Skip to main content

Obesity and Micronutrient Deficiencies

  • Chapter
  • First Online:
Adipose Tissue and Adipokines in Health and Disease

Abstract

Obesity is a serious public health threat affecting millions worldwide in both the developed and developing world [1]. In 2009, approximately 40 % of US adults were classified as obese, with a body mass index (BMI) > 30.0 kg/m2 [2]. A myriad of genetic, environmental, and behavioral factors are associated with the global rise in obesity [3]. Particularly, increased availability of inexpensive, energy-dense, and low-nutrient value foods are considered major contributory components associated with the rise in obesity [3]. Approximately 27–30 % of the daily caloric intake of US children and adults is comprised of low nutrient-dense foods, with sweeteners and desserts contributing 18–24 % of total calories [4, 5]. Meanwhile, modern farming and food processing techniques have led to a reduction in the micronutrient content of many common foods [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang Y, Beydoun MA. The obesity epidemic in the United States—gender, age, socioeconomic, racial/ethnic, and geographic characteristics: a systematic review and meta-regression analysis. Epidemiol Rev. 2007;29:6–28.

    CAS  PubMed  Google Scholar 

  2. Flegal KM, Carroll MD, Kit BK, et al. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA. 2012;307(5):491–7.

    PubMed  Google Scholar 

  3. Swinburn BA, Sacks G, Hall KD, et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet. 2011;378(9793):804–14.

    PubMed  Google Scholar 

  4. Kant AK. Consumption of energy-dense, nutrient-poor foods by adult Americans: nutritional and health implications. The third National Health and Nutrition Examination Survey, 1988–1994. Am J Clin Nutr. 2000;72(4):929–36.

    CAS  PubMed  Google Scholar 

  5. Kant AK. Nature of dietary reporting by adults in the third National Health and Nutrition Examination Survey, 1988–1994. J Am Coll Nutr. 2002;21(4):315–27.

    CAS  PubMed  Google Scholar 

  6. Riaz MN, Asif M, Ali R. Stability of vitamins during extrusion. Crit Rev Food Sci Nutr. 2009;49(4):361–8.

    CAS  PubMed  Google Scholar 

  7. McArdle HJ, Ashworth CJ. Micronutrients in fetal growth and development. Br Med Bull. 1999;55(3):499–510.

    CAS  PubMed  Google Scholar 

  8. Wintergerst ES, Maggini S, Hornig DH. Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab. 2007;51(4):301–23.

    CAS  PubMed  Google Scholar 

  9. Chai W, Conroy SM, Maskarinec G, et al. Associations between obesity and serum lipid-soluble micronutrients among premenopausal women. Nutr Res. 2010;30(4):227–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Pathak P, Kapil U. Role of trace elements zinc, copper and magnesium during pregnancy and its outcome. Indian J Pediatr. 2004;71(11):1003–5.

    PubMed  Google Scholar 

  11. Xanthakos SA. Nutritional deficiencies in obesity and after bariatric surgery. Pediatr Clin North Am. 2009;56(5):1105–21.

    PubMed Central  PubMed  Google Scholar 

  12. Garcia OP, Long KZ, Rosado JL. Impact of micronutrient deficiencies on obesity. Nutr Rev. 2009;67(10):559–72.

    PubMed  Google Scholar 

  13. Astrup A, Bugel S. Micronutrient deficiency in the aetiology of obesity. Int J Obes (Lond). 2010;34(6):947–8.

    CAS  Google Scholar 

  14. Garcia OP, Ronquillo D, Caamano Mdel C, et al. Zinc, vitamin A, and vitamin C status are associated with leptin concentrations and obesity in Mexican women: results from a cross-sectional study. Nutr Metab (Lond). 2012;9(1):59.

    CAS  Google Scholar 

  15. Via M. The malnutrition of obesity: micronutrient deficiencies that promote diabetes. ISRN Endocrinol. 2012;2012:103472.

    PubMed Central  PubMed  Google Scholar 

  16. Mayo-Wilson E, Imdad A, Herzer K, et al. Vitamin A supplements for preventing mortality, illness, and blindness in children aged under 5: systematic review and meta-analysis. BMJ. 2011;343:d5094.

    PubMed Central  PubMed  Google Scholar 

  17. Edem D. Vitamin A: a review. Asian J Clin Nutr. 2009;1(1):65–82.

    Google Scholar 

  18. National Institutes of Health Office of Dietary Supplements. Dietary Supplement Fact Sheet: Vitamin A 2012 [updated 2012 Jul 25; cited 2012 Nov 19]. Available from: http://ods.od.nih.gov/factsheets/VitaminA-HealthProfessional/.

  19. Lobo GP, Amengual J, Li HN, et al. Beta, beta-carotene decreases peroxisome proliferator receptor gamma activity and reduces lipid storage capacity of adipocytes in a beta, beta-carotene oxygenase 1-dependent manner. J Biol Chem. 2010;285(36):27891–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Grenier E, Maupas FS, Beaulieu JF, et al. Effect of retinoic acid on cell proliferation and differentiation as well as on lipid synthesis, lipoprotein secretion, and apolipoprotein biogenesis. Am J Physiol Gastrointest Liver Physiol. 2007;293(6):G1178–89.

    CAS  PubMed  Google Scholar 

  21. Saari JC. Vitamin A metabolism in rod and cone visual cycles. Annu Rev Nutr. 2012;32:125–45.

    CAS  PubMed  Google Scholar 

  22. Clagett-Dame M, Knutson D. Vitamin A in reproduction and development. Nutrients. 2011;3(4):385–428.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Panel on Micronutrients, Subcommittees on Upper Reference Levels of Nutrients and of Interpretation and Use of Dietary Reference Intakes, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Front Matter. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: The National Academies Press; 2001.

    Google Scholar 

  24. World Health Organization Global Database of Vitamin A Deficiency. Global prevalence of vitamin A deficiency in populations at risk 1995–2005. Geneva: World Health Organisation; 2009.

    Google Scholar 

  25. van den Broek N, Dou L, Othman M, et al. Vitamin A supplementation during pregnancy for maternal and newborn outcomes. Cochrane Database Syst Rev. 2010;11, CD008666.

    PubMed  Google Scholar 

  26. Graham-Maar RC, Schall JI, Stettler N, et al. Elevated vitamin A intake and serum retinol in preadolescent children with cystic fibrosis. Am J Clin Nutr. 2006;84(1):174–82.

    CAS  PubMed  Google Scholar 

  27. Garcia OP. Effect of vitamin A deficiency on the immune response in obesity. Proc Nutr Soc. 2012;71(2):290–7.

    CAS  PubMed  Google Scholar 

  28. Botella-Carretero JI, Balsa JA, Vazquez C, et al. Retinol and alpha-tocopherol in morbid obesity and nonalcoholic fatty liver disease. Obes Surg. 2010;20(1):69–76.

    PubMed  Google Scholar 

  29. Mehmetoglu I, Yerlikaya FH, Kurban S. Correlation between vitamin A, E, coenzyme Q(10) and degree of insulin resistance in obese and non-obese subjects. J Clin Biochem Nutr. 2011;49(3):159–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Cunningham-Rundles S, McNeeley DF, Moon A. Mechanisms of nutrient modulation of the immune response. J Allergy Clin Immunol. 2005;115(6):1119–28.

