with spinal cord transection. Brain Res 1400:87–98

    Article  PubMed  CAS  Google Scholar 

  168. Kim MS, Ahn HH, Shin YN, Cho MH, Khang G, Lee HB (2007) An in vivo study of the host tissue response to subcutaneous implantation of PLGA- and/or porcine small intestinal submucosa-based scaffolds. Biomaterials 28:5137–5143

    Article  PubMed  CAS  Google Scholar 

  169. De Laporte L, Yan AL, Shea LD (2009) Local gene delivery from ECM-coated poly(lactide-co-glycolide) multiple channel bridges after spinal cord injury. Biomaterials 30:2361–2368

    Article  PubMed  CAS  Google Scholar 

  170. Wang YC, Wu YT, Huang HY, Lin HI, Lo LW, Tzeng SF, Yang CS (2008) Sustained intraspinal delivery of neurotrophic factor encapsulated in biodegradable nanoparticles following contusive spinal cord injury. Biomaterials 29:4546–4553

    Article  PubMed  CAS  Google Scholar 

  171. Bakshi A, Fisher O, Dagci T, Himes BT, Fischer I, Lowman A (2004) Mechanically engineered hydrogel scaffolds for axonal growth and angiogenesis after transplantation in spinal cord injury. J Neurosurg Spine 1:322–329

    Article  PubMed  Google Scholar 

  172. Hejcl A, Urdzikova L, Sedy J, Lesny P, Pradny M, Michalek J, Burian M, Hajek M, Zamecnik J, Jendelova P, Sykova E (2008) Acute and delayed implantation of positively charged 2-­hydroxyethyl methacrylate scaffolds in spinal cord injury in the rat. J Neurosurg Spine 8:67–73

    Article  PubMed  Google Scholar 

  173. Hejcl A, Lesny P, Pradny M, Sedy J, Zamecnik J, Jendelova P, Michalek J, Sykova E (2009) Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 6: 3D hydrogels with positive and negative surface charges and polyelectrolyte complexes in spinal cord in- jury repair. J Mater Sci Mater Med 20:1571–1577

    Article  PubMed  CAS  Google Scholar 

  174. Moore K, MacSween M, Shoichet M (2006) Immobilized concentration gradients of neurotrophic factors guide neurite outgrowth of primary neurons in macroporous scaffolds. Tissue Eng 12:267–278

    Article  PubMed  CAS  Google Scholar 

  175. Flynn L, Dalton PD, Shoichet MS (2003) Fiber templating of poly(2 -hydroxyethyl methacrylate) for neural tissue engineering. Biomaterials 24:4265–4272

    Article  PubMed  CAS  Google Scholar 

  176. Yu TT, Shoichet MS (2005) Guided cell adhesion and outgrowth in peptide-modified channels for neural tissue engineering. Biomaterials 26:1507–1514

    Article  PubMed  CAS  Google Scholar 

  177. Tsai EC, Dalton PD, Shoichet MS, Tator CH (2004) Synthetic hydrogel guidance channels facilitate regeneration of adult rat brainstem motor axons after complete spinal cord transection. J Neurotrauma 21:789–804

    Article  PubMed  Google Scholar 

  178. Woerly S, Doan VD, Sosa N, de Vellis J, Espinosa A (2001) Reconstruction of the transected cat spinal cord following NeuroGel implantation: axonal tracing, immunohistochemical and ultrastructural studies. Int J Dev Neurosci 19:63–83

    Article  PubMed  CAS  Google Scholar 

  179. Hejcl A, Sedy J, Kapcalova M, Toro DA, Amemori T, Lesny P, Likavcanova-Masinova K, Krumbholcova E, Pradny M, Michalek J, Burian M, Hajek M, Jendelova P, Sykova E (2010) HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury. Stem Cells Dev 19:1535–1546

    Article  PubMed  CAS  Google Scholar 

  180. Luo J, Borgens R, Shi R (2002) Polyethylene glycol immediately repairs neuronal membranes and inhibits free radical production after acute spinal cord injury. J Neurochem 83:471–480

    Article  PubMed  CAS  Google Scholar 

  181. Luo J, Shi R (2004) Diffusive oxidative stress following acute spinal cord injury in guinea pigs and its inhibition by polyethylene glycol. Neurosci Lett 359:167–170

    Article  PubMed  CAS  Google Scholar 

  182. Shi R, Borgens RB (2000) Anatomical repair of nerve membranes in crushed mammalian spinal cord with polyethylene glycol. J Neurocytol 29:633–643

    Article  PubMed  CAS  Google Scholar 

  183. Luo J, Shi R (2007) Polyethylene glycol inhibits apoptotic cell death following traumatic spinal cord injury. Brain Res 1155:10–16

    Article  PubMed  CAS  Google Scholar 

  184. Borgens RB, Shi R, Bohnert D (2002) Behavioral recovery from spinal cord injury following delayed application of polyethylene glycol. J Exp Biol 205:1–12

    PubMed  Google Scholar 

  185. Brown MJ, Loew LM (1994) Electric Field-directed fibroblast locomotion involves cell-surface molecular reorganization and is calcium-independent. J Cell Biol 127:117–128

    Article  PubMed  CAS  Google Scholar 

  186. Li XF, Kolega J (2002) Effects of direct current electric fields on cell migration and actin filament distribution in bovine vascular endothelial cells. J Vasc Res 39:391–404