    CAS  PubMed  Google Scholar 

  31. Stephensen CB. Vitamin A, infection, and immune function. Annu Rev Nutr. 2001;21:167–92.

    CAS  PubMed  Google Scholar 

  32. Yasmeen R, Jeyakumar SM, Reichert B, et al. The contribution of vitamin A to autocrine regulation of fat depots. Biochim Biophys Acta. 2012;1821(1):190–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Kurlandsky SB, Gamble MV, Ramakrishnan R, et al. Plasma delivery of retinoic acid to tissues in the rat. J Biol Chem. 1995;270(30):17850–7.

    CAS  PubMed  Google Scholar 

  34. Kawaguchi R, Yu J, Honda J, et al. A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science. 2007;315(5813):820–5.

    CAS  PubMed  Google Scholar 

  35. Xue JC, Schwarz EJ, Chawla A, et al. Distinct stages in adipogenesis revealed by retinoid inhibition of differentiation after induction of PPARgamma. Mol Cell Biol. 1996;16(4):1567–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Tsutsumi C, Okuno M, Tannous L, et al. Retinoids and retinoid-binding protein expression in rat adipocytes. J Biol Chem. 1992;267(3):1805–10.

    CAS  PubMed  Google Scholar 

  37. Villaca Chaves G, Pereira SE, Saboya CJ, et al. Non-alcoholic fatty liver disease and its relationship with the nutritional status of vitamin A in individuals with class III obesity. Obes Surg. 2008;18(4):378–85.

    PubMed  Google Scholar 

  38. Pereira S, Saboya C, Chaves G, et al. Class III obesity and its relationship with the nutritional status of vitamin A in pre- and postoperative gastric bypass. Obes Surg. 2009;19(6):738–44.

    PubMed  Google Scholar 

  39. Pereira SE, Saboya CJ, Saunders C, et al. Serum levels and liver store of retinol and their association with night blindness in individuals with class III obesity. Obes Surg. 2012;22(4):602–8.

    PubMed  Google Scholar 

  40. Viroonudomphol D, Pongpaew P, Tungtrongchitr R, et al. The relationships between anthropometric measurements, serum vitamin A and E concentrations and lipid profiles in overweight and obese subjects. Asia Pac J Clin Nutr. 2003;12(1):73–9.

    CAS  PubMed  Google Scholar 

  41. Zavala G, Long KZ, Garcia OP, et al. Specific micronutrient concentrations are associated with inflammatory cytokines in a rural population of Mexican women with a high prevalence of obesity. Br J Nutr. 2012;29:1–9.

    Google Scholar 

  42. de Souza Valente da Silva L, Valeria da Veiga G, Ramalho RA. Association of serum concentrations of retinol and carotenoids with overweight in children and adolescents. Nutrition. 2007;23(5):392–7.

    CAS  PubMed  Google Scholar 

  43. Neuhouser ML, Rock CL, Eldridge AL, et al. Serum concentrations of retinol, alpha-tocopherol and the carotenoids are influenced by diet, race and obesity in a sample of healthy adolescents. J Nutr. 2001;131(8):2184–91.

    CAS  PubMed  Google Scholar 

  44. Luna RC, do Nascimento CC, Asciutti LS, et al. Relation between glucose levels, high-sensitivity C-reactive protein (hs-CRP), body mass index (BMI) and serum and dietary retinol in elderly in population-based study. Arch Gerontol Geriatr. 2012;54(3):462–8.

    CAS  PubMed  Google Scholar 

  45. Switzer BR, Atwood JR, Stark AH, et al. Plasma carotenoid and vitamins A and E concentrations in older African American women after wheat bran supplementation: effects of age, body mass and smoking history. J Am Coll Nutr. 2005;24(3):217–26.

    CAS  PubMed  Google Scholar 

  46. Frey SK, Vogel S. Vitamin A metabolism and adipose tissue biology. Nutrients. 2011;3(1):27–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Ziouzenkova O, Orasanu G, Sharlach M, et al. Retinaldehyde represses adipogenesis and diet-induced obesity. Nat Med. 2007;13(6):695–702.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Jeyakumar SM, Vajreswari A, Giridharan NV. Chronic dietary vitamin A supplementation regulates obesity in an obese mutant WNIN/Ob rat model. Obesity (Silver Spring). 2006;14(1):52–9.

    CAS  Google Scholar 

  49. Felipe F, Mercader J, Ribot J, et al. Effects of retinoic acid administration and dietary vitamin A supplementation on leptin expression in mice: lack of correlation with changes of adipose tissue mass and food intake. Biochim Biophys Acta. 2005;1740(2):258–65.

    CAS  PubMed  Google Scholar 

  50. Berry DC, Noy N. All-trans-retinoic acid represses obesity and insulin resistance by activating both peroxisome proliferation-activated receptor beta/delta and retinoic acid receptor. Mol Cell Biol. 2009;29(12):3286–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Mercader J, Ribot J, Murano I, et al. Remodeling of white adipose tissue after retinoic acid administration in mice. Endocrinology. 2006;147(11):5325–32.

    CAS  PubMed  Google Scholar 

  52. Ribot J, Felipe F, Bonet ML, et al. Changes of adiposity in response to vitamin A status correlate with changes of PPAR gamma 2 expression. Obes Res. 2001;9(8):500–9.

    CAS  PubMed  Google Scholar 

  53. Felipe F, Bonet ML, Ribot J, et al. Modulation of resistin expression by retinoic acid and vitamin A status. Diabetes. 2004;53(4):882–9.

    CAS  PubMed  Google Scholar 

  54. Kumar MV, Sunvold GD, Scarpace PJ. Dietary vitamin A supplementation in rats: suppression of leptin and induction of UCP1 mRNA. J Lipid Res. 1999;40(5):824–9.

    CAS  PubMed  Google Scholar 

  55. Fernandez-Sanchez A, Madrigal-Santillan E, Bautista M, et al. Inflammation, oxidative stress, and obesity. Int J Mol Sci. 2011;12(5):3117–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Blomhoff R. Transport and metabolism of vitamin A. Nutr Rev. 1994;52:S13–23.

    CAS  PubMed  Google Scholar 

  57. Kim HS, Hausman DB, Compton MM, et al. Induction of apoptosis by all-trans-retinoic acid and C2-ceramide treatment in rat stromal-vascular cultures. Biochem Biophys Res Commun. 2000;270(1):76–80.

    CAS  PubMed  Google Scholar 

  58. Menendez C, Lage M, Peino R, et al. Retinoic acid and vitamin D(3) powerfully inhibit in vitro leptin secretion by human adipose tissue. J Endocrinol. 2001;170(2):425–31.

    CAS  PubMed  Google Scholar 

  59. Jeyakumar SM, Vajreswari A, Sesikeran B, et al. Vitamin A supplementation induces adipose tissue loss through apoptosis in lean but not in obese rats of the WNIN/Ob strain. J Mol Endocrinol. 2005;35(2):391–8.

    CAS  PubMed  Google Scholar 

  60. Rosado JL, Garcia OP, Ronquillo D, et al. Intake of milk with added micronutrients increases the effectiveness of an energy-restricted diet to reduce body weight: a randomized controlled clinical trial in Mexican women. J Am Diet Assoc. 2011;111(10):1507–16.

    CAS  PubMed  Google Scholar 

  61. Li Y, Wang C, Zhu K, et al. Effects of multivitamin and mineral supplementation on adiposity, energy expenditure and lipid profiles in obese Chinese women. Int J Obes (Lond). 2010;34(6):1070–7.

    CAS  Google Scholar 

  62. Li Y, Schellhorn HE. New developments and novel therapeutic perspectives for vitamin C. J Nutr. 2007;137(10):2171–84.