    Article  PubMed  CAS  Google Scholar 

  187. Ozawa H, Abe E, Shibasaki Y, Fukuhara T, Suda T (1989) Electric fields stimulate DNA synthesis of mouse osteoblast-like cells (Mc3t3-E1) by a mechanism involving calcium ions. J Cell Physiol 138:477–483

    Article  PubMed  CAS  Google Scholar 

  188. Kotwal A, Schmidt CE (2001) Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials 22:1055–1064

    Article  PubMed  CAS  Google Scholar 

  189. Lee JY, Bashur CA, Goldstein AS, Schmidt CE (2009) Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30:4325–4335

    Article  PubMed  CAS  Google Scholar 

  190. Shi GX, Rouabhia M, Wang ZX, Dao LH, Zhang Z (2004) A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomaterials 25:2477–2488

    Article  PubMed  CAS  Google Scholar 

  191. Stauffer WR, Cui XT (2006) Polypyrrole doped with 2 peptide sequences from laminin. Biomaterials 27:2405–2413

    Article  PubMed  CAS  Google Scholar 

  192. Tabesh H, Amoabediny G, Nik NS, Heydari M, Yosefifard M, Siadat SO, Mottaghy K (2009) The role of biodegradable engineered scaffolds seeded with Schwann cells for spinal cord regeneration. Neurochem Int 54:73–83

    Article  PubMed  CAS  Google Scholar 

  193. Scott JB, Afshari M, Kotek R, Saul JM (2011) The promotion of axon extension in vitro using polymer-templated fibrin scaffolds. Biomaterials 32:4830–4839

    Article  PubMed  CAS  Google Scholar 

  194. Wong DY, Leveque JC, Brumblay H, Krebsbach PH, Hollister SJ, Lamarca F (2008) Macroarchitectures in spinal cord scaffold implants influence regeneration. J Neurotrauma 25:1027–1037

    Article  PubMed  Google Scholar 

  195. Cho YI, Choi JS, Jeong SY, Yoo HS (2010) Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells. Acta Biomater 6:4725–4733

    Article  PubMed  CAS  Google Scholar 

  196. Xie J, Willerth SM, Li X, Macewan MR, Rader A, Sakiyama-Elbert SE, Xia Y (2009) The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 30:354–362

    Article  PubMed  CAS  Google Scholar 

  197. Wang Y, Yao M, Zhou J, Zheng W, Zhou C, Dong D, Liu Y, Teng Z, Jiang Y, Wei G, Cui X (2011) The promotion of neural progenitor cells proliferation by aligned and randomly oriented collagen nanofibers through beta1 integrin/MAPK signaling pathway. Biomaterials 32:6737–6744

    Article  PubMed  CAS  Google Scholar 

  198. Georges PC, Miller WJ, Meaney DF, Sawyer ES, Janmey PA (2006) Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys J 90:3012–3018

    Article  PubMed  CAS  Google Scholar 

  199. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  PubMed  CAS  Google Scholar 

  200. Leipzig ND, Shoichet MS (2009) The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 30:6867–6878

    Article  PubMed  CAS  Google Scholar 

  201. Keselowsky BG, Collard DM, Garcia AJ (2005) Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc Natl Acad Sci USA 102:5953–5957

    Article  PubMed  CAS  Google Scholar 

  202. Keselowsky BG, Collard DM, Garcia AJ (2004) Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials 2(5):5947–5954

    Article  CAS  Google Scholar 

  203. Ren YJ, Zhang H, Huang H, Wang XM, Zhou ZY, Cui FZ, An YH (2009) In vitro behavior of neural stem cells in response to different chemical functional groups. Biomaterials 30:1036–1044

    Article  PubMed  CAS  Google Scholar 

  204. Li GN, Hoffman-Kim D (2008) Tissue-engineered platforms of axon guidance. Tissue Eng Part B Rev 14:33–51

    Article  PubMed  CAS  Google Scholar 

  205. Yu LMY, Leipzig ND, Shoichet MS (2008) Promoting neuron adhesion and growth. Materials Today 11:36–43

    Article  CAS  Google Scholar 

  206. Martins A, Araujo JV, Reis RL, Neves NM (2007) Electrospun nanostructure d scaffolds for tissue engineering applications. Nanomedicine (Lond) 2:929–942

    Article  Google Scholar 

  207. Cao H, Liu T, Chew SY (2009) The application of nanofibrous scaffolds in neural tissue engineering. Adv Drug Deliv Rev 61:1055–1064

    Article  PubMed  CAS  Google Scholar 

  208. Prabhakaran MP, Venugopal JR, Chyan TT, Hai LB, Chan CK, Lim AY, Ramakrishna S (2008) Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng Part A 14:1787–1797

    Article  PubMed  CAS  Google Scholar 

  209. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, MH N-E, Ramakrishna S (2008) Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29:4532–4539

    Article  PubMed  CAS  Google Scholar 

  210. Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P, Mey J (2007) Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-­caprolactone and a collagen/poly-epsilon-caprolactone blend. Biomaterials 28:3012–3025

    Article  PubMed  CAS  Google Scholar 

  211. Koh HS, Yong T, Chan CK, Ramakrishna S (2008) Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials 29:3574–3582

    Article  PubMed  CAS  Google Scholar 

  212. Yang F, Murugan R, Wang S, Ramakrishna S (2005) Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603–2610

    Article  PubMed  CAS  Google Scholar 

  213. Wang HB, Mullins ME, Cregg JM, McCarthy CW, Gilbert RJ (2010) Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration. Acta Biomater 6:2970–2978