    CAS  PubMed  Google Scholar 

  63. Hallberg L, Brune M, Rossander L. The role of vitamin C in iron absorption. Int J Vitam Nutr Res Suppl. 1989;30:103–8.

    CAS  PubMed  Google Scholar 

  64. Carr AC, Frei B. Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Am J Clin Nutr. 1999;69(6):1086–107.

    CAS  PubMed  Google Scholar 

  65. Reidling JC, Subramanian VS, Dahhan T, et al. Mechanisms and regulation of vitamin C uptake: studies of the hSVCT systems in human liver epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2008;295(6):G1217–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. National Institutes of Health Office of Dietary Supplements. Dietary Supplement Fact Sheet: Vitamin C [updated 2011 June 24; cited 2012 Nov 27]. Available from: http://ods.od.nih.gov/factsheets/VitaminC-HealthProfessional/#en12.

  67. Packer L, Fuchs J. Vitamin C in health and disease. New York: M. Dekker; 1997. p. 538.

    Google Scholar 

  68. Panel on Dietary Antioxidants and Related Compounds, Subcommittee on Upper Reference Levels of Nutrients, Subcommittee on Interpretation and Uses of DRIs, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board, Institute of Medicine. Front Matter. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Washington, DC: The National Academies Press; 2000.

    Google Scholar 

  69. Canoy D, Wareham N, Welch A, et al. Plasma ascorbic acid concentrations and fat distribution in 19,068 British men and women in the European Prospective Investigation into Cancer and Nutrition Norfolk cohort study. Am J Clin Nutr. 2005;82(6):1203–9.

    CAS  PubMed  Google Scholar 

  70. Aasheim ET, Bjorkman S, Sovik TT, et al. Vitamin status after bariatric surgery: a randomized study of gastric bypass and duodenal switch. Am J Clin Nutr. 2009;90(1):15–22.

    PubMed  Google Scholar 

  71. Schectman G, Byrd JC, Gruchow HW. The influence of smoking on vitamin C status in adults. Am J Public Health. 1989;79(2):158–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Mah E, Matos MD, Kawiecki D, et al. Vitamin C status is related to proinflammatory responses and impaired vascular endothelial function in healthy, college-aged lean and obese men. J Am Diet Assoc. 2011;111(5):737–43.

    CAS  PubMed  Google Scholar 

  73. Drewnowski A, Rock CL, Henderson SA, et al. Serum beta-carotene and vitamin C as biomarkers of vegetable and fruit intakes in a community-based sample of French adults. Am J Clin Nutr. 1997;65(6):1796–802.

    CAS  PubMed  Google Scholar 

  74. Keaney Jr JF, Larson MG, Vasan RS, et al. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler Thromb Vasc Biol. 2003;23(3):434–9.

    CAS  PubMed  Google Scholar 

  75. Niki E. Action of ascorbic acid as a scavenger of active and stable oxygen radicals. Am J Clin Nutr. 1991;54(6 Suppl):1119S–24.

    CAS  PubMed  Google Scholar 

  76. Som S, Basu S, Mukherjee D, et al. Ascorbic acid metabolism in diabetes mellitus. Metabolism. 1981;30(6):572–7.

    CAS  PubMed  Google Scholar 

  77. Johnston CS, Corte C. Tissue carnitine fluxes in vitamin C depleted-repleted guinea pigs. J Nutr Biochem. 1999;10(12):696–9.

    CAS  PubMed  Google Scholar 

  78. Johnston CS, Corte C, Swan PD. Marginal vitamin C status is associated with reduced fat oxidation during submaximal exercise in young adults. Nutr Metab (Lond). 2006;3:35.

    Google Scholar 

  79. Naylor GJ, Grant L, Smith C. A double blind placebo controlled trial of ascorbic acid in obesity. Nutr Health. 1985;4(1):25–8.

    CAS  PubMed  Google Scholar 

  80. Johnston CS, Beezhold BL, Mostow B, et al. Plasma vitamin C is inversely related to body mass index and waist circumference but not to plasma adiponectin in nonsmoking adults. J Nutr. 2007;137(7):1757–62.

    CAS  PubMed  Google Scholar 

  81. Garcia-Diaz DF, Campion J, Milagro FI, et al. Ascorbic acid oral treatment modifies lipolytic response and behavioural activity but not glucocorticoid metabolism in cafeteria diet-fed rats. Acta Physiol (Oxf). 2009;195(4):449–57.

    CAS  Google Scholar 

  82. Garcia-Diaz DF, Campion J, Milagro FI, et al. Vitamin C inhibits leptin secretion and some glucose/lipid metabolic pathways in primary rat adipocytes. J Mol Endocrinol. 2010;45(1):33–43.

    CAS  PubMed  Google Scholar 

  83. Garcia-Diaz DF, Campion J, Quintero P, et al. Vitamin C modulates the interaction between adipocytes and macrophages. Mol Nutr Food Res. 2011;55 Suppl 2:S257–63.

    CAS  PubMed  Google Scholar 

  84. DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004;80(6 Suppl):1689S–96.

    CAS  PubMed  Google Scholar 

  85. Holick MF. Vitamin D, deficiency. N Engl J Med. 2007;357(3):266–81.

    CAS  PubMed  Google Scholar 

  86. Holick MF. Resurrection of vitamin D deficiency and rickets. J Clin Invest. 2006;116(8):2062–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Nagpal S, Na S, Rathnachalam R. Noncalcemic actions of vitamin D receptor ligands. Endocr Rev. 2005;26(5):662–87.

    CAS  PubMed  Google Scholar 

  88. Holick MF, Garabedian M. Vitamin D: photobiology, metabolism, mechanism of action, and clinical applications. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism, 6th ed. Washington, DC: American Society for Bone and Mineral Research; 2006, p. 129–37.

    Google Scholar 

  89. Kulie T, Groff A, Redmer J, et al. Vitamin D: an evidence-based review. J Am Board Fam Med. 2009;22(6):698–706.

    PubMed  Google Scholar 

  90. National Institutes of Health Office of Dietary Supplements. Dietary Supplement Fact Sheet: Vitamin D [updated 2011 June 24; cited 2012 Nov 27]. Available from: http://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/.

  91. Holick MF. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc. 2006;81(3):353–73.

    CAS  PubMed  Google Scholar 

  92. Chapuy MC, Preziosi P, Maamer M, et al. Prevalence of vitamin D insufficiency in an adult normal population. Osteoporos Int. 1997;7(5):439–43.

    CAS  PubMed  Google Scholar 

  93. National Research Council. Dietary reference intakes for calcium and vitamin D. Washington, DC: The National Academies Press; 2011.

    Google Scholar 

  94. Gloth III FM, Lindsay JM, Zelesnick LB, et al. Can vitamin D deficiency produce an unusual pain syndrome? Arch Intern Med. 1991;151(8):1662–4.

    PubMed  Google Scholar 

  95. Cranney A, Weiler HA, O’Donnell S, et al. Summary of evidence-based review on vitamin D efficacy and safety in relation to bone health. Am J Clin Nutr. 2008;88(2):513S–9.

    CAS  PubMed  Google Scholar 

  96. Wang TJ, Pencina MJ, Booth SL, et al. Vitamin D deficiency and risk of cardiovascular disease. Circulation. 2008;117(4):503–11.

    CAS  PubMed  Google Scholar 

  97. Mathieu C, Gysemans C, Giulietti A, et al. Vitamin D and diabetes. Diabetologia. 2005;48(7):1247–57.

    CAS  PubMed  Google Scholar 

  98. Giovannucci E, Liu Y, Rimm EB, et al. Prospective study of predictors of vitamin D status and cancer incidence and mortality in men. J Natl Cancer Inst. 2006;98(7):451–9.

    CAS  PubMed  Google Scholar 

  99. Looker AC, Pfeiffer CM, Lacher DA, et al. Serum 25-hydroxyvitamin D status of the US population: 1988–1994 compared with 2000–2004. Am J Clin Nutr. 2008;88(6):1519–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Working Group of the Australian and New Zealand Bone and Mineral Society; Endocrine Society of Australia; Osteoporosis Australia. Vitamin D and adult bone health in Australia and New Zealand: a position statement. Med J Aust. 2005;182(6):281–5.

    Google Scholar 

  101. Li J, Byrne ME, Chang E, et al. 1alpha,25-Dihydroxyvitamin D hydroxylase in adipocytes. J Steroid Biochem Mol Biol. 2008;112(1–3):122–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Ching S, Kashinkunti S, Niehaus MD, et al. Mammary adipocytes bioactivate 25-hydroxyvitamin D(3) and signal via vitamin D(3) receptor, modulating mammary epithelial cell growth. J Cell Biochem. 2011;112(11):3393–405.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Ding C, Gao D, Wilding J, et al. Vitamin D signalling in adipose tissue. Br J Nutr. 2012;9:1–9.

    Google Scholar 

  104. Blumberg JM, Tzameli I, Astapova I, et al. Complex role of the vitamin D receptor and its ligand in adipogenesis in 3T3-L1 cells. J Biol Chem. 2006;281(16):11205–13.

    CAS  PubMed  Google Scholar 

  105. Kong J, Li YC. Molecular mechanism of 1,25-dihydroxyvitamin D3 inhibition of adipogenesis in 3T3-L1 cells. Am J Physiol Endocrinol Metab. 2006;290(5):E916–24.

    CAS  PubMed  Google Scholar 

  106. Mandrup S, Lane MD. Regulating adipogenesis. J Biol Chem. 1997;272(9):5367–70.

    CAS  PubMed  Google Scholar 

  107. Da Costa LA, Arora P, Garcia-Bailo B, et al. The association between obesity, cardiometabolic disease biomarkers, and innate immunity-related inflammation in Canadian adults. Diabetes Metab Syndr Obes. 2012;5:347–55.

    PubMed Central  PubMed  Google Scholar 

  108. Robinson C, Chiang M, Thompson SN, et al. Occurrence of vitamin D deficiency in pediatric patients at high risk in West Virginia. South Med J. 2012;105(10):504–7.

    PubMed  Google Scholar 

  109. Ghergherechi R, Hazhir N, Tabrizi A. Comparison of vitamin D deficiency and secondary hyperparathyroidism in obese and non-obese children and adolescents. Pak J Biol Sci. 2012;15(3):147–51.

    PubMed  Google Scholar 

  110. Kabadi SM, Lee BK, Liu L. Joint effects of obesity and vitamin D insufficiency on insulin resistance and type 2 diabetes: results from the NHANES 2001–2006. Diabetes Care. 2012;35(10):2048–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Gagnon C, Lu ZX, Magliano DJ, et al. Low serum 25-hydroxyvitamin D is associated with increased risk of the development of the metabolic syndrome at five years: results from a national, population-based prospective study (The Australian Diabetes, Obesity and Lifestyle Study: AusDiab). J Clin Endocrinol Metab. 2012;97(6):1953–61.

    CAS  PubMed  Google Scholar 

  112. Zhao G, Ford ES, Tsai J, et al. Factors associated with vitamin D deficiency and inadequacy among women of childbearing age in the United States. ISRN Obstet Gynecol. 2012;2012:691486.

    PubMed Central  PubMed  Google Scholar 

  113. Saintonge S, Bang H, Gerber LM. Implications of a new definition of vitamin D deficiency in a multiracial us adolescent population: the National Health and Nutrition Examination Survey III. Pediatrics. 2009;123(3):797–803.

    PubMed  Google Scholar 

  114. Ford ES, Ajani UA, McGuire LC, et al. Concentrations of serum vitamin D and the metabolic syndrome among U.S. adults. Diabetes Care. 2005;28(5):1228–30.

    CAS  PubMed  Google Scholar 

  115. Cheng S, Massaro JM, Fox CS, et al. Adiposity, cardiometabolic risk, and vitamin D status: the Framingham Heart Study. Diabetes. 2010;59(1):242–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Rajakumar K, de las Heras J, Chen TC, et al. Vitamin D status, adiposity, and lipids in black American and Caucasian children. J Clin Endocrinol Metab. 2011;96(5):1560–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Kremer R, Campbell PP, Reinhardt T, et al. Vitamin D status and its relationship to body fat, final height, and peak bone mass in young women. J Clin Endocrinol Metab. 2009;94(1):67–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Sulistyoningrum DC, Green TJ, Lear SA, et al. Ethnic-specific differences in vitamin D status is associated with adiposity. PLoS One. 2012;7(8):e43159.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Compston JE, Vedi S, Ledger JE, et al. Vitamin D status and bone histomorphometry in gross obesity. Am J Clin Nutr. 1981;34(11):2359–63.

    CAS  PubMed  Google Scholar 

  120. Wortsman J, Matsuoka LY, Chen TC, et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72(3):690–3.

    CAS  PubMed  Google Scholar 

  121. Konradsen S, Ag H, Lindberg F, et al. Serum 1,25-dihydroxy vitamin D is inversely associated with body mass index. Eur J Nutr. 2008;47(2):87–91.

    CAS  PubMed  Google Scholar 

  122. Liel Y, Ulmer E, Shary J, et al. Low circulating vitamin D in obesity. Calcif Tissue Int. 1988;43(4):199–201.

    CAS  PubMed  Google Scholar 

  123. Blum M, Dolnikowski G, Seyoum E, et al. Vitamin D(3) in fat tissue. Endocrine. 2008;33(1):90–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Targher G, Bertolini L, Scala L, et al. Associations between serum 25-hydroxyvitamin D3 concentrations and liver histology in patients with non-alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis. 2007;17(7):517–24.

    CAS  PubMed  Google Scholar 

  125. Giulietti A, van Etten E, Overbergh L, et al. Monocytes from type 2 diabetic patients have a pro-inflammatory profile. 1,25-Dihydroxyvitamin D(3) works as anti-inflammatory. Diabetes Res Clin Pract. 2007;77(1):47–57.

    CAS  PubMed  Google Scholar 

  126. Salehpour A, Hosseinpanah F, Shidfar F, et al. A 12-week double-blind randomized clinical trial of vitamin D3 supplementation on body fat mass in healthy overweight and obese women. Nutr J. 2012;11(1):78.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Saliba W, Barnett-Griness O, Rennert G. The relationship between obesity and the increase in serum 25(OH)D levels in response to vitamin D supplementation. Osteoporos Int. 2013;24(4):1447–54.

    CAS  PubMed  Google Scholar 

  128. Lin E, Armstrong-Moore D, Liang Z, et al. Contribution of adipose tissue to plasma 25-hydroxyvitamin D concentrations during weight loss following gastric bypass surgery. Obesity (Silver Spring). 2011;19(3):588–94.

    CAS  Google Scholar 

  129. Pramyothin P, Biancuzzo RM, Lu Z, et al. Vitamin D in adipose tissue and serum 25-hydroxyvitamin D after roux-en-Y gastric bypass. Obesity (Silver Spring). 2011;19(11):2228–34.