    Article  PubMed  CAS  Google Scholar 

  214. Kim YT, Haftel VK, Kumar S, Bellamkonda RV (2008) The role of aligned polymer fiber- based constructs in the bridging of long peripheral nerve gaps. Biomaterials 29:3117–3127

    Article  PubMed  CAS  Google Scholar 

  215. Stankus JJ, Guan J, Fujimoto K, Wagner WR (2006) Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials 27:735–744

    Article  PubMed  CAS  Google Scholar 

  216. Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–1178

    Article  PubMed  CAS  Google Scholar 

  217. Zhao XB, Pan F, Xu H, Yaseen M, Shan HH, Hauser CAE, Zhang SG, Lu JR (2010) Molecular self-assembly and applications of designer peptide amphiphiles. Chem Soc Rev 39:3480–3498

    Article  PubMed  CAS  Google Scholar 

  218. Holmes TC, de Lacalle S, Su X, Liu G, Rich A, Zhang S (2000) Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci USA 97:6728–6733

    Article  PubMed  CAS  Google Scholar 

  219. Semino CE, Kasahara J, Hayashi Y, Zhang SG (2004) Entrapment of migrating hippocampal neural cells in three-dimensional peptide nanofiber scaffold. Tissue Eng 10:643–655

    Article  PubMed  CAS  Google Scholar 

  220. Gelain F, Bottai D, Vescovi A, Zhang SG (2006) Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS One 1(1):e119.

    Article  PubMed  CAS  Google Scholar 

  221. Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI (204) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355

    Article  PubMed  CAS  Google Scholar 

  222. Tysseling-Mattiace VM, Sahni V, Niece KL, Birch D, Czeisler C, Fehlings MG, Stupp SI, Kessler JA (2008) Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci 28:3814–3823

    Article  PubMed  CAS  Google Scholar 

  223. Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24:4353–4364

    Article  PubMed  CAS  Google Scholar 

  224. Leong KF, Cheah CM, Chua CK (2003) Solid freeform fabrication of three -dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24:2363–2378

    Article  PubMed  CAS  Google Scholar 

  225. Zhu N, Li MG, Guan YJ, Schreyer DJ, Chen XB (2010) Effects of laminin blended with chitosan on axon guidance on patterned substrates. Biofabrication 2:045002–045009

    Article  PubMed  CAS  Google Scholar 

  226. Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22:354–362

    Article  PubMed  CAS  Google Scholar 

  227. Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 5:29–39; discussion 39–40

    PubMed  CAS  Google Scholar 

  228. Yeong WY, Chua CK, Leong KF, Chandrasekaran M (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22:643–652

    Article  PubMed  CAS  Google Scholar 

  229. Maruo S, Ikuta K (2002) Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization. Sens Actuators A Phys 100:70–76

    Article  CAS  Google Scholar 

  230. Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130

    Article  PubMed  CAS  Google Scholar 

  231. Lu Y, Mapili G, Suhali G, Chen SC, Roy K (2006) A digital micro -mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J Biomed Mater Res A 77A:396–405

    Article  CAS  Google Scholar 

  232. Gauvin R, Chen YC, Lee JW, Soman P, Zorlutuna P, Nichol JW, Bae H, Chen S, Khademhosseini A (2012) Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 33:3824–3834

    Article  PubMed  CAS  Google Scholar 

  233. Landers R, Hubner U, Schmelzeisen R, Mulhaupt R (2002) Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23:4437–4447

    Article  PubMed  CAS  Google Scholar 

  234. Khalil S, Nam J, Sun W (2005) Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyping J 11:9–17

    Article  Google Scholar 

  235. Geng L, Feng W, Hutmacher DW, Wong YS, Loh HT, Fuh YH (2005) Direct writing of chitosan scaffolds using a robotic system. Rapid Prototyping J 11:90–97

    Article  Google Scholar 

  236. Cohen DL, Malone E, Lipson H, Bonassar LJ (2006) Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng 12:1325–1335

    Article  PubMed  CAS  Google Scholar 

  237. Silva NA, Salgado AJ, Sousa RA, Oliveira JT, Pedro AJ, Leite-Almeida H, Cerqueira R, Almeida A, Mastronardi F, Mano JF, Neves NM, Sousa N, Reis RL (2010) Development and characterization of a novel hybrid tissue engineering-based scaffold for spinal cord injury repair. Tissue Eng Part A 16:45–54

    Article  PubMed  CAS  Google Scholar 

  238. Chen XB, Li MG, Ke H (2008) Modeling of the flow rate in the dispensing-based process for fabricating tissue scaffolds. J Manuf Sci Eng 130:021003–021009

    Article  Google Scholar 

  239. Li MG, Tian XY, Chen XB (2009) Modeling of flow rate, pore size, and porosity for the dispensing-based tissue scaffolds fabrication. J Manuf Sci Eng 131:034501–034505

    Article  Google Scholar 

  240. Woodfield TB, Malda J, de Wijn J, Peters F, Riesle J, van Blitterswijk CA (2004) Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25:4149–4161

    Article  PubMed  CAS  Google Scholar 

  241. Chang R, Nam J, Sun W (2008) Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng Part A 14:41–48

    Article  PubMed  CAS  Google Scholar 

  242. Lu P, Yang H, Jones LL, Filbin MT, Tuszynski MH (2004) Combinatorial therapy with ­neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J Neurosci 24:6402–6409

    Article  PubMed  CAS  Google Scholar 

  243. Pearse DD, Pereira FC, Marcillo AE, Bates ML, Berrocal YA, Filbin MT, Bunge MB (2004) cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat Med 10:610–616