    CAS  Google Scholar 

  130. Rock CL, Emond JA, Flatt SW, et al. Weight loss is associated with increased serum 25-hydroxyvitamin D in overweight or obese women. Obesity (Silver Spring). 2012;20(11):2296–301.

    CAS  Google Scholar 

  131. Forsythe LK, Livingstone MB, Barnes MS, et al. Effect of adiposity on vitamin D status and the 25-hydroxycholecalciferol response to supplementation in healthy young and older Irish adults. Br J Nutr. 2012;107(1):126–34.

    PubMed  Google Scholar 

  132. Nemeth E, Ganz T. Regulation of iron metabolism by hepcidin. Annu Rev Nutr. 2006;26:323–42.

    CAS  PubMed  Google Scholar 

  133. National Institutes of Health Office of Dietary Supplements. Dietary Supplement Fact Sheet: Iron 2007 [updated 2007 Aug 24; cited 2012 Nov 20]. Available from: http://ods.od.nih.gov/factsheets/Iron-HealthProfessional/.

  134. MacKenzie EL, Iwasaki K, Tsuji Y. Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxid Redox Signal. 2008;10(6):997–1030.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Beard JL, Dawson H, Pinero DJ. Iron metabolism: a comprehensive review. Nutr Rev. 1996;54(10):295–317.

    CAS  PubMed  Google Scholar 

  136. Leong WI, Lonnerdal B. Hepcidin, the recently identified peptide that appears to regulate iron absorption. J Nutr. 2004;134(1):1–4.

    CAS  PubMed  Google Scholar 

  137. Steele TM, Frazer DM, Anderson GJ. Systemic regulation of intestinal iron absorption. IUBMB Life. 2005;57(7):499–503.

    CAS  PubMed  Google Scholar 

  138. Fleming MD. The regulation of hepcidin and its effects on systemic and cellular iron metabolism. Hematology Am Soc Hematol Educ Program. 2008;2008:151–8.

    Google Scholar 

  139. Nemeth E, Ganz T. The role of hepcidin in iron metabolism. Acta Haematol. 2009;122(2–3):78–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Collins JF, Wessling-Resnick M, Knutson MD. Hepcidin regulation of iron transport. J Nutr. 2008;138(11):2284–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Darshan D, Anderson GJ. Interacting signals in the control of hepcidin expression. Biometals. 2009;22(1):77–87.

    CAS  PubMed  Google Scholar 

  142. Zimmermann MB, Hurrell RF. Nutritional iron deficiency. Lancet. 2007;370(9586):511–20.

    CAS  PubMed  Google Scholar 

  143. Zimmermann MB, Chaouki N, Hurrell RF. Iron deficiency due to consumption of a habitual diet low in bioavailable iron: a longitudinal cohort study in Moroccan children. Am J Clin Nutr. 2005;81(1):115–21.

    CAS  PubMed  Google Scholar 

  144. Bothwell TH. Iron requirements in pregnancy and strategies to meet them. Am J Clin Nutr. 2000;72(1 Suppl):257S–64.

    CAS  PubMed  Google Scholar 

  145. World Health Organization, Centers for Disease Control and Prevention. Assessing the iron status of populations. Geneva: World Health Organization; 2007.

    Google Scholar 

  146. Basta SS, Soekirman, Karyadi D, et al. Iron deficiency anemia and the productivity of adult males in Indonesia. Am J Clin Nutr. 1979;32(4):916–25.

    CAS  PubMed  Google Scholar 

  147. Annibale B, Marignani M, Monarca B, et al. Reversal of iron deficiency anemia after Helicobacter pylori eradication in patients with asymptomatic gastritis. Ann Intern Med. 1999;131(9):668–72.

    CAS  PubMed  Google Scholar 

  148. Ganz T, Olbina G, Girelli D, et al. Immunoassay for human serum hepcidin. Blood. 2008;112(10):4292–7.

    CAS  PubMed  Google Scholar 

  149. Pak M, Lopez MA, Gabayan V, et al. Suppression of hepcidin during anemia requires erythropoietic activity. Blood. 2006;108(12):3730–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Wenzel BJ, Stults HB, Mayer J. Hypoferraemia in obese adolescents. Lancet. 1962;2(7251):327–8.

    CAS  PubMed  Google Scholar 

  151. Seltzer CC, Mayer J. Serum iron and iron-binding capacity in adolescents. II. Comparison of obese and nonobese subjects. Am J Clin Nutr. 1963;13:354–61.

    CAS  PubMed  Google Scholar 

  152. Nead KG, Halterman JS, Kaczorowski JM, et al. Overweight children and adolescents: a risk group for iron deficiency. Pediatrics. 2004;114(1):104–8.

    PubMed  Google Scholar 

  153. Pinhas-Hamiel O, Newfield RS, Koren I, et al. Greater prevalence of iron deficiency in overweight and obese children and adolescents. Int J Obes Relat Metab Disord. 2003;27(3):416–8.

    CAS  PubMed  Google Scholar 

  154. Moayeri H, Bidad K, Zadhoush S, et al. Increasing prevalence of iron deficiency in overweight and obese children and adolescents (Tehran Adolescent Obesity Study). Eur J Pediatr. 2006;165(11):813–4.

    PubMed  Google Scholar 

  155. Shi Z, Lien N, Kumar BN, et al. The sociodemographic correlates of nutritional status of school adolescents in Jiangsu Province, China. J Adolesc Health. 2005;37(4):313–22.

    PubMed  Google Scholar 

  156. Micozzi MS, Albanes D, Stevens RG. Relation of body size and composition to clinical biochemical and hematologic indices in US men and women. Am J Clin Nutr. 1989;50(6):1276–81.

    CAS  PubMed  Google Scholar 

  157. Wolmarans P, Dhansay MA, Mansvelt EP, et al. Iron status of South African women working in a fruit-packing factory. Public Health Nutr. 2003;6(5):439–45.

    CAS  PubMed  Google Scholar 

  158. Ausk KJ, Ioannou GN. Is obesity associated with anemia of chronic disease? A population-based study. Obesity (Silver Spring). 2008;16(10):2356–61.

    Google Scholar 

  159. Hassan EO, el-Hussinie M, el-Nahal N. The prevalence of anemia among clients of family planning clinics in Egypt. Contraception. 1999;60(2):93–9.

    CAS  PubMed  Google Scholar 

  160. Ozata M, Mergen M, Oktenli C, et al. Increased oxidative stress and hypozincemia in male obesity. Clin Biochem. 2002;35(8):627–31.

    CAS  PubMed  Google Scholar 

  161. Chambers EC, Heshka S, Gallagher D, et al. Serum iron and body fat distribution in a multiethnic cohort of adults living in New York City. J Am Diet Assoc. 2006;106(5):680–4.

    CAS  PubMed  Google Scholar 

  162. Schweiger C, Weiss R, Berry E, et al. Nutritional deficiencies in bariatric surgery candidates. Obes Surg. 2010;20(2):193–7.

    PubMed  Google Scholar 

  163. Flancbaum L, Belsley S, Drake V, et al. Preoperative nutritional status of patients undergoing Roux-en-Y gastric bypass for morbid obesity. J Gastrointest Surg. 2006;10(7):1033–7.

    PubMed  Google Scholar 

  164. Lecube A, Carrera A, Losada E, et al. Iron deficiency in obese postmenopausal women. Obesity (Silver Spring). 2006;14(10):1724–30.

    CAS  Google Scholar 

  165. Tussing-Humphreys LM, Liang H, Nemeth E, et al. Excess adiposity, inflammation, and iron-deficiency in female adolescents. J Am Diet Assoc. 2009;109(2):297–302.