    Article  PubMed  CAS  Google Scholar 

  244. Houle JD, Tom VJ, Mayes D, Wagoner G, Phillips N, Silver J (2006) Combining an autologous peripheral nervous system “bridge” and matrix modification by chondroitinase allows robust, functional regeneration beyond a hemisection lesion of the adult rat spinal cord. J Neurosci 26:7405–7415

    Article  PubMed  CAS  Google Scholar 

  245. Kadoya K, Tsukada S, Lu P, Coppola G, Geschwind D, Filbin MT, Blesch A, Tuszynski MH (2009) Combined intrinsic and extrinsic neuronal mechanisms facilitate bridging axonal re-generation one year after spinal cord injury. Neuron 64:165–172

    Article  PubMed  CAS  Google Scholar 

  246. Blesch A, Lu P, Tuszynski MH (2002) Neurotrophic factors, gene therapy, and neural stem cells for spinal cord repair. Brain Res Bull 57:833–838

    Article  PubMed  CAS  Google Scholar 

  247. Cao QL, Zhang YP, Howard RM, Walters WM, Tsoulfas P, Whittemore SR (2001) Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp Neurol 167:48–58

    Article  PubMed  CAS  Google Scholar 

  248. Martino G, Pluchino S (2006) The therapeutic potential of neural stem cells. Nat Rev Neurosci 7:395–406

    Article  PubMed  CAS  Google Scholar 

  249. Kelly CM, Precious SV, Scherf C, Penketh R, Amso NN, Battersby A, Allen ND, Dunnett SB, Rosser AE (2009) Neonatal desensitization allows long-term survival of neural xenotransplants without immunosuppression. Nat Methods 6:271–273

    Article  PubMed  CAS  Google Scholar 

  250. Yan J, Xu L, Welsh AM, Chen D, Hazel T, Johe K, Koliatsos VE (2006) Combined immunosuppressive agents or CD4 antibodies prolong survival of human neural stem cell grafts and improve disease outcomes in amyotrophic lateral sclerosis transgenic mice. Stem Cells 24:1976–1985

    Article  PubMed  CAS  Google Scholar 

  251. Lu P, Jones LL, Snyder EY, Tuszynski MH (2003) Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol 181:115–129

    Article  PubMed  CAS  Google Scholar 

  252. Guo JS, Zeng YS, Li HB, Huang WL, Liu RY, Li XB, Ding Y, Wu LZ, Cai DZ (2007) Cotransplant of neural stem cells and NT −3 gene modified Schwann cells promote the recovery of transected spinal cord injury. Spinal Cord 45:15–24

    Article  PubMed  Google Scholar 

  253. Wang JM, Zeng YS, Wu JL, Li Y, Teng YD (2011) Cograft of neural stem cells and Schwann cells overexpressing TrkC and neurotrophin-3 respectively after rat spinal cord transection. Biomaterials 32:7454–7468

    Article  PubMed  CAS  Google Scholar 

  254. Banerjee A, Arha M, Choudhary S, Ashton RS, Bhatia SR, Schaffer DV, Kane RS (2009) The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 30:4695–4699

    Article  PubMed  CAS  Google Scholar 

  255. Teixeira AI, Ilkhanizadeh S, Wigenius JA, Duckworth JK, Inganas O, Hermanson O (2009) The promotion of neuronal maturation on soft substrates. Biomaterials 30:4567–4572

    Article  PubMed  CAS  Google Scholar 

  256. Yu H, Cao B, Feng M, Zhou Q, Sun X, Wu S, Jin S, Liu H, Lianhong J (2010) Combinated transplantation of neural stem cells and collagen type I promote functional recovery after cerebral ischemia in rats. Anat Rec (Hoboken) 293:911–917

    Article  Google Scholar 

  257. Edalat H, Hajebrahimi Z, Movahedin M, Tavallaei M, Amiri S, Mowla SJ (2011) p75NTR suppression in rat bone marrow stromal stem cells significantly reduced their rate of apoptosis during neural differentiation. Neurosci Lett 498:15–19

    Article  PubMed  CAS  Google Scholar 

  258. Fehlings MG, Vawda R (2011) Cellular treatments for spinal cord injury: the time is right for clinical trials. Neurotherapeutics 8:704–720

    Article  PubMed  Google Scholar 

  259. Scuteri A, Cassetti A, Tredici G (2006) Adult mesenchymal stem cells rescue dorsal root ganglia neurons from dying. Brain Res 1116:75–81

    Article  PubMed  CAS  Google Scholar 

  260. Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG (2006) Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 198:54–64

    Article  PubMed  CAS  Google Scholar 

  261. Wilkins A, Kemp K, Ginty M, Hares K, Mallam E, Scolding N (2009) Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Res 3(1):63–70.

    Google Scholar 

  262. Akiyama Y, Radtke C, Honmou O, Kocsis JD (2002) Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia 39:229–236

    Article  PubMed  Google Scholar 

  263. Uccelli A, Benvenuto F, Laroni A, Giunti D (2011) Neuroprotective features of mesenchymal stem cells. Best Pract Res Clin Haematol 24:59–64

    Article  PubMed  CAS  Google Scholar 

  264. Zurita M, Vaquero J, Bonilla C, Santos M, De Haro J, Oya S, Aguayo C (2008) Functional recovery of chronic paraplegic pigs after autologous transplantation of bone marrow stromal cells. Transplantation 86:845–853

    Article  PubMed  Google Scholar 

  265. Ohta M, Suzuki Y, Noda T, Ejiri Y, Dezawa M, Kataoka K, Chou H, Ishikawa N, Matsu-moto N, Iwashita Y, Mizuta E, Kuno S, Ide C (2004) Bone marrow stromal cells infused into the cerebrospinal fluid promote functional recovery of the injured rat spinal cord with reduced cavity formation. Exp Neurol 187:266–278

    Article  PubMed  CAS  Google Scholar 

  266. Shang AJ, Hong SQ, Xu Q, Wang HY, Yang Y, Wang ZF, Xu BN, Jiang XD, Xu RX (2011) NT-3-secreting human umbilical cord mesenchymal stromal cell transplantation for the treatment of acute spinal cord injury in rats. Brain Res 1391:102–113

    Article  PubMed  CAS  Google Scholar 

  267. Sykova E, Homola A, Mazanec R, Lachmann H, Konradova SL, Kobylka P, Padr R, Neuwirth J, Komrska V, Vavra V, Stulik J, Bojar M (2006) Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant 15:675–687

    Article  PubMed  Google Scholar 

  268. Cizkova D, Rosocha J, Vanicky I, Jergova S, Cizek M (2006) Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat. Cell Mol Neurobiol 26:1167–1180

    Article  PubMed  Google Scholar 

  269. Parr AM, Tator CH, Keating A (2007) Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 40:609–619

    Article  PubMed  CAS  Google Scholar 

  270. Chen X, Yang Y, Yao J, Lin W, Li Y, Chen Y, Gao Y, Gu X, Wang X (2011) Bone marrow stromal cells-loaded chitosan conduits promote repair of complete transection injury in rat spinal cord. J Mater Sci Mater Med 22:2347–2356

    Article  PubMed  CAS  Google Scholar 

  271. Lu D, Mahmood A, Qu C, Hong X, Kaplan D, Chopp M (2007) Collagen scaffolds populated with human marrow stromal cells reduce lesion volume and improve functional outcome after traumatic brain injury. Neurosurgery 61:596–602; discussion 602–593

    Article  PubMed  Google Scholar 

  272. Koda M, Kamada T, Hashimoto M, Murakami M, Shirasawa H, Sakao S, Ino H, Yoshinaga K, Koshizuka S, Moriya H, Yamazaki M (2007) Adenovirus vector-mediated ex vivo gene transfer of brain-derived neurotrophic factor to bone marrow stromal cells promotes axonal regeneration after transplantation in completely transected adult rat spinal cord. Eur Spine J 16:2206–2214

    Article  PubMed  Google Scholar 

  273. Doucette R (1991) PNS-CNS transitional zone of the first cranial nerve. J Comp Neurol 312:451–466

    Article  PubMed  CAS  Google Scholar 

  274. Boruch AV, Conners JJ, Pipitone M, Deadwyler G, Storer PD, Devries GH, Jones KJ (2001) Neurotrophic and migratory properties of an olfactory ensheathing cell line. Glia 33:225–229

    Article  PubMed  CAS  Google Scholar 

  275. Au E, Roskams AJ (2003) Olfactory ensheathing cells of the lamina propria in vivo and in vitro. Glia 41:224–236

    Article  PubMed  Google Scholar 

  276. Kocsis JD, Lankford KL, Sasaki M, Radtke C (2009) Unique in vivo properties of olfactory ensheathing cells that may contribute to neural repair and protection following spinal cord injury. Neurosci Lett 456:137–142

    Article  PubMed  CAS  Google Scholar 

  277. Steward O, Sharp K, Selvan G, Hadden A, Hofstadter M, Au E, Roskams J (2006) A re-assessment of the consequences of delayed transplantation of olfactory lamina propria following complete spinal cord transection in rats. Exp Neurol 198:483–499

    Article  PubMed  Google Scholar 

  278. Deumens R, Koopmans GC, Honig WM, Maquet V, Jerome R, Steinbusch HW, Joosten EA (2006) Chronically injured corticospinal axons do not cross large spinal lesion gaps after a multifactorial transplantation strategy using olfactory ensheathing cell/olfactory nerve fibroblast-biomatrix bridges. J Neurosci Res 83:811–820

    Article  PubMed  CAS  Google Scholar 

  279. Lu P, Yang H, Culbertson M, Graham L, Roskams AJ, Tuszynski MH (2006) Olfactory ensheathing cells do not exhibit unique migratory or axonal growth-promoting properties after spinal cord injury. J Neurosci 26:11120–11130

    Article  PubMed  CAS  Google Scholar 

  280. Tetzlaff W, Okon E, Karimi-Abdolrezaee S, Hill C, Sparling J, Plemel J, Plunet W, Tsai E, Baptiste D, Smithson L, Kawaja M, Fehlings M, Kwon B (2011) A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma 28:1611–1682

    Article  PubMed  Google Scholar 

  281. Huang H, Chen L, Wang H, Xiu B, Li B, Wang R, Zhang J, Zhang F, Gu Z, Li Y, Song Y, Hao W, Pang S, Sun J (2003) Influence of patients’ age on functional recovery after trans – plantation of olfactory ensheathing cells into injured spinal cord injury. Chin Med J (Engl) 116:1488–1491

    Google Scholar 

  282. Lima C, Pratas-Vital J, Escada P, Hasse-Ferreira A, Capucho C, Peduzzi JD (2006) Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med 29:191–203; discussion 204–196

    PubMed  Google Scholar 

  283. Mackay-Sim A, Feron F, Cochrane J, Bassingthwaighte L, Bayliss C, Davies W, Fronek P, Gray C, Kerr G, Licina P, Nowitzke A, Perry C, Silburn PA, Urquhart S, Geraghty T (2008) Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3 -year clinical trial. Brain 131:2376–2386