    CAS  PubMed  Google Scholar 

  166. Yanoff LB, Menzie CM, Denkinger B, et al. Inflammation and iron deficiency in the hypoferremia of obesity. Int J Obes (Lond). 2007;31(9):1412–9.

    CAS  Google Scholar 

  167. Menzie CM, Yanoff LB, Denkinger BI, et al. Obesity-related hypoferremia is not explained by differences in reported intake of heme and nonheme iron or intake of dietary factors that can affect iron absorption. J Am Diet Assoc. 2008;108(1):145–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Tussing-Humphreys LM, Nemeth E, Fantuzzi G, et al. Elevated systemic hepcidin and iron depletion in obese premenopausal females. Obesity (Silver Spring). 2010;18(7):1449–56.

    CAS  Google Scholar 

  169. Aeberli I, Hurrell RF, Zimmermann MB. Overweight children have higher circulating hepcidin concentrations and lower iron status but have dietary iron intakes and bioavailability comparable with normal weight children. Int J Obes (Lond). 2009;33(10):1111–7.

    CAS  Google Scholar 

  170. del Giudice EM, Santoro N, Amato A, et al. Hepcidin in obese children as a potential mediator of the association between obesity and iron deficiency. J Clin Endocrinol Metab. 2009;94(12):5102–7.

    PubMed  Google Scholar 

  171. Bekri S, Gual P, Anty R, et al. Increased adipose tissue expression of hepcidin in severe obesity is independent from diabetes and NASH. Gastroenterology. 2006;131(3):788–96.

    CAS  PubMed  Google Scholar 

  172. Tussing-Humphreys L, Frayn KN, Smith SR, et al. Subcutaneous adipose tissue from obese and lean adults does not release hepcidin in vivo. ScientificWorldJournal. 2011;11:2197–206.

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Zimmermann MB, Zeder C, Muthayya S, et al. Adiposity in women and children from transition countries predicts decreased iron absorption, iron deficiency and a reduced response to iron fortification. Int J Obes (Lond). 2008;32(7):1098–104.

    CAS  Google Scholar 

  174. Di Toro A, Marotta A, Todisco N, et al. Unchanged iron and copper and increased zinc in the blood of obese children after two hypocaloric diets. Biol Trace Elem Res. 1997;57(2):97–104.

    PubMed  Google Scholar 

  175. Weinsier RL, Bacon JA, Birch R. Time-calorie displacement diet for weight control: a prospective evaluation of its adequacy for maintaining normal nutritional status. Int J Obes. 1983;7(6):539–48.

    CAS  PubMed  Google Scholar 

  176. Rodriguez-Rodriguez E, Lopez-Sobaler AM, Andres P, et al. Modification of iron status in young overweight/mildly obese women by two dietary interventions designed to achieve weight loss. Ann Nutr Metab. 2007;51(4):367–73.

    CAS  PubMed  Google Scholar 

  177. Beard J, Borel M, Peterson FJ. Changes in iron status during weight loss with very-low-energy diets. Am J Clin Nutr. 1997;66(1):104–10.

    CAS  PubMed  Google Scholar 

  178. Kretsch MJ, Fong AK, Green MW, et al. Cognitive function, iron status, and hemoglobin concentration in obese dieting women. Eur J Clin Nutr. 1998;52(7):512–8.

    CAS  PubMed  Google Scholar 

  179. Carr ND, Harrison RA, Tomkins A, et al. Vertical banded gastroplasty in the treatment of morbid obesity: results of three year follow up. Gut. 1989;30(8):1048–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Toh SY, Zarshenas N, Jorgensen J. Prevalence of nutrient deficiencies in bariatric patients. Nutrition. 2009;25(11–12):1150–6.

    CAS  PubMed  Google Scholar 

  181. Shankar P, Boylan M, Sriram K. Micronutrient deficiencies after bariatric surgery. Nutrition. 2010;26(11–12):1031–7.

    CAS  PubMed  Google Scholar 

  182. Anty R, Dahman M, Iannelli A, et al. Bariatric surgery can correct iron depletion in morbidly obese women: a link with chronic inflammation. Obes Surg. 2008;18(6):709–14.

    PubMed  Google Scholar 

  183. Updegraff TA, Neufeld NJ. Protein, iron, and folate status of patients prior to and following surgery for morbid obesity. J Am Diet Assoc. 1981;78(2):135–40.

    CAS  PubMed  Google Scholar 

  184. Gasteyger C, Suter M, Calmes JM, et al. Changes in body composition, metabolic profile and nutritional status 24 months after gastric banding. Obes Surg. 2006;16(3):243–50.

    CAS  PubMed  Google Scholar 

  185. Ramalho R, Guimaraes C, Gil C, et al. Morbid obesity and inflammation: a prospective study after adjustable gastric banding surgery. Obes Surg. 2009;19(7):915–20.

    PubMed  Google Scholar 

  186. Tussing-Humphreys LM, Nemeth E, Fantuzzi G, et al. Decreased serum hepcidin and improved functional iron status 6 months after restrictive bariatric surgery. Obesity (Silver Spring). 2010;18(10):2010–6.

    CAS  Google Scholar 

  187. Amato A, Santoro N, Calabro P, et al. Effect of body mass index reduction on serum hepcidin levels and iron status in obese children. Int J Obes (Lond). 2010;34(12):1772–4.

    CAS  Google Scholar 

  188. Rayman MP. Selenium and human health. Lancet. 2012;379(9822):1256–68.

    CAS  PubMed  Google Scholar 

  189. Rayman MP. Selenoproteins and human health: insights from epidemiological data. Biochim Biophys Acta. 2009;1790(11):1533–40.

    CAS  PubMed  Google Scholar 

  190. Neve J. Human selenium supplementation as assessed by changes in blood selenium concentration and glutathione peroxidase activity. J Trace Elem Med Biol. 1995;9(2):65–73.

    CAS  PubMed  Google Scholar 

  191. Robinson JR, Robinson MF, Levander OA, et al. Urinary excretion of selenium by New Zealand and North American human subjects on differing intakes. Am J Clin Nutr. 1985;41(5):1023–31.

    CAS  PubMed  Google Scholar 

  192. Thomson CD, Robinson MF, Butler JA, et al. Long-term supplementation with selenate and selenomethionine: selenium and glutathione peroxidase (EC 1.11.1.9) in blood components of New Zealand women. Br J Nutr. 1993;69(2):577–88.

    CAS  PubMed  Google Scholar 

  193. Thomson CD, Robinson MF. Urinary and fecal excretions and absorption of a large supplement of selenium: superiority of selenate over selenite. Am J Clin Nutr. 1986;44(5):659–63.

    CAS  PubMed  Google Scholar 

  194. Diplock A, Chaundhry FA. The relationship of selenium biochemistry to selenium-responsive disease in man. In: Prasad AS, editor. Essential and toxic trace elements in human health and disease. New York: Liss; 1988.

    Google Scholar 

  195. Levander OA. Considerations on the assessment of selenium status. Fed Proc. 1985;44(9):2579–83.

    CAS  PubMed  Google Scholar 

  196. Swanson CA, Patterson BH, Levander OA, et al. Human [74Se]selenomethionine metabolism: a kinetic model. Am J Clin Nutr. 1991;54(5):917–26.