    Article  PubMed  CAS  Google Scholar 

  284. Li BC, Jiao SS, Xu C, You H, Chen JM (2010) PLGA conduit seeded with olfactory ensheathing cells for bridging sciatic nerve defect of rats. J Biomed Mater Res A 94:769–780

    PubMed  Google Scholar 

  285. Tang ZP, Liu N, Li ZW, Xie XW, Chen Y, Shi YH, Zeng WG, Wang SX, Chen J, Yang J, Pan DJ (2010) In vitro evaluation of the compatibility of a novel collagen-heparan sulfate biological scaffold with olfactory ensheathing cells. Chin Med J (Engl) 123:1299–1304

    CAS  Google Scholar 

  286. Shen Y, Qian Y, Zhang H, Zuo B, Lu Z, Fan Z, Zhang P, Zhang F, Zhou C (2010) Guidance of olfactory ensheathing cell growth and migration on electrospun silk fibroin scaffolds. Cell Transplant 19:147–157

    Article  PubMed  Google Scholar 

  287. Silva NA, Sousa RA, Pires AO, Sousa N, Salgado AJ, Reis RL (2011) Interactions between Schwann and olfactory ensheathing cells with a starch/polycaprolactone scaffold aimed at spinal cord injury repair. J Biomed Mater Res A 100A:470–476

    Google Scholar 

  288. Duncan ID, Aguayo AJ, Bunge RP, Wood PM (1981) Transplantation of rat Schwann cells grown in tissue culture into the mouse spinal cord. J Neurol Sci 49:241–252

    Article  PubMed  CAS  Google Scholar 

  289. Hill CE, Moon LD, Wood PM, Bunge MB (2006) Labeled Schwann cell transplantation: cell loss, host Schwann cell replacement, and strategies to enhance survival. Glia 53:338–343

    Article  PubMed  Google Scholar 

  290. Oudega M, Xu XM (2006) Schwann cell transplantation for repair of the adult spinal cord. J Neurotrauma 23:453–467

    Article  PubMed  Google Scholar 

  291. Xu XM, Guenard V, Kleitman N, Bunge MB (1995) Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. J Comp Neurol 351:145–160

    Article  PubMed  CAS  Google Scholar 

  292. Xu XM, Guenard V, Kleitman N, Aebischer P, Bunge MB (1995) A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Exp Neurol 134:261–272

    Article  PubMed  CAS  Google Scholar 

  293. Bamber NI, Li H, Lu X, Oudega M, Aebischer P, Xu XM (2001) Neurotrophins BDNF and NT-3 promote axonal re-entry into the distal host spinal cord through Schwann cell-seeded mini-channels. Eur J Neurosci 13:257–268

    PubMed  CAS  Google Scholar 

  294. Chen A, Xu XM, Kleitman N, Bunge MB (1996) Methylprednisolone administration improves axonal regeneration into Schwann cell grafts in transected adult rat thoracic spinal cord. Exp Neurol 138:261–276

    Article  PubMed  CAS  Google Scholar 

  295. Olson HE, Rooney GE, Gross L, Nesbitt JJ, Galvin KE, Knight A, Chen B, Yaszemski MJ, Windebank AJ (2009) Neural stem cell- and Schwann cell-loaded biodegradable polymer scaffolds support axonal regeneration in the transected spinal cord. Tissue Eng Part A 15:1797–1805

    Article  PubMed  CAS  Google Scholar 

  296. Hurtado A, Moon LD, Maquet V, Blits B, Jerome R, Oudega M (2006) Poly (D, L -lactic ac- id) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bifunctional neurotrophin implanted in the completely transected adult rat thoracic spinal cord. Biomaterials 27:430–442

    Article  PubMed  CAS  Google Scholar 

  297. Novikova LN, Pettersson J, Brohlin M, Wiberg M, Novikov LN (2008) Biodegradable poly-beta-hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair. Bio-materials 29:1198–1206

    CAS  Google Scholar 

  298. He J, Zhou W, Zhou X, Zhong X, Zhang X, Wan P, Zhu B, Chen W (2008) The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation. J Mater Sci Mater Med 19:3465–3472

    Article  PubMed  CAS  Google Scholar 

  299. Guo J, Su H, Zeng Y, Liang YX, Wong WM, Ellis-Behnke RG, So KF, Wu W (2007) Reknitting the injured spinal cord by self-assembling peptide nanofiber scaffold. Nanomedicine 3:311–321

    Article  PubMed  CAS  Google Scholar 

  300. Afshari FT, Kwok JC, Fawcett JW (2010) Astrocyte-produced ephrins inhibit schwann cell migration via VAV2 signaling. J Neurosci 30:4246–4255

    Article  PubMed  CAS  Google Scholar 

  301. Bachelin C, Zujovic V, Buchet D, Mallet J, Baron-Van Evercooren A (2010) Ectopic expression of polysialylated neural cell adhesion molecule in adult macaque Schwann cells promotes their migration and remyelination potential in the central nervous system. Brain 133:406–420

    Article  PubMed  CAS  Google Scholar 

  302. Papastefanaki F, Chen J, Lavdas AA, Thomaidou D, Schachner M, Matsas R (2007) Grafts of Schwann cells engineered to express PSA-NCAM promote functional recovery after spinal cord injury. Brain 130:2159–2174

    Article  PubMed  Google Scholar 

  303. Iannotti C, Li H, Yan P, Lu X, Wirthlin L, Xu XM (2003) Glial cell line-derived neurotrophic factor-enriched bridging transplants promote propriospinal axonal regeneration and enhance myelination after spinal cord injury. Exp Neurol 183:379–393

    Article  PubMed  CAS  Google Scholar 

  304. Fouad K, Schnell L, Bunge MB, Schwab ME, Liebscher T, Pearse DD (2005) Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. J Neurosci 25:1169–1178

    Article  PubMed  CAS  Google Scholar 

  305. Chau CH, Shum DK, Li H, Pei J, Lui YY, Wirthlin L, Chan YS, Xu XM (2004) Chondroitinase ABC enhances axonal regrowth through Schwann cell-seeded guidance channels after spinal cord injury. FASEB J 18:194–196

    PubMed  CAS  Google Scholar 

  306. Reichardt LF, Tomaselli KJ (1991) Extracellular matrix molecules and their receptors: functions in neural development. Annu Rev Neurosci 14:531–570

    Article  PubMed  CAS  Google Scholar 

  307. Hashemi SM, Soudi S, Shabani I, Naderi M, Soleimani M (2011) The promotion of nanofibers immobilized with collagen for neural stem cells culture. J Mater Sci Mater Med 19:847–854

    Google Scholar 

  308. Li WS, Guo Y, Wang H, Shi DJ, Liang CF, Ye ZP, Qing F, Gong J (2008) Electrospun nanofibers immobilized with collagen for neural stem cells culture. Journal of Materials Science Materials in Medicine 19:847–854

    Google Scholar 

  309. Prabhakaran MP, Venugopal JR, Ramakrishna S (2009) Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials 30:4996–5003

    Article  PubMed  CAS  Google Scholar 

  310. Yuan Y, Dopheide SM, Ivanidis C, Salem HH, Jackson SP (1997) Calpain regulation of cytoskeletal signaling complexes in von Willebrand factor - stimulated platelets. Distinct roles for glycoprotein Ib-V-IX and glycoprotein IIb-IIIa (integrin alphaIIbbeta3) in von Willebrand factor-induced signal transduction. J Biol Chem 272:21847–21854

    Article  PubMed  CAS  Google Scholar 

  311. Yu X, Dillon GP, Bellamkonda RB (1999) A laminin and nerve growth factor-laden three- dimensional scaffold for enhanced neurite extension. Tissue Eng 5:291–304

    Article  PubMed  CAS  Google Scholar 

  312. He J, Wang XM, Spector M, Cui FZ (2012) Scaffolds for central nervous system tissue engineering. Frontiers of Materials Science 6:1–25

    Article  Google Scholar 

  313. Suzuki M, Itoh S, Yamaguchi I, Takakuda K, Kobayashi H, Shinomiya K, Tanaka J (2003) Tendon chitosan tubes covalently coupled with synthesized laminin peptides facilitate nerve regeneration in vivo. J Neurosci Res 72:646–659

    Article  PubMed  CAS  Google Scholar 

  314. Cui FZ, Tian WM, Hou SP, Xu QY, Lee IS (2006) Hyaluronic acid hydrogel immobilized with RGD peptides for brain tissue engineering. J Mater Sci Mater Med 17:1393–1401

    Article  PubMed  CAS  Google Scholar 

  315. Dhoot NO, Tobias CA, Fischer I, Wheatley MA (2004) Peptide-modified alginate surfaces as a growth permissive substrate for neurite outgrowth. J Biomed Mater Res A 71:191–200

    Article  PubMed  CAS  Google Scholar 

  316. Cafferty WBJ, Duffy P, Huebner E, Strittmatter SM (2010) MAG and OMgp synergize with Nogo-A to restrict axonal growth and neurological recovery after spinal cord trauma. J Neurosci 30:6825–6837

    Article  PubMed  CAS  Google Scholar 

  317. Lee JK, Zheng B (2011) Role of myelin-associated inhibitors in axonal repair after spinal cord injury. Exp Neurol 235:33–42

    Article  PubMed  CAS  Google Scholar 

  318. Low K, Blesch A, Herrmann J, Tuszynski MH (2010) A dual promoter lentiviral vector for the in vivo evaluation of gene therapeutic approaches to axon regeneration after spinal cord injury. Gene Ther 17:577–591

    Article  PubMed  CAS  Google Scholar 

  319. Bo XN, Wu DS, Yeh J, Zhang Y (2011) Gene therapy approaches for neuroprotection and axonal regeneration after spinal cord and spinal root injury. Curr Gene Ther 11:101–115

    Article  PubMed  CAS  Google Scholar 

  320. Liu ML, Oh JS, An SS, Pennant WA, Kim HJ, Gwak SJ, Yoon do H, Kim KN, Lee M, Ha Y (2010) Controlled nonviral gene delivery and expression using stable neural stem cell line transfected with a hypoxia-inducible gene expression system. J Gene Med 12:990–1001

    Article  PubMed  CAS  Google Scholar 

  321. Choi BH, Ha Y, Ahn CH, Huang X, Kim JM, Park SR, Park H, Park HC, Kim SW, Lee M (2007) A hypoxia-inducible gene expression system using erythropoietin 3′ untranslated region for the gene therapy of rat spinal cord injury. Neurosci Lett 412:118–122

    Article  PubMed  CAS  Google Scholar 

  322. Lee M, Choi D, Choi MJ, Jeong JH, Kim WJ, Oh S, Kim YH, Bull DA, Kim SW (2006) Hypoxia-inducible gene expression system using the erythropoietin enhancer and 3′-untranslated region for the VEGF gene therapy. J Control Release 115:113–119