    CAS  PubMed  Google Scholar 

  197. Beck MA, Levander OA, Handy J. Selenium deficiency and viral infection. J Nutr. 2003;133(5 Suppl 1):1463S–7.

    CAS  PubMed  Google Scholar 

  198. Gu BQ. Pathology of Keshan disease. A comprehensive review. Chin Med J (Engl). 1983;96(4):251–61.

    CAS  Google Scholar 

  199. Zimmermann MB, Kohrle J. The impact of iron and selenium deficiencies on iodine and thyroid metabolism: biochemistry and relevance to public health. Thyroid. 2002;12(10):867–78.

    CAS  PubMed  Google Scholar 

  200. National Institute of Health Office of Dietary Supplements. Dietary Supplement Fact Sheet: Selenium [updated 2012 Oct 12; cited 2012 Nov 29]. Available from: http://ods.od.nih.gov/factsheets/Selenium-HealthProfessional/.

  201. Gramm HJ, Kopf A, Bratter P. The necessity of selenium substitution in total parenteral nutrition and artificial alimentation. J Trace Elem Med Biol. 1995;9(1):1–12.

    CAS  PubMed  Google Scholar 

  202. Gartner R, Albrich W, Angstwurm MW. The effect of a selenium supplementation on the outcome of patients with severe systemic inflammation, burn and trauma. Biofactors. 2001;14(1–4):199–204.

    CAS  PubMed  Google Scholar 

  203. Arnaud J, Bertrais S, Roussel AM, et al. Serum selenium determinants in French adults: the SU.VI.M.AX study. Br J Nutr. 2006;95(2):313–20.

    CAS  PubMed  Google Scholar 

  204. Russo MW, Murray SC, Wurzelmann JI, et al. Plasma selenium levels and the risk of colorectal adenomas. Nutr Cancer. 1997;28(2):125–9.

    CAS  PubMed  Google Scholar 

  205. Combs Jr GF, Clark LC, Turnbull BW. Reduction of cancer risk with an oral supplement of selenium. Biomed Environ Sci. 1997;10(2–3):227–34.

    PubMed  Google Scholar 

  206. Zhang Y, Chen X. Reducing selenoprotein P expression suppresses adipocyte differentiation as a result of increased preadipocyte inflammation. Am J Physiol Endocrinol Metab. 2011;300(1):E77–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  207. Kimmons JE, Blanck HM, Tohill BC, et al. Associations between body mass index and the prevalence of low micronutrient levels among US adults. MedGenMed. 2006;8(4):59.

    PubMed Central  PubMed  Google Scholar 

  208. Sanchez C, Lopez-Jurado M, Aranda P, et al. Plasma levels of copper, manganese and selenium in an adult population in southern Spain: influence of age, obesity and lifestyle factors. Sci Total Environ. 2010;408(5):1014–20.

    CAS  PubMed  Google Scholar 

  209. Ghayour-Mobarhan M, Taylor A, New SA, et al. Determinants of serum copper, zinc and selenium in healthy subjects. Ann Clin Biochem. 2005;42(Pt 5):364–75.

    CAS  PubMed  Google Scholar 

  210. Ortega RM, Rodriguez-Rodriguez E, Aparicio A, et al. Young children with excess of weight show an impaired selenium status. Int J Vitam Nutr Res. 2012;82(2):121–9.

    CAS  PubMed  Google Scholar 

  211. Alasfar F, Ben-Nakhi M, Khoursheed M, et al. Selenium is significantly depleted among morbidly obese female patients seeking bariatric surgery. Obes Surg. 2011;21(11):1710–3.

    PubMed  Google Scholar 

  212. Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114(12):1752–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  213. Lin Y, Berg AH, Iyengar P, et al. The hyperglycemia-induced inflammatory response in adipocytes: the role of reactive oxygen species. J Biol Chem. 2005;280(6):4617–26.

    CAS  PubMed  Google Scholar 

  214. Robertson RP. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem. 2004;279(41):42351–4.

    CAS  PubMed  Google Scholar 

  215. Alizadeh M, Daneghian S, Ghaffari A, et al. The effect of hypocaloric diet enriched in legumes with or without L-arginine and selenium on anthropometric measures in central obese women. J Res Med Sci. 2010;15(6):331–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  216. Savory LA, Kerr CJ, Whiting P, et al. Selenium supplementation and exercise: effect on oxidant stress in overweight adults. Obesity (Silver Spring). 2012;20(4):794–801.

    CAS  Google Scholar 

  217. Cominetti C, de Bortoli MC, Purgatto E, et al. Associations between glutathione peroxidase-1 Pro198Leu polymorphism, selenium status, and DNA damage levels in obese women after consumption of Brazil nuts. Nutrition. 2011;27(9):891–6.

    CAS  PubMed  Google Scholar 

  218. Maranhao PA, Kraemer-Aguiar LG, de Oliveira CL, et al. Brazil nuts intake improves lipid profile, oxidative stress and microvascular function in obese adolescents: a randomized controlled trial. Nutr Metab (Lond). 2011;8(1):32.

    Google Scholar 

  219. Salgueiro MJ, Zubillaga M, Lysionek A, et al. Zinc as an essential micronutrient: a review. Nutr Res. 2000;20(5):737–55.

    CAS  Google Scholar 

  220. Powell SR. The antioxidant properties of zinc. J Nutr. 2000;130(5 Suppl):1447S–54.

    CAS  PubMed  Google Scholar 

  221. National Institutes of Health Office of Dietary Supplements. Dietary Supplement Fact Sheet: Zinc [updated 2011 Sep 20; cited 2012 Nov 29]. Available from: http://ods.od.nih.gov/factsheets/Zinc-QuickFacts/.

  222. Sandstead HH, Smith Jr JC. Deliberations and evaluations of approaches, endpoints and paradigms for determining zinc dietary recommendations. J Nutr. 1996;126(9 Suppl):2410S–8.

    CAS  PubMed  Google Scholar 

  223. Sian L, Mingyan X, Miller LV, et al. Zinc absorption and intestinal losses of endogenous zinc in young Chinese women with marginal zinc intakes. Am J Clin Nutr. 1996;63(3):348–53.

    CAS  PubMed  Google Scholar 

  224. Krebs NF. Overview of zinc absorption and excretion in the human gastrointestinal tract. J Nutr. 2000;130(5S Suppl):1374S–7.

    CAS  PubMed  Google Scholar 

  225. Prasad AS, Halsted JA, Nadimi M. Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. Am J Med. 1961;31:532–46.

    CAS  PubMed  Google Scholar 

  226. Prasad AS, Schulert AR, Sandstead HH, et al. Zinc, iron, and nitrogen content of sweat in normal and deficient subjects. J Lab Clin Med. 1963;62:84–9.

    CAS  PubMed  Google Scholar 

  227. Solomons NW. Mild human zinc deficiency produces an imbalance between cell-mediated and humoral immunity. Nutr Rev. 1998;56:27–8.

    CAS  PubMed  Google Scholar 

  228. Bales CW, DiSilvestro RA, Currie KL, et al. Marginal zinc deficiency in older adults: responsiveness of zinc status indicators. J Am Coll Nutr. 1994;13(5):455–62.

    CAS  PubMed  Google Scholar 

  229. McClain CJ. Zinc metabolism in malabsorption syndromes. J Am Coll Nutr. 1985;4(1):49–64.

    CAS  PubMed  Google Scholar 

  230. Sullivan JF, Lankford HG. Urinary excretion of zinc in alcoholism and postalcoholic cirrhosis. Am J Clin Nutr. 1962;10:153–7.

    CAS  PubMed  Google Scholar 

  231. Maret W, Sandstead HH. Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol. 2006;20(1):3–18.

    CAS  PubMed  Google Scholar 

  232. Kawachi H. Micronutrients affecting adipogenesis in beef cattle. Anim Sci J. 2006;77(5):463–71.

    CAS  Google Scholar 

  233. Tanaka S, Takahashi E, Matsui T, et al. Zinc promotes adipocyte differentiation in vitro. Asian-Australas J Anim Sci. 2001;14(7):966–9.