    Article  PubMed  CAS  Google Scholar 

  323. Ryu JK, Lee M, Choi MJ, Kim HA, Jin HR, Kim WJ, Yin GN, Song KM, Kwon MH, Suh JK (2012) Gene therapy with an erythropoietin enhancer-mediated hypoxia-inducible gene expression system in the corpus cavernosum of mice with high-cholesterol diet-induced erectile dysfunction. J Androl 33:845–853

    Article  PubMed  CAS  Google Scholar 

  324. Baraniak PR, Nelson DM, Leeson CE, Katakam AK, Friz JL, Cress DE, Hong Y, Guan J, Wagner WR (2011) Spatial control of gene expression within a scaffold by localized inducer release. Biomaterials 32:3062–3071

    Article  PubMed  CAS  Google Scholar 

  325. De Laporte L, Huang A, Ducommun MM, Zelivyanska ML, Aviles MO, Adler AF, Shea LD (2010) Patterned transgene expression in multiple-channel bridges after spinal cord injury. Acta Biomater 6:2889–2897

    Article  PubMed  CAS  Google Scholar 

  326. Houchin-Ray T, Swift LA, Jang JH, Shea LD (2007) Patterned PLG substrates for localized DNA delivery and directed neurite extension. Biomaterials 28:2603–2611

    Article  PubMed  CAS  Google Scholar 

  327. De Laporte L, Yang Y, Zelivyanskaya ML, Cummings BJ, Anderson AJ, Shea LD (2009) Plasmid releasing multiple channel bridges for transgene expression after spinal cord injury. Mol Ther 17:318–326

    Article  PubMed  CAS  Google Scholar 

  328. Aguayo AJ, Clarke DB, Jelsma TN, Kittlerova P, Friedman HC, Bray GM (1996) Effects of neurotrophins on the survival and regrowth of injured retinal neurons. Ciba Found Symp 196:135–144; discussion 144–138

    PubMed  CAS  Google Scholar 

  329. Saito A, Tominaga T, Chan PH (2005) Neuroprotective role of neurotrophins: relationship between nerve growth factor and apoptotic cell survival pathway after cerebral ischemia. Curr Atheroscler Rep 7:268–273

    Article  PubMed  CAS  Google Scholar 

  330. Rosenberg SS, Ng BK, Chan JR (2006) The quest for remyelination: a new role for neurotrophins and their receptors. Brain Pathol 16:288–294

    Article  PubMed  CAS  Google Scholar 

  331. Zhou L, Baumgartner BJ, Hill-Felberg SJ, McGowen LR, Shine HD (2003) Neurotrophin-3 expressed in situ induces axonal plasticity in the adult injured spinal cord. J Neurosci 23:1424–1431

    PubMed  CAS  Google Scholar 

  332. Madigan NN, McMahon S, O’Brien T, Yaszemski MJ, Windebank AJ (2009) Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds. Respir Physiol Neurobiol 169:183–199

    Article  PubMed  CAS  Google Scholar 

  333. McCreedy DA, Sakiyama-Elbert SE (2012) Combination therapies in the CNS: engineering the environment. Neurosci Lett 519:115–121

    Article  PubMed  CAS  Google Scholar 

  334. Lu P, Tuszynski MH (2008) Growth factors and combinatorial therapies for CNS regeneration. Exp Neurol 209:313–320

    Article  PubMed  CAS  Google Scholar 

  335. Chen FM, Zhang M, Wu ZF (2010) Toward delivery of multiple growth factors in tissue engineering. Biomaterials 31:6279–6308

    Article  PubMed  CAS  Google Scholar 

  336. Benowitz LI, Yin Y (2007) Combinatorial treatments for promoting axon regeneration in the CNS: strategies for overcoming inhibitory signals and activating neurons’ intrinsic growth state. Dev Neurobiol 67:1148–1165

    Article  PubMed  CAS  Google Scholar 

  337. Bradbury EJ, Carter LM (2011) Manipulating the glial scar: chondroitinase ABC as a therapy for spinal cord injury. Brain Res Bull 84:306–316

    Article  PubMed  CAS  Google Scholar 

  338. Hwang DH, Kim HM, Kang YM, Joo IS, Cho CS, Yoon BW, Kim SU, Kim BG (2011) Combination of multifaceted strategies to maximize the therapeutic benefits of neural stem cell transplantation for spinal cord repair. Cell Transplant 20:1361–1379

    Article  PubMed  Google Scholar 

  339. Hou S, Tian W, Xu Q, Cui F, Zhang J, Lu Q, Zhao C (2006) The enhancement of cell adherence and inducement of neurite outgrowth of dorsal root ganglia co-cultured with hyaluronic acid hydrogels modified with Nogo-66 receptor antagonist in vitro. Neuroscience 137:519-529

    Google Scholar 

  340. Maier IC, Ichiyama RM, Courtine G, Schnell L, Lavrov I, Edgerton VR, Schwab ME (2009) Differential effects of anti-Nogo-A antibody treatment and treadmill training in rats with incomplete spinal cord injury. Brain 132:1426–1440

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mindan Wang BSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, M., Chen, X., Schreyer, D.J. (2013). Spinal Cord Repair by Means of Tissue Engineered Scaffolds. In: Danquah, M., Mahato, R. (eds) Emerging Trends in Cell and Gene Therapy. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-417-3_21

Download citation

Publish with us

Policies and ethics