    CAS  Google Scholar 

  234. Ott ES, Shay NF. Zinc deficiency reduces leptin gene expression and leptin secretion in rat adipocytes. Exp Biol Med (Maywood). 2001;226(9):841–6.

    CAS  Google Scholar 

  235. Saladin R, De Vos P, Guerre-Millo M, et al. Transient increase in obese gene expression after food intake or insulin administration. Nature. 1995;377(6549):527–9.

    CAS  PubMed  Google Scholar 

  236. Hardie LJ, Guilhot N, Trayhurn P. Regulation of leptin production in cultured mature white adipocytes. Horm Metab Res. 1996;28(12):685–9.

    CAS  PubMed  Google Scholar 

  237. Meruvu S, Hugendubler L, Mueller E. Regulation of adipocyte differentiation by the zinc finger protein ZNF638. J Biol Chem. 2011;286(30):26516–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  238. Bouchard L, Vohl MC, Deshaies Y, et al. Visceral adipose tissue zinc finger protein 36 mRNA levels are correlated with insulin, insulin resistance index, and adiponectinemia in women. Eur J Endocrinol. 2007;157(4):451–7.

    CAS  PubMed  Google Scholar 

  239. Tang X, Shay NF. Zinc has an insulin-like effect on glucose transport mediated by phosphoinositol-3-kinase and Akt in 3T3-L1 fibroblasts and adipocytes. J Nutr. 2001;131(5):1414–20.

    CAS  PubMed  Google Scholar 

  240. Russell ST, Tisdale MJ. The role of glucocorticoids in the induction of zinc-alpha2-glycoprotein expression in adipose tissue in cancer cachexia. Br J Cancer. 2005;92(5):876–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  241. Tinahones FJ, Garrido-Sanchez L, Miranda M, et al. Obesity and insulin resistance-related changes in the expression of lipogenic and lipolytic genes in morbidly obese subjects. Obes Surg. 2010;20(11):1559–67.

    CAS  PubMed  Google Scholar 

  242. Singh RB, Niaz MA, Rastogi SS, et al. Current zinc intake and risk of diabetes and coronary artery disease and factors associated with insulin resistance in rural and urban populations of North India. J Am Coll Nutr. 1998;17(6):564–70.

    CAS  PubMed  Google Scholar 

  243. Chen MD, Lin PY, Sheu WH. Zinc status in plasma of obese individuals during glucose administration. Biol Trace Elem Res. 1997;60(1–2):123–9.

    CAS  PubMed  Google Scholar 

  244. Ennes Dourado Ferro F, de Sousa Lima VB, Mello Soares NR, et al. Biomarkers of metabolic syndrome and its relationship with the zinc nutritional status in obese women. Nutr Hosp. 2011;26:650–4.

    CAS  PubMed  Google Scholar 

  245. Marreiro DN, Fisberg M, Cozzolino SM. Zinc nutritional status in obese children and adolescents. Biol Trace Elem Res. 2002;86(2):107–22.

    PubMed  Google Scholar 

  246. Gibson RS, Skeaff M, Williams S. Interrelationship of indices of body composition and zinc status in 11-yr-old New Zealand children. Biol Trace Elem Res. 2000;75(1–3):65–77.

    CAS  PubMed  Google Scholar 

  247. Liuzzi JP, Lichten LA, Rivera S, et al. Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci U S A. 2005;102(19):6843–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  248. Schroeder JJ, Cousins RJ. Interleukin 6 regulates metallothionein gene expression and zinc metabolism in hepatocyte monolayer cultures. Proc Natl Acad Sci U S A. 1990;87(8):3137–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  249. DiSilvestro RA. Zinc in relation to diabetes and oxidative disease. J Nutr. 2000;130(5 Suppl):1509S–11.

    CAS  PubMed  Google Scholar 

  250. Mocchegiani E, Costarelli L, Giacconi R, et al. Nutrient-gene interaction in ageing and successful ageing. A single nutrient (zinc) and some target genes related to inflammatory/immune response. Mech Ageing Dev. 2006;127(6):517–25.

    CAS  PubMed  Google Scholar 

  251. Wieringa FT, Dijkhuizen MA, West CE, et al. Estimation of the effect of the acute phase response on indicators of micronutrient status in Indonesian infants. J Nutr. 2002;132(10):3061–6.

    CAS  PubMed  Google Scholar 

  252. Mwaniki DL, Omwega AM, Minui EM, Mutunga JN, Akelola R, Shako BR, Gotink MH, Pertet AM. Anaemia and status of iron, vitamin A and zinc in Kenya. The 1999 National survey report. Nairobi, Kenya: Ministry of Health; 2001. p. 1–221.

    Google Scholar 

  253. Mantzoros CS, Prasad AS, Beck FW, et al. Zinc may regulate serum leptin concentrations in humans. J Am Coll Nutr. 1998;17(3):270–5.

    CAS  PubMed  Google Scholar 

  254. Buchanan C, Mahesh V, Zamorano P, et al. Central nervous system effects of leptin. Trends Endocrinol Metab. 1998;9(4):146–50.

    CAS  PubMed  Google Scholar 

  255. Chen MD, Song YM, Lin PY. Zinc may be a mediator of leptin production in humans. Life Sci. 2000;66(22):2143–9.

    CAS  PubMed  Google Scholar 

  256. Gomez-Garcia A, Hernandez-Salazar E, Gonzalez-Ortiz M, et al. [Effect of oral zinc administration on insulin sensitivity, leptin and androgens in obese males]. Rev Med Chil. 2006;134(3):279–84.

    CAS  PubMed  Google Scholar 

  257. Marreiro DN, Geloneze B, Tambascia MA, et al. Effect of zinc supplementation on serum leptin levels and insulin resistance of obese women. Biol Trace Elem Res. 2006;112(2):109–18.

    CAS  PubMed  Google Scholar 

  258. Capdor J, Foster M, Petocz P, et al. Zinc and glycemic control: a meta-analysis of randomised placebo controlled supplementation trials in humans. J Trace Elem Med Biol. 2012;27(2):137–42.

    PubMed  Google Scholar 

  259. Kelishadi R, Hashemipour M, Adeli K, et al. Effect of zinc supplementation on markers of insulin resistance, oxidative stress, and inflammation among prepubescent children with metabolic syndrome. Metab Syndr Relat Disord. 2010;8(6):505–10.

    CAS  PubMed  Google Scholar 

  260. Hashemipour M, Kelishadi R, Shapouri J, et al. Effect of zinc supplementation on insulin resistance and components of the metabolic syndrome in prepubertal obese children. Hormones (Athens). 2009;8(4):279–85.

    Google Scholar 

  261. Tallman DL, Taylor CG. Effects of dietary fat and zinc on adiposity, serum leptin and adipose fatty acid composition in C57BL/6J mice. J Nutr Biochem. 2003;14(1):17–23.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We would like to thank Sarah Olender for her technical assistance in preparing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Tussing-Humphreys Ph.D., R.D., M.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tussing-Humphreys, L., Nguyen, V.T.Q. (2014). Obesity and Micronutrient Deficiencies. In: Fantuzzi, G., Braunschweig, C. (eds) Adipose Tissue and Adipokines in Health and Disease. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-770-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-770-9_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-769-3

  • Online ISBN: 978-1-62703-770-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